$\begin{array}{c} \text{Classic \mathcal{NP}-hard Problem} \\ \text{Applications} \\ \text{An Exact Methods for MISP} \\ \text{An Effective Methods for MISP} \end{array}$

Maximum Independent Set Problem and Effective Methods for its Solving

Rasskazova VA¹

¹Department of Computer Modelling and Probability Theory Moscow Aviation Institute

3rd Winter School on Data Analytics (DA 2018) Nizhny Novgorod, 2018

< ロ > < 同 > < 三 >

 $\begin{array}{l} \mbox{Classic \mathcal{NP}-hard Problem} \\ \mbox{Applications} \\ \mbox{An Exact Methods for MISP} \\ \mbox{An Effective Methods for MISP} \end{array}$

Outline

1) Classic \mathcal{NP} -hard Problem

- Complexity classes and their relations
- MISP and MCP
- 2 Applications
- 3 An Exact Methods for MISP
 - Dynamic Programming
 - Bron-Kerbosh Algorithm

An Effective Methods for MISP

- Variable Neighborhood Search (VNS)
- Extended Simplicial Vertex Test (ESVT)

< ロ > < 同 > < 三 >

Complexity classes and their relations MISP and MCP

イロト イポト イヨト イヨト

Outline

Classic *NP*-hard Problem

- Complexity classes and their relations
- MISP and MCP
- 2 Applications
- 3 An Exact Methods for MISP
 - Dynamic Programming
 - Bron-Kerbosh Algorithm
- 4 An Effective Methods for MISP
 - Variable Neighborhood Search (VNS)
 - Extended Simplicial Vertex Test (ESVT)

Complexity classes and their relations MISP and MCP

ヘロト ヘアト ヘビト ヘビト

æ

Let's consider any search-problem.

Require: *I*, *S* {an instance and a candidate solution} **Ensure:** true/ false

Class \mathcal{NP} (non-deterministic polynomial-time) is a class of search-problems, for which there exist polynomial-time algorithms to check a candidate solutions.

Complexity classes and their relations MISP and MCP

ヘロト ヘアト ヘビト ヘビト

1

Class \mathcal{P}

Let's consider optimisation problem corresponding to some search-problem. **Require:** *I* {an instance}

Ensure: min $S(\max S)$ {an optimal solution}

Class \mathcal{P} is a class of search-problems, for which there exist polynomial-time algorithms to solve corresponding optimization problems.

Are there search-problems, for which corresponing optimisation problems cann't be solved by polynomial-time algorithm, that is

 $\mathcal{NP} \neq \mathcal{P}$?

Complexity classes and their relations MISP and MCP

イロト イポト イヨト イヨト

ъ

Let f and h be polynomial-time algorithms.

$$A, I \longrightarrow f - f(I) \Rightarrow \text{Algorithm for } B \longrightarrow f(I) \longrightarrow h \longrightarrow h(S): A, I$$

- no solutions for $B, f(I) \longrightarrow$ no solutions for A, I

Class \mathcal{NPC} (\mathcal{NP} -complete) is a class of search-problems, to each of which one can reduced any problem from \mathcal{NP} .

Complexity classes and their relations MISP and MCP

Class \mathcal{NP} – hard

Class \mathcal{NP} – hard is a class of optimization problems, for which corresponding search-problems belong to \mathcal{NPC} .

Complexity classes and their relations MISP and MCP

.≣⇒

< □ > < 同 > < 三 > <

Outline

Classic NP-hard Problem Complexity classes and their relations MISP and MCP Applications

- 3 An Exact Methods for MISP
 - Dynamic Programming
 - Bron-Kerbosh Algorithm
- 4 An Effective Methods for MISP
 - Variable Neighborhood Search (VNS)
 - Extended Simplicial Vertex Test (ESVT)

Complexity classes and their relations MISP and MCP

Independent Sets

Independent set (IS) of an undirected graph G = (V, E) is any empty induced subgraph, that is

 $S, S \subseteq V$, - is an IS, if for all $v, u \in S$: $(u, v) \notin E$.

An IS: {1,2}. Maximal IS couldn't be extended by any vertex: {3}. Maximum IS has the largest cardinality: {1,2,4}.

Complexity classes and their relations MISP and MCP

<ロ> <四> <四> <三> <三> <三> <三

Complementary Graph

A comlementary graph $\tilde{G} = (V, \tilde{E})$ has the same set of vertices and

 $(u, v) \in \tilde{E}$ if and only if $(u, v) \not\in E$.

Initial graph G = (V, E). Complementary graph $\tilde{G} = (V, \tilde{E})$.

Complexity classes and their relations MISP and MCP

Maximum Clique

Maximum clique (MC) of an undirected graph G = (V, E) is the largest (by cardinality) complete subgraph.

Complexity classes and their relations MISP and MCP

イロト イヨト イヨト イヨト

MIS Problem

Class \mathcal{NP}

Require: $G = (V, E), S \subseteq V$. **Ensure:** Is the set *S* an IS of the initial graph *G* (yes/ no)?

Class \mathcal{NPC}

Require: $G = (V, E), k \in \mathbb{Z}$. **Ensure:** Is there in the initial graph *G* an IS *S* of the size *k* (yes/ no)?

Class \mathcal{NP} -hard

Require: G = (V, E). **Ensure:** MIS *S* of the initial graph *G* (optimal solution).

Rasskazova VA MIS Problem

Chemistry

MC in a special graph is a maximum common substructures of molecules.

Bioinformatics

MC in a special graph is a secondary structure of RNA with the largest number of paired bases.

ъ

Transportation Managment

Let $\vec{G} = (S, E)$ be a railway network and let

 $N = \{n: (s_1, s_2, g_{12}(t, n)), (s_2, s_3, g_{23}(t, n)), \ldots\} -$

be the set of potential routes for trains moving. Any IS of conflict-graph $G = (N, \mathcal{E})$ is the set of feasible schedules for execution of transportations plan.

Dynamic Programming Bron-Kerbosh Algorithm

Outline

Classic NP-hard Problem Complexity classes and their relations MISP and MCP

- 2 Applications
- 3 An Exact Methods for MISP
 - Oynamic Programming
 - Bron-Kerbosh Algorithm

4 An Effective Methods for MISP

- Variable Neighborhood Search (VNS)
- Extended Simplicial Vertex Test (ESVT)

< ロ > < 同 > < 三 > .

Dynamic Programming Bron-Kerbosh Algorithm

Polynomial class of MISP

A tree is an undirected connected acyclic graph.

$\text{Class} \ \mathcal{P}$

Require: $T = (V, E), k \in \mathbb{Z}$. **Ensure:** Is there in the initial tree *T* an IS *S* of the size *k* (yes/no)?

ヘロト ヘ戸ト ヘヨト ヘヨト

Dynamic Programming Bron-Kerbosh Algorithm

Dynamic Programming for MISP

Function MIS.Tr (v)

- 1: if $I[v] \neq 0$ then
- 2: return *I*[*v*]

3: **else**

- 4: child.sum = 0
 - g.child.sum = 0
- 5: for i=1 to child.num do
- 6: $child.sum \leftarrow child.sum + mis.tree(child[i])$
- 7: for i=1 to g.child.num do
- 8: $g.child.sum \leftarrow g.child.sum + MIS.Tr(child[i])$
- 9: $I[v] = \max{child.sum; g.child.sum + 1}$ return I[v]

くロト (過) (目) (日)

Dynamic Programming Bron-Kerbosh Algorithm

Dynamic Programming

Let a tree T = (V, E) be given.

One can choose any vertex of an initial tree as a root.

Dynamic Programming Bron-Kerbosh Algorithm

Dynamic Programming

MIS.Tr (1):

$$\begin{split} &I[1] = \max\{I[2] + I[3] + I[5]; 1 + I[4] + I[6] + I[7] \\ &I[2] = \max\{[4]; 1\} \\ &I[4] = 1 \\ &I[2] = 1 \\ &I[3] = 1 \\ &I[5] = \max\{I[6] + [7]; 1\} \\ &I[6] = 1 \\ &I[7] = 1 \\ &I[6] = 2 \\ &I[4] = 1 \\ &I[6] = 2 \\ &I[7] = 1 \\ &I[1] = 4 \end{split}$$

Dynamic Programming Bron-Kerbosh Algorithm

Outline

Classic NP-hard Problem Complexity classes and their relations MISP and MCP

- 2 Applications
- 3 An Exact Methods for MISP
 - Dynamic Programming
 - Bron-Kerbosh Algorithm
 - 4 An Effective Methods for MISP
 - Variable Neighborhood Search (VNS)
 - Extended Simplicial Vertex Test (ESVT)

.≣⇒

Dynamic Programming Bron-Kerbosh Algorithm

Bron-Kerbosh Algorithm

Bron C, Kerbosh J. (1973) Algorithm 457 — Finding all cliques of an undirected graph, Comm. of ACM, 16, pp. 575–577.

- M: = the current independent set of vertices;
- $K\colon$ = the set of candidates which could be included in MIS under construction;
- P: = the set of excluded vertices.

ヘロト 人間 ト ヘヨト ヘヨト

Dynamic Programming Bron-Kerbosh Algorithm

Bron-Kerbosh Algorithm

- 1: while $K \neq \{\}$ or $M \neq \{\}$ do 2: if $K \neq \{\}$ then 3: $v \leftarrow K.first$ push v, M, K, P $M \leftarrow M + \{v\}$ $K \leftarrow K - \mathcal{N}(v) - \{v\}$ $P \leftarrow P - \{v\}$
- 4: **else**
- 5: return M
- 6: pop v, M, K, P $K \longleftarrow K - \{v\}$ $P \longleftarrow P + \{v\}$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Dynamic Programming Bron-Kerbosh Algorithm

Bron-Kerbosh Algorithm

	м	к	Р	v		
1	{ }	1234	{ }	1	K≠ { }; v=K.first	
2	1	2	{ }	2	push M, K, P; K≠ { _}; v=K.first	
3	12	{ }	{ }		push M, K, P; K = { }; ► M={12}	1 2 3 4
4	1	{ }	2		pop M, K, P (go to 2); K = { }; ► M={1}	

イロン 不同 とくほ とくほ とう

Dynamic Programming Bron-Kerbosh Algorithm

Bron-Kerbosh Algorithm

	м	к	Р	v		
5	{ }	234	1	2	pop M, K, P (go to 1); K ≠ { }; v=K.first	
6	2	3	1	3	push M, K, P; K ≠ { _}; v=K.first	1 2 3 4
7	23	{ }	1		push M, K, P; K = { }; ► M={23}	1 2 3 4
8	2	{ }	13		pop M, K, P (go to 6); K = { }; ► M={2}	1 2 3 4

イロン 不同 とくほ とくほ とう

Dynamic Programming Bron-Kerbosh Algorithm

Bron-Kerbosh Algorithm

	м	к	Р	v		
9	{ }	34	12	3	pop M, K, P (go to 5); K ≠ { }; v=K.first	
10	3	{ }	12		push M, K, P; K = { }; ► M={3}	1 2 3 4
11	{ }	4	123	4	pop M, K, P (go to 9); K ≠ { }; v=K.first	1 2 3 4
12	4	{ }	123		push M, K, P; K = { }; ► M={4}	1 2 3 4

ヘロト 人間 とくほとくほとう

Dynamic Programming Bron-Kerbosh Algorithm

Bron-Kerbosh Algorithm

	м	к	Р	v		
13	{ }	{ }	1234		pop M, K, P (go to 11); K = { }; M = { }	
					STOP	$O(3^{n/3})$

All ISs of initial graph: $\{1\}, \{2\}, \{3\}, \{4\}, \{1,2\}, \{2,3\}.$

E. Tomita, A. Tanaka, H. Takahashi (2006) The worst-case time complexity for generating all max cliques and computation experiments. Theoretical Computer Scinces, Vol. 363, Issue 1, pp. 28–42.

イロト イポト イヨト イヨト

æ

Dynamic Programming Bron-Kerbosh Algorithm

Computational Results

n (number)	density (%)	α (G) (number)	t (sec)
50	20	16	50,5
50	50	11	3,6
50	70	5	0,03
100	20	20	> 60 · 60
100	50	15	7,2·60
100	70	6	0,3
150	20	23	> 60 · 60
150	50	17	> 60 · 60
150	70	6	1,5

<ロト <回 > < 注 > < 注 > 、

æ

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

.≣⇒

< □ > < 同 > < 三 > <

Outline

Classic *NP*-hard Problem

- Complexity classes and their relationsMISP and MCP
- 2 Applications
- 3 An Exact Methods for MISP
 - Dynamic Programming
 - Bron-Kerbosh Algorithm

An Effective Methods for MISP

- Variable Neighborhood Search (VNS)
- Extended Simplicial Vertex Test (ESVT)

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Steps of the Basic VNS

Initialization. Select N_k , $k = 1, ..., k_{max}$; find X; choose a stopping condition.

Repeat until the «stopping condition».

- $\mathbf{O} \ k \leftarrow \mathbf{1}$
- **2 Repeat** until $k = k_{max}$.
 - **Shaking.** X' at random from $\mathcal{N}_k(X)$.
 - **2** Local Search. X'' obtained with X' as initial solution.
 - Move or Not.

if X'' is better than X then $X \leftarrow X''$ $k \leftarrow 1$ else $k \leftarrow k+1$

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

イロト イポト イヨト イヨト

Basic VNS

Let G = (V, E) be given and

 $C \subseteq V$: any clique of G; S = C: independent set of \tilde{G} ;

T = V - S: transversal of \tilde{G} .

A transversal T_{opt} has a minimum cardinality and covers all vertices from *S*.

$$\mathcal{N}_{k}(\boldsymbol{X}) = \left\{ \boldsymbol{X}' \colon \rho\left(\boldsymbol{X}, \boldsymbol{X}'\right) = \boldsymbol{k} \right\} \;,$$

where $\rho(X, X')$ is the Hamming distance between corresponding 0-1 arrays for *C* and *C'*.

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

イロト イポト イヨト イヨト

ъ

Shaking

Let *X* and k = 1 are given.

$$X' \longleftarrow Shaking(X, 1),$$

 $X'' \longleftarrow Local Search(\tilde{G}, X').$

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

イロト イポト イヨト イヨト

æ

Shaking

Let *X* and k = 2 are given.

$$X' \longleftarrow Shaking(X, 2), X'' \longleftarrow Local Search(\tilde{G}, X').$$

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

Local Search

Solution Test if $\tilde{V} = \{\}$ then stop

 $v \longleftarrow \min degree(\tilde{G})$ {using some tie-breaking rule} $C \longleftarrow C + \{v\}$ $T \longleftarrow T + \left\{u: (u, v) \in \tilde{E}\right\}$

Subproblem Reduction

$$\begin{split} \tilde{V} &\longleftarrow \tilde{V} - \{v, u\} \\ \tilde{E} &\longleftarrow \tilde{E} - \{(w, u)\} \{ e \in \tilde{E} \text{ if and only if both endpoints} \\ \text{belong to } \tilde{V} \} \\ \text{return to Solution Test} \end{split}$$

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

ヘロト 人間 とくほとくほとう

С	T	v	Ĩ	Ĩ
{ }	{ }	8	123456789	(1,2), (1,3), (1, 4), (2, 1), (2, 3) (3, 1), (3, 2), (3, 4), (3, 5), (3, 6) (4, 1), (4, 3) (5, 3), (5, 7), (5, 8) (6, 3), (6, 7), (6, 9) (7, 5), (7, 6) (8, 5) (9, 6)
8	5			

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

ヘロト 人間 とくほとくほとう

	С	Т	v	Ĩ	Ĩ
1 2 3 4 5 6 7 8 9	8	5	7	1234679	(1,2), (1,3), (1, 4), (2, 1), (2, 3) (3, 1), (3, 2), (3, 4), (3, 6) (4, 1), (4, 3) (6, 3), (6, 7), (6, 9) (7, 6) (9, 6)
	87	56			

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

ヘロト 人間 とくほとくほとう

	С	Т	v	Ĩ	\widetilde{E}
1 2 3 4 5 6 7 8 9	87	56	9	12349	(1,2), (1,3), (1, 4) (2, 1), (2, 3) (3, 1), (3, 2), (3, 4) (4, 1), (4, 3)
	879	56			

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

ヘロト 人間 とくほとくほとう

	С	Τ	v	Ĩ	\widetilde{E}
2 3 4 5 6 7 8 9	879	56	4	1234	(1,2), (1,3), (1, 4) (2, 1), (2, 3) (3, 1), (3, 2), (3, 4) (4, 1), (4, 3)
	8794	5613			

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

Greedy Selection Rule

	С	Т	v	Ĩ	\widetilde{E}
1 2 3 4 5 6 7 8 9	8794	5613	2	2	(1,2), (1,3), (1, 4) (2, 1), (2, 3) (3, 1), (3, 2), (3, 4) (4, 1), (4, 3)
	87942	5613			
	87942	5613		{ }	{ }
	stop				

Rasskazova VA MIS F

MIS Problem

ヘロト 人間 とくほとくほとう

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

VNS for MCP

Initialization

Neighborhood structures: $k_{max} = 3$; Initial solution $X_0: C = \{\}, T = \{\}$; Stopping condition: 2 iterations between 2 improvements.

Shaking

Random tie-breaking rule.

Move or Not

Local solution X'' is better than current solution X if and only if

$$\left| C\left(X^{''}
ight)
ight| > \left| C\left(X
ight)
ight| \; ,$$

where C(X) and C(X'') are the corresponding cliques.

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

ъ

VNS for MCP

Let's consider an arbitrary graph G = (V, E) and corresponding complementary graph $\tilde{G} = (\tilde{V}, \tilde{E})$.

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

VNS step		С	Т	\widetilde{V}	Ē
Initialization	X	{ }	{ }	123456	(1,3) (1,5) (1,6) (2,3) (3,1) (3,2) (3,4) (3,6) (4,3) (4,6)
					(5,1) (5,6) (6,1) (6,3) (6,4) (6,5)
k=1					
Shaking (X,1)	X ′	3	1246	5	{ }
Local Search (X')	X''	35	1246	{ }	{ }
Move or not	X	35	1246		
k=1					•

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

・ロト ・聞ト ・ヨト ・ヨト

VNS step		С	Т	\widetilde{V}	Ĩ
Shaking (X,1)	Χ'	5	16	234	(2,3) (3,2) (3,4) (4,3)
Local Search (X')		52	163	4	{ }
	X''	524	163	{ }	{ }
Move or not	X	524	163		
k=1					

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

・ロト ・聞ト ・ヨト ・ヨト

VNS step		С	Т	\widetilde{V}	Ĩ
	X	524	163		
Shaking (X,1)	<i>X</i> ′	24	63	15	(1,5) (5,1)
Local Search (X')	X''	241	635	{ }	{ }
Move or <mark>not</mark>	X	524	163		
k=2					1

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

æ.,

VNS step		С	Т	\widetilde{V}	Ē		
Shaking (X,2)	Χ'	2	3	1456	(1,5) (1,6) (4,6) (5,1) (5,6) (6,1) (6,4) (6,5)		
Local Search (X')		24	36	15	(1,5) (5,1)		
	X''	245	361	{ }	{ }		
Move or not	X	524	163				
k=3							
1-st iteration between 2 improvements							

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

・ロト ・聞ト ・ヨト ・ヨト

VNS step		С	Т	Ĩ	Ē
k=1					
	X	524	163		
Shaking (X,1)	<i>X</i> ′	54	136	2	{ }
Local Search (X')	X''	542	136	{ }	{ }
Move or <mark>not</mark>	X	524	163		
k=2					

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

∃ 𝒫𝔄𝔄

VNS step		С	Т	Ĩ	Ĩ		
Shaking (X,2)	<i>X</i> ′	4	36	125	(1,5) (5,1)		
Local Search (X')		42	36	15	(1,5) (5,1)		
	X''	421	365	{ }	{ }		
Move or <mark>not</mark>	X	524	163				
k=3				•			
2-d iteration be	tween	2 impro	vements				
STOP							

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

イロト イポト イヨト イヨト

ъ

VNS for MCP

MC, IS and transversal of the initial and corresponding complementary graphs found by VNS.

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

イロト イポト イヨト イヨト

Outline

Classic *NP*-hard Problem

- Complexity classes and their relationsMISP and MCP
- 2 Applications
- 3 An Exact Methods for MISP
 - Dynamic Programming
 - Bron-Kerbosh Algorithm

4 An Effective Methods for MISP

- Variable Neighborhood Search (VNS)
- Extended Simplicial Vertex Test (ESVT)

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

・ロト ・ 理 ト ・ ヨ ト ・

Simplicial Vertex Test (SVT)

A vertex $v, v \in V$ of a graph G = (V, E) is a simplicial vertex, if its neighborhood is a complete subgraph.

We denote with k[v] a number of vertices in a neighborhood of simplicial vertex v, that is

 $k[v] = |\mathcal{N}(v, V)|, \ \langle \mathcal{N}(v, V) \rangle_{G}$ — complete subgraph .

k[4] = 2;k[5] = 1.

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

SVT for MISP

Require: G = (V, E)**Ensure:** $S, S \subseteq V$ 1: $V_0 \leftarrow V$ $S \leftarrow \{\}$ $E_0 \leftarrow E$ 2: if $V_0 = \{\}$ then 3: stop return S 4: for all $v \in V_0$ do if v — is a simplicial vertex then $S \leftarrow S + \{v\}$ 6: $V_0 \leftarrow V_0 - \{v\} - \mathcal{N}(v, V_0)$ {neighborhood of v in a subgraph induced by V_0 $E_0 \leftarrow E_0 - \{(u, v)\} - \{(u, w): w \in \mathcal{N}(v, V_0)\}$ go to step 2 7: else 8: stop return S, V_0 ◆□▶ ◆□▶ ◆三▶ ◆三▶ ● ● ●

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

・ロト ・聞ト ・ヨト ・ヨト

SVT for MISP

Go	Step	S	V ₀	E ₀
1 2 3 4 5 6 7	Initialization	{ }	123456	(1,2) (1,3) (1,4) (2,1) (2,3) (2,5) (2,6) (3,1) (3,2) (3,4) (4,1) (4,3) (4,6) (4,7) (5,2) (5,6) (6,2) (6,4) (6,5) (6,7) (7,4) (7,6)
1 2 3 4 5 6 7	Search	5	1347	(1,3) (1,4) (3,1) (3,4) (4,1) (4,3) (4,7) (7,4)

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

・ロト ・聞ト ・ヨト ・ヨト

SVT for MISP

Go	Step	S	V ₀	E ₀
2 3 4 5 6 7	Search	51	7	{ }
1 2 3 4 5 6 7	Search	517	{ }	{ }
STOP				

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

Extended SVT (ESVT)

Proposition

If for *S* found by SVT $V_0 = \{\}$, than *S* — MIS of G = (V, E).

Let's denote with m[v] a number of edges missed in a neighborhood of this vetrex to be a complete subgraph, that is

$$m[v] = C_{k[v]}^2 - |E \cup E(\langle \mathcal{N}(v, V) \rangle_G)|$$
.

k[2] = 3, m[2] = 1 k[3] = 2, m[3] = 0

・ロト ・四ト ・ヨト・

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

ヘロト 人間 とくほとくほとう

ESVT

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

ESVT for MISP

1	2	3	4	5	6	7	8	9	10	11	S	Est
[2,1]	[2,1]	[3,2]	[4,4]	[3,3]	[4,5]	[3,2]	[3,2]	[2,1]	[4,6]	[2,1]	11	1
[2,1]	[2,1]	[3,2]	[3,2]	[3,3]	[3,2]	[2,1]		[1,0]			11,9	1
[1,0]	[2,1]	[3,2]	[3,2]		[2,0]	[2,1]					11,9,6	1
[1,0]	[1,0]					[0,0]					11, 9, 6, 2	1
						[0,0]					11, 9, 6, 2, 7	1

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

イロト イポト イヨト イヨト 一臣

VNS with SVT

Initialization $X \leftarrow SVT(X_0)$; Repeat until the Stopping condition.

- $\bigcirc k \leftarrow 1$
- **2 Repeat** until $k = k_{max}$.
 - **Shaking** using random tie-breaking rule.
 - 2 Local Search

$$X^{''} \leftarrow SVT(X')$$

Move or Not

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

イロン 不同 とくほ とくほ とう

2

Computational Results (VNS)

	GA1		GA	2	IV.	BR	
	C	Time	C	Time	C	Time	C
MANN_a27	126	2,55	126	8	126	0,07	126*
MANN_a45	343	34,38	343,59	383	344,5	20,79	345*
brock200_2	11	0,30	9,92	17	11,3	20,79	12*
brock200_4	16	0,25	16,04	24	16,9	6,8	17*
brock400_2	24	2,57	24	79	27,4	57,19	29*
brock400_4	24	1,59	24,13	12	33	36,90	33*
brock800_2	19	4,77	18,47	47	21	11,78	21
brock800_2	19	10,28	19,05	550	21	11,78	21
hamming8-4	16	0,33	16	1	16	0,01	16*
hamming10-4	33	15,68	39,18	46	40	0,26	40
keller4	11	0,18	11	1	11	0,01	11*
keller5	25	11,96	25,76	54	27	0,38	27

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

イロン イボン イヨン イヨン

ъ

Computational Results (VNS)

	G	41	GA	2	VNS		BR
	C	Time	C	Time	C	Time	C
p_hat300-1	8	0,63	7,69	2	8	0,02	8*
p_hat-2	25	0,93	25	1	25	0,01	25*
p_hat300-3	36	0,37	35,85	1	36	0,07	36*
p_hat700-1	9	4,74	9,45	180	11	0,52	11*
p_hat700-2	44	11,34	44	3	44	0,05	44*
p_hat700-3	62	4,32	62	3	62	0,06	62
p_hat1500-1	10	12,53	10,10	107	12	415,68	12*
p_hat1500-2	59	56	65	10	65	76,3	65
p_hat1500-3	92	56,24	93,44	860	94	0,58	94

C. Aggarwal, Orlin, R. Tai, Optimized crossover for the maximum independent set proble. Oper. Res. 45 (1997) 226-234.

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

イロト 不得 とくほ とくほとう

2

Computational Results (ESVT)

	IncMaxCLQ	BBMCX		BR	
	Time	Time	C	Time	C
MANN_a81			1099	696,870972	1100*
brock400_2	259,9	132	22	0,024	29
brock400_4	197,7	20,2	22	0,04	33
brock800_2		3568	18	0,19	24
brock800_4		2532	17	0,191	26
hamming8-4			16	0,011	16
p_hat300-1			8	0,038	8
p_hat300-2			25	0,029	25
p_hat300-3	0,87	0,531	34	0,015	36

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

Computational Results (ESVT)

	IncMaxCLQ	BBMCX		ESVT	BR
	Time	Time	C	Time	C
p_hat700-1			8	0,363	11
p_hat700-2	1,25	1,42	43	0,691	44
p_hat700-3	357,4	718	61	0,144	62*
C125.9			33	0,001	34*
C250.9	333,2	1144	42	0,005	44*
DSJC1000_5	261	211	13	0,529	15

Li C et al. Combining MaxSAT Reasoning and Incremental Upper Bound for the Maximum Clique Problem.

Variable Neighborhood Search (VNS) Extended Simplicial Vertex Test (ESVT)

・ロト ・聞ト ・ヨト ・ヨト

THANK YOU FOR ATTENTION!!

Rasskazova VA MIS Problem