BRAINTUYORSEGMENTATION WITH DEEP LEARNNG

Dmitrii Lachinov
Lobachevsky State University
Intel, Nizhny Novgorod

Brain tumor segmentation

- Tumor classification
- Therapy planning and control
- Pre- and Post-operative analysis
- Surgery assistance
- Etc.

https://www.youtube.com/watch?v=FuZjHnpYL_4

Goal

- Automatically label tumor regions with given multimodal MRI
- Detect tumor core (red)
- Enhancing tumor (yellow)
- Peritumoral edema (green)
- Data: BraTS 2018

Contribution

- Method that can efficiently handle multimodal MRI input
- Segmentation refinement strategy

Proposed method

- Handling of multimodal input
- Problem: Four given inputs represent heterogeneous data
- Solution: Force model to encode unique features of each modality

pre-activation residual blocks
\longrightarrow Identity operation
\longrightarrow Convolution: size $3 \times 3 \times 3$, stride 2 , pad 1
\longrightarrow Convolution: size $1 \times 1 \times 1$
\longrightarrow Transposed Conv.: size $2 \times 2 \times 2$, stride 2
ㅁ- Context connections
(max Elementwise maximum of the inputs
(c) Concatenation of the inputs

Proposed method

- Handling of multimodal input
- Problem: Model prefers one of the input channels
- Solution: Augmentation technique - channel out

Proposed method

- Segmentation refinement strategy
- Encourages to iteratively refine results of previous iterations;
- Fuses multiple neural networks operating at different scales

Unlike UNet architecture with decoder output at each scale i depending on encoder, here we propose to incorporate context of the lower scale networks.

Validation

Preliminary results in unseen data are obtained with validation dataset. The ground truth of the validation data isn't provided to the participants

Metric: $D S C=\frac{2 T P}{2 T P+F P+F N}$

ID	w/o CO		
	ET	WT	TC
UNet	0.767	0.901	0.797
ME UNet	0.763	0.904	0.823
C ME UNet	0.772	0.906	0.836

w/ CO		
ET	WT	TC
0.779	0.901	0.837
0.784	0.907	0.827
0.784	0.908	0.844

CO - channel-out augmentation
ET - Enhancing tumor, WT - whole tumor, TC - tumor core

Evaluation

Final results in unseen data are obtained with test dataset.
Metric: $D S C=\frac{2 T P}{2 T P+F P+F N}, H=\max \left\{\sup _{x} \inf _{y} d(x, y), \sup _{y} \inf _{x} d(x, y)\right\}$

ID	BraTS 2018 Test.		
	ET	WT	TC
First	0.766	0.883	0.815
Second	0.778	0.878	0.806
Ours	0.720	0.878	0.795

ID	Dice			Hausdorff		
	ET	WT	TC	ET	WT	TC
Ours	$24^{\text {th }}$	$10^{\text {th }}$	$11^{\text {th }}$	$9^{\text {th }}$	$12^{\text {th }}$	$5^{\text {th }}$

ET - Enhancing tumor, WT - whole tumor, TC - tumor core

DISEUSSION

