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Pedestrian detection problem

Q [ —initial image (in our case RGB)

Q The pedestrian detection problem consists in mapping image to the
set of pedestrian location:

p:1->B8, B ={b,k=0B[—1}

Q The pedestrian location by
IS a bounding box constructed
around the pedestrian on the
Initial image
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Sliding “window” approach
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Experiments (1)

Q Data:
— TUD-MotionPairs for training

— Caltech Pedestrian Dataset (4,250 RGB images 640x480) for
testing

a Features:
— Histogram of Oriented Gradients (HOG)
— 3,024 features per detection window
— 397 features selected*
A Classifiers:
— Support Vector Machines (SVM)
— Gradient Boosting Trees (GBT) — OpenCV

*Tuv E., Borisov A., Runger G. Feature Selection with Ensembles, Artificial Variables, and
Redundancy Elimination // Journal of Machine Learning Research. — 2009. — Ne 10. — P. 1341-1366.
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Experiments (2)
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Video-based vehicle detection problem. Locations

Q Iy, I, ...,Iy_1 IS a frames sequence, where N is a number of frames

Q The problem of vehicle video detection consists in mapping each
frame I, into the set of objects locations By:

(p:]k—)Bk, Bk:{blk,l:(),lBkl—l}

b = (G y1), (ehyh)L st el

s! € Ris a confidence, (x1,yhH
c! is a vehicle class
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Video-based vehicle detection problem. Tracks

Q The model requires construction of objects tracks

Q The map y from the vehicles locations of the frame I, to the
vehicles locations of the frame I}, 4:

lp: Bk - Bk+1 U {b}) b = ((_1) _1)) (_11 _1)[) S, C])
Q If I is the first frame where the object was detected, r,(k) is the

bounding box index and g is the number of frames where the
object is visible, then a track is a sequence of locations

k+g-—1
T gy = (B, bEF, . b T7Y), bl =y (blti1),i=T g — 1
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Software

Q The software implementation uses OpenCV computer vision library

Q Latent Support Vector Machines* is used as a detection algorithm

Q The vehicle classifier (class CAR) was trained on PASCAL Visual
Object Challenge 2007 data set and our data

* Felzenszwalb P. F., Girshick R. B., McAllester D., Ramanan D. Object Detection with Discriminatively
Trained Part Based Models // IEEE Transactions on Pattern Analysis and Machine Intelligence
(PAMI’10). — 2010. - V. 32, Ne 9. — P. 1627-1645.
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Experiments (1)

O Test data:

— track_10 5000-7000: 25 FPS, 720x405, 2000 frames = 80 s,
~3000 bounding boxes, 58 tracks, vehicles of the only class
CAR, that move in 4 lanes of the same direction

— track_10 7000-8000: 25 FPS, 720x405, 1000 frames = 40 s,
~1000 bounding boxes, 29 tracks, objects of two classes, CAR
and BUS
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Experiments (2)

Video AP | TPR (%) | FDR (%) FPF
track 10 5000-7000 | 0.68 | 74.8 19.9 0.27
track 10 7000-8000 | 0.68 | 71.3 32.4 0.38

Q the average precision (AP)
Q the true positive rate (TPR)*
Q the false detection rate (FDR)*

Q the average false positives per frame (FPF)*
* overlapping square is more than 50%
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Current research

Q More complicated traffic data
Q Applying detectors based on deep learning (SSD, YOLO, etc.)
QO Combining semantic segmentation and vehicle detection
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Educational course “Introduction to deep learning
using the Intel® neon™ Framework”

Q Topics:
— Introduction to deep learning
— Multilayered fully-connected neural networks
— Introduction to the Intel® neon™ Framework
— Convolutional neural networks. Deep residual networks
— Transfer learning of deep neural networks
— Unsupervised learning: autoencoders, deconvolutional networks
— Recurrent neural networks
— Introduction to the Intel® nGraph™

Q Links: Russian version, English version (2018)
Q Authors: Kustikova V., Zolotykh N., Zhiltsov M.
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http://hpc-education.unn.ru/%D0%BE%D0%B1%D1%83%D1%87%D0%B5%D0%BD%D0%B8%D0%B5/%D0%BA%D1%83%D1%80%D1%81%D1%8B/intel-neon-framework
http://hpc-education.unn.ru/en/trainings/collection-of-courses/introduction-to-deep-learning-using-the-intel-neon-framework

Other educational materials

Q boebipuH A.B., [ipyxkoe I1.H., Epyxumoe B.J1., 3onombix
H.FO., Kycmukoea B.[., JlbiceHkoe U.[., Meepoe U.B.,
lNMucapeeckuu B.H., lNonoeuHkuH A.H., Cbicoee A.B.
Y4ebHbIn Kypc “Pa3paboTka MynbTUMEOUNHBIX NPUIOXEHUN C
ncnosio3osaHnem bmnbnmotek OpenCV un IPP”
[http://www.hpcc.unn.ru/?doc=602] (2012)

Q Bbapkanoe K.A., Meepoe U.B., Cbicoes A.B., CudHes A.A.,
Kycmukoea B.L]., KosuHoe E.A., bBacmpakoe C./.,
JoHyeHko P.B., Manoega A.FO., CaghoHoea 51.10.

Y4eOHbIn Kypc “TlapannenbHble YNCTIEHHbIE MeTOAbI”
[http://www.hpcc.unn.ru/?doc=491] (2012)
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Introduction

Q Astrocytes are electrically inactive brain cells

Q Imaging of calcium activity is a basic method for calcium activity
analysis. Recently, several approaches to measure automatically
the parameters of individual events been suggested, however,
none of these methods has become a standard

Q The state-of-the-art approaches for image preprocessing are based
on deep learning

Q The labeling data is performed by experts, but there are astrocyte
activities which may be invisible for some of them that is why the
labeling is a subjective process. Therefore, the application of deep
learning to the astrocyte activity analysis is complicated

Q We improved the previously developed method: Wu Y.W., et al.
Spatiotemporal calcium dynamics in single astrocytes and its
modulation by neuronal activity, 2014

VU

16.11.2018 17



Problem statement (1)

Q The proposed method analyses time-lapse imaging records for the
calcium activity of an astrocyte

O Each frame displays a spatial distribution of fluorescence intensity
In several planes parallel to the substrate, yielding a set of planar
Images that reflect calcium activity

A We introduce and consider a maximal projection, defined as the
maximal intensity at each point over this set:

V={Vs,osSsk—1},VS=(Vi§.S>:03i§h—1,0§j§w—1),

where k Is a number of frames, and V; is a frame with a resolution
wXh
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Problem statement (2)

Q Moreover, we have a movie that corresponds to the camera noise
and represents a video without astrocyte:

N={N,.,OSrSn—1},N,,=(Nl.(]”): OSiSh—l,OSij—l),

where n is a number of frames, and N,. is a noise frame

Q The principle of noise generation on videos is unknown; the noise

model iIs Gaussian noise
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Method

The proposed method includes the following steps:
1. Video preprocessing

2. Calculating a baseline of the fluorescence intensity and its
relative variation

3. Detecting calcium events based on the relative intensity variation

Preprocessing of frames Calculating variation Calcium event

—

of intensity detection
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Step 1. Video preprocessing

Q Aligning an image (eliminating jitter) based on normalized cross-

correlation

Q Calculating noise parameters based on the input noise video,
identifying points of undefined activity and subtracting the camera

noise
A Filtering frames using block-matching and 3D filtering method (BM3D)

Q Evaluating a noise level on the filtered video relative to the baseline

level. We construct a set of activity moments
10
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Step 2. Calculating a baseline of the fluorescence
Intensity and its relative variation

Q Calculating the baseline intensity for each pixel assumes an
iterative approximation by applying moving average for the current

estimate of a baseline
104
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Q The formula for the relative intensity variation for each pixel is
standard one and is used to compute calcium fluorescence

dF F—F, . . . . : : :
2 where F, is a baseline pixel intensity, F is a pixel

|nten5|ty realization in time
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Step 3. Detecting calcium events based
on the relative intensity variation (1)

Q Identifying time gaps where each pixel is active
— Clustering the activity moments using DBSCAN method

@@99—@-@@—@@-@ = @ e

0 50 100 150 200 250 300 350 400 450 500

f.

a Combining these time gaps over space and time based on sliding
window approach

— Representing the constructed time gaps for the set of all pixels
as a set of graph vertices

v; = {(xLy"), (¢, ¢)}, (x',yY) is a pixel

@ displacement, (¢, tf) is an activity time gap,
ts is a start frame identifier, ¢ is a final
frame identifier
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Step 3. Detecting calcium events based
on the relative intensity variation (2)

— Two vertices are connected by an edge if the corresponding
pixels belong to the same window location and the
corresponding time gaps intersect

(x%yY)

(<), y7) tsl; té t} t]{

— Constructing connectivity components for this graph
— Each connectivity component represents an astrocyte event

‘u, 16.11.2018
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Implementation

Q The proposed method is implemented in C++ programming
language, tools for statistical events analysis are implemented in
MATLAB

Q The code is distributed free and open source

O The source code can be downloaded from GitHub:
https://github.com/UNN-VMK-Software/astro-analysis

Q We also submit a short test movie and step-by-step tutorial for
building and executing developed program, and for fine-turning
method parameters
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Experimental data

O We used 10 records with a duration from 100 to 3000 frames, with
frame resolution is not exceeding 512 x 512 pixels

# Resolution Duration Number of detected events

1 512 x 512 1500 465
2 451 x 441 3000 1204
3 421 x 512 3000 2048
4 512 x 512 100 65
5 512 x 512 1000 458
6 512 x 512 1000 591
7 500 x 390 1000 260
8 512 x 512 200 61
9 512 X 512 500 97
10 512 x 512 600 364

16.11.2018
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Results (1)

Q The correctness of event detection in a given subject area is
determined today by the method of expert assessments

Q Identification of calcium events was confirmed by visual inspection
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a The propoemhod adequately yields the regions of calcium
activity
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Results (2)

O We implemented a statistical analysis of calcium events

Q The complementary cumulative distribution functions for durations
and maximal projections of events are approximated well by power
laws, as confirmed by Kolmogorov-Smirnov test

Q The typical values of the exponents are consistent with the
previously reported data in Wu Y.W., et al., 2014
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Space-time measurements (1)

Q Spatial histogram of event start and end
Q Spatial activity histogram
Q Vectors of the event front spread

Q One-dimensional histograms of the number of splits and merges
within an event, the difference of splits and merges

A Compactness index for each video frame

a Two-dimensional histogram of the event count with different
number of splits and merges

a Correlations between different measurements
Q...

‘u, 16.11.2018
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Space-time measurements (2)

Q Spatial histogram of event start and end

Beginning of events (ITMM)
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| Space-time measurements (3)

A Number of region splits and merges
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Space-time measurements (4)

Q Event front spread
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Conclusion

O We have demonstrated a method for detecting calcium activity in
astrocytes

Q The novelty of the proposed method consists in estimating noise
parameters and constructing the baseline level corresponding to
the inactive state of astrocyte

Q The software is available at GitHub for testing on raw experimental
data: https://github.com/UNN-VMK-Software/astro-analysis

Q Our program can be used by researchers analyzing spatiotemporal
properties of calcium events in astrocytes and other cell types

Q The proposed method is open for future development

‘u, 16.11.2018
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Contacts

a E-mail: valentina.kustikova@itmm.unn.ru
Q Web (RUS): https://sites.google.com/site/kustikovavalentina
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