

DECISION-MAKING IN VISUAL PRODUCT RECOMMENDATION USING NEURAL AGGREGATION NETWORK AND CONTEXT GATING

- Andrey V. Savchenko

Dr. of Sci., Prof., LATNA, HSE-Nizhny

Novgorod

Email: avsavchenko@hse.ru

URL: www.hse.ru/en/staff/avsavchenko

- Kirill Demochkin

NRU HSE-NN, student

Conference on Data-driven Decisions and Analytics (DDA 2018)

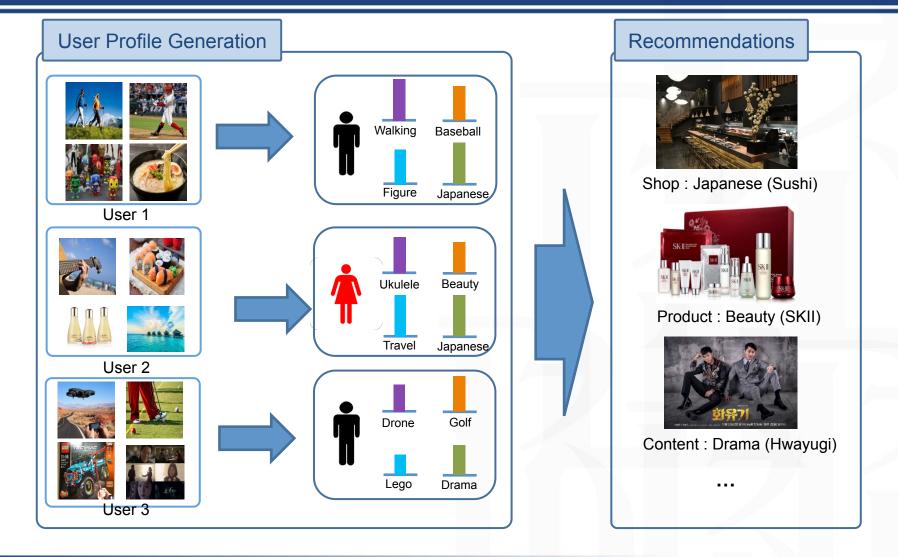
- 1. Motivation
- 2. Visual product recommendation
- 3. Complete pipeline
- 4. Conclusion and future work

Motivation

- Development of Preference Prediction Engine using Visual Data
 - Deep understanding of user characteristics by analyzing user images and videos in a mobile device.
 - Categorizing user's characteristics (taxonomy, classification, demographics, hobbies, occupation, lifestyle, etc.) → Generate user profile

Funded by **SAMSUNG**

Depending on the user profile, recommends [Product / Shop / Content] to suitable users



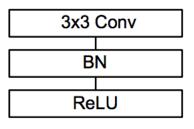
Visual product recommendation

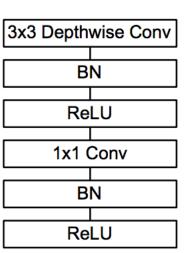
Let there be given N users: the n-th user is associated with M_n images $\{X_n(m)\}$, $m = 1, 2, ..., M_n$, of products (single product on each image), that this user has purchased or interacted with. Each product belongs to one or more of D categories.

The task is to predict the relevant classes of products to a user, i.e., use **collection** of images $\{X_n(m)\}$ to generate a D-dimensional vector of scores (estimates of posterior probabilities) that the corresponding category is relevant to the user.

MobileNet

Depthwise convolution



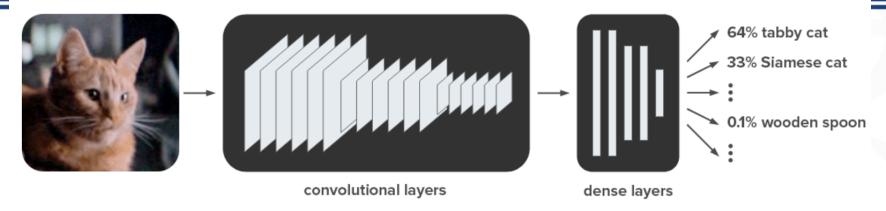


- -28 layers
- ImageNet Top-5 Error rate: 12.81%
- 4.2M parameters

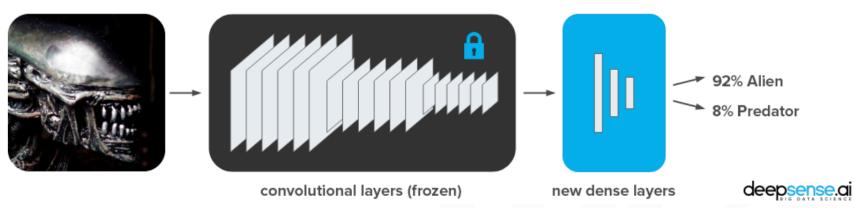
https://arxiv.org/abs/1704.04861

Type / Stride	Filter Shape	Input Size	
Conv / s2	$3 \times 3 \times 3 \times 32$	$224 \times 224 \times 3$	
Conv dw / s1	$3 \times 3 \times 32 \text{ dw}$	$112 \times 112 \times 32$	
Conv / s1	$1 \times 1 \times 32 \times 64$	$112\times112\times32$	
Conv dw / s2	$3 \times 3 \times 64 \text{ dw}$	$112 \times 112 \times 64$	
Conv / s1	$1 \times 1 \times 64 \times 128$	$56 \times 56 \times 64$	
Conv dw / s1	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$	
Conv / s1	$1\times1\times128\times128$	$56 \times 56 \times 128$	
Conv dw / s2	$3 \times 3 \times 128 \text{ dw}$	$56 \times 56 \times 128$	
Conv / s1	$1\times1\times128\times256$	$28 \times 28 \times 128$	
Conv dw / s1	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$	
Conv / s1	$1\times1\times256\times256$	$28 \times 28 \times 256$	
Conv dw / s2	$3 \times 3 \times 256 \text{ dw}$	$28 \times 28 \times 256$	
Conv / s1	$1\times1\times256\times512$	$14 \times 14 \times 256$	
$5 \times \text{Conv dw / s1}$	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$	
Onv / s1	$1 \times 1 \times 512 \times 512$	$14 \times 14 \times 512$	
Conv dw / s2	$3 \times 3 \times 512 \text{ dw}$	$14 \times 14 \times 512$	
Conv / s1	$1 \times 1 \times 512 \times 1024$	$7 \times 7 \times 512$	
Conv dw / s2	$3 \times 3 \times 1024 \text{ dw}$	$7 \times 7 \times 1024$	
Conv / s1	$1 \times 1 \times 1024 \times 1024$	$7 \times 7 \times 1024$	
Avg Pool / s1	Pool 7×7	$7 \times 7 \times 1024$	
FC/s1	1024×1000	$1 \times 1 \times 1024$	
Softmax / s1	Classifier	$1 \times 1 \times 1000$	

Transfer learning



Transfer learning



https://deepsense.ai/keras-vs-pytorch-avp-transfer-learning/

Aggregation of features (pooling)

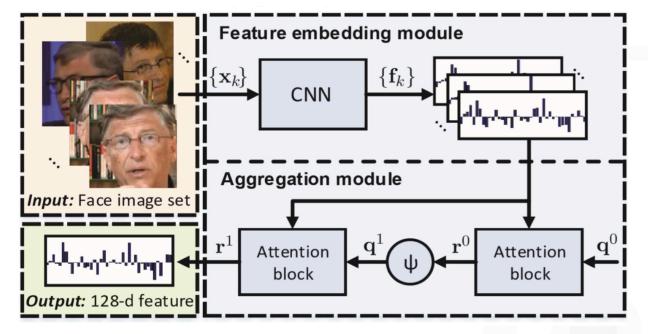
How to aggregate visual features from ConvNet for several images associated with a user?

(Weighted) average

$$x_n = \sum_{m=1}^{M_n} w(x_n(m))x_n(m)$$

- 1. Simple average (all weights are equal to $1/M_n$)
- 2. Learnable pooling:
- Neural aggregation network
- Context gating

Neural aggregation module. Attention mechanism



Average weighting

$$\mathbf{r} = \sum_k a_k \mathbf{f}_k$$

Attention block

$$e_k = \mathbf{q}^T \mathbf{f}_k$$
 $a_k = \frac{\exp(e_k)}{\sum_j \exp(e_j)}$

Attention (2nd block)

$$\mathbf{q}^1 = \tanh(\mathbf{W}\mathbf{r}^0 + \mathbf{b})$$

CVPR17 (https://arxiv.org/abs/1603.05474)

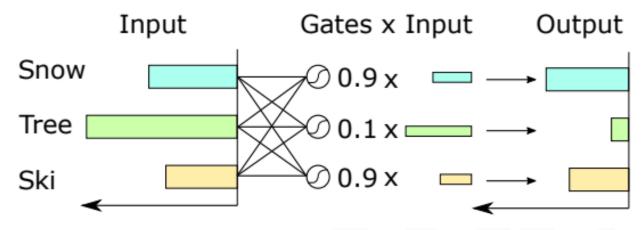
Context gating

The Context Gating (CG) module transforms the input feature representation X into a new representation Y as

$$Y = \sigma(WX + b) \circ X$$

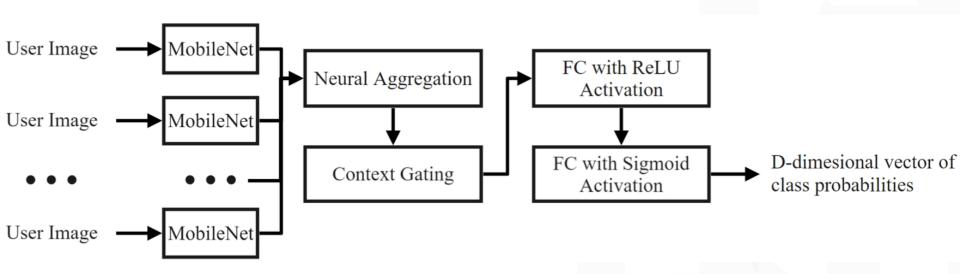
$$\nabla Y = \nabla(\sigma(WX + b)) \circ X + \sigma(WX + b) \circ \nabla X$$

CG down-weights visual activations of Tree for a skiing scene

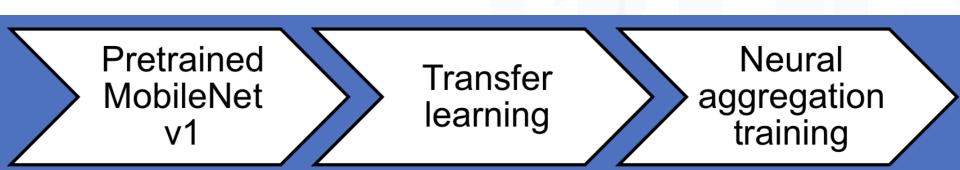


Youtube8M CVPR17 workshop (https://arxiv.org/abs/1706.06905)

Proposed network



Training pipeline



Experiments. Amazon Products Dataset

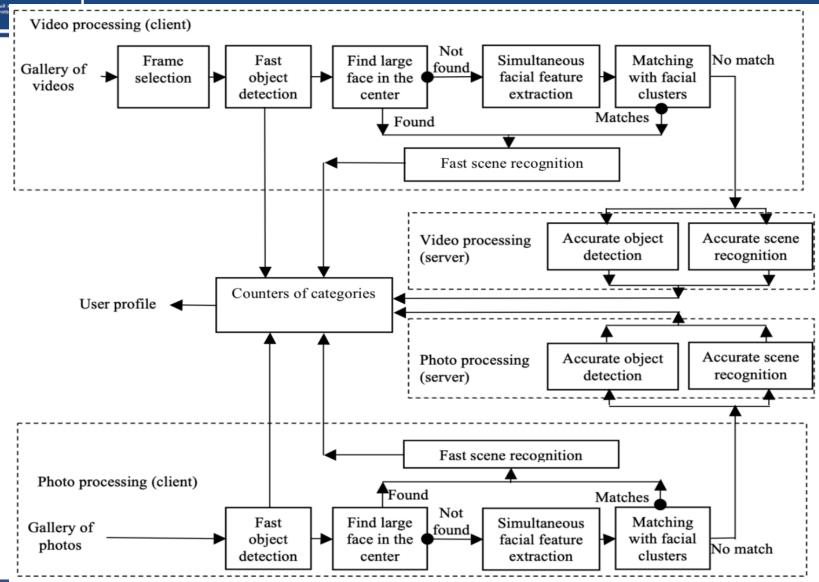
547700 entries 66519 unique users 28237 unique items 1000 categories

Experiments. Recall@k and Precision@k for different aggregation strategies

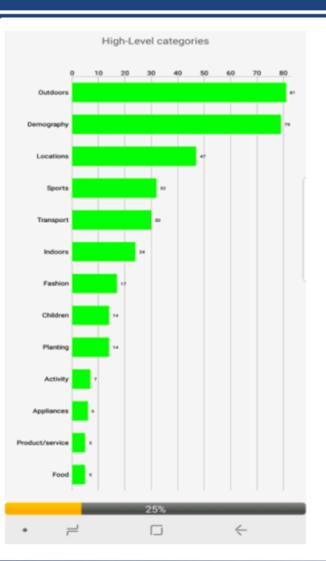
k	Aggregation	Recall @k	Precision @k
5	Average	0.704867	0.749925
	Neural Aggregation	0.772574	0.839458
	Neural Aggregation + Context Gating	0.792203	0.922438
10	Average	0.797340	0.595867
	Neural Aggregation	0.901716	0.710123
	Neural Aggregation + Context Gating	0.91846	0.881151
15	Average	0.815469	0.561431
	Neural Aggregation	0.932418	0.710123
	Neural Aggregation + Context Gating	0.942565	0.868210
20	Average	0.820141	0.553453
	Neural Aggregation	0.943513	0.636783
	Neural Aggregation + Context Gating	0.947498	0.864384

Complete pipeline

Proposed pipeline for visual preferences prediction



Example



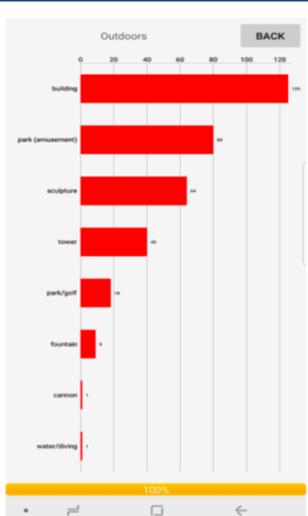


photo 9 out of 9 Madrid, Испания

fountain (0,65) building (0,62) fountain (0,37) scenes:opera house (0,58); No faces found text:

Conclusion

- 1. The neural aggregation with context gating outperforms the naive averaging method by up to 34%
- 2. We obtained the state-of-the-art results in video-based age prediction and gender recognition based on special multi-output MobileNet, the Dempster-Shafer theory for aggregation of predicted gender posterior probabilities and computation of mean expectation by using the top-k predicted ages
- 3. We considered the scene recognition task with 350 different scenes and obtained 89% top-5 accuracy using the most powerful pipeline
- 4. We implemented the complete pipeline for organizing photo and video albums based on facial clustering and obtained the state-of-the-art results for the recently appeared GFW dataset
- 5. We prepared three Russian patent applications in cooperation with Samsung R&D Institute Russia

Future work

- 1. Develop mobile recommender system
- 2. Offline conversion of images to text descriptions (image captioning) and analysis of resulted textual data;
- 3. Recognition of specific items (types of food, pet breed, etc.)
- 4. Include face re-identification into the current app in order to analyze the demography more accurately
- 5. Extract user preferences from the text recognized in images

Thank you!