Metrics and approximations in Scheduling Theory

Alexander Lazarev

V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, Moscow, Russia
Lomonosov Moscow State University, Moscow, Russia
Institute of Physics and Technology State University, Moscow, Russia National Research University Higher School of Economics, Moscow, Russia
orsot.ru
jobmath@mail.ru

May 21, 2019

Outline

(1) History and challenges of Scheduling Theory

- Gantt chart and assembly line
- Scheduling theory term and pioneers
- Computational complexity in Scheduling Theory
- Challenges in Scheduling Theory
(2) Theoretical results in Scheduling
- Metrics approach in scheduling theory
- Objective function approximation
- Dual complexity reduction
- Graphical approach
(3) Practical results
- Education planning
- Cosmonaut training scheduling problem
- Railway operational and maintenance scheduling
(4) About the author

Section 1

History and challenges of Scheduling Theory

History and challenges of Scheduling Theory

(1) History and challenges of Scheduling Theory

- Gantt chart and assembly line
- Scheduling theory term and pioneers
- Computational complexity in Scheduling Theory
- Computational complexity
- Classification and notations in Scheduling Theory
- Challenges in Scheduling Theory

Gantt chart and assembly line

Gantt chart

Henry Laurence Gantt (1861-1919), American mechanical engineer and management consultant who is best known for his work in the development of scientific management. In the 1903 he introduced a graphical method of project schedule representation known as the Gantt chart (Gantt diagram).
"A graphical daily balance in manufacture" (1903) "Organizing for Work" (1919)

Gantt chart

An example of Gantt chart

Gantt chart

Schedule

Modern Gantt chart for production lines

The history of assembly line - The Ford Company

Henry Ford (July 30, 1863 - April 7, 1947) - a business magnate, the founder of the Ford Motor Company, and the sponsor of the development of the assembly line technique of mass production.

Ford assembly line

Ford magneto assembly line, 1913

Ford Model T assembly line

Scheduling theory term and pioneers

Scheduling theory term

> Richard Ernest Bellman (1920-1984), American applied mathematician, famous for his work on dynamic programming and numerous important contributions in other fields of mathematics. In the 1954 he introduced the term "scheduling theory".
> "Mathematical Aspects of Scheduling Theory" (1955)

Pioneers of scheduling theory. First results

J. R. Jackson. Scheduling a production to minimize maximum tardiness. Research Report 43, Management Science Research Project, University of California at Los Angeles, 1955

Pioneers of scheduling theory. First results

J. R. Jackson. Scheduling a production to minimize maximum tardiness. Research Report 43, Management Science Research Project, University of California at Los Angeles, 1955
W. E. Smith. Various optimizers for single-stage production. Naval Research Logistic Quarterly, 3:59-66, 1956

Pioneers of scheduling theory. First results

J. R. Jackson. Scheduling a production to minimize maximum tardiness. Research Report 43, Management Science Research Project, University of California at Los Angeles, 1955
W. E. Smith. Various optimizers for single-stage production. Naval Research Logistic Quarterly, 3:59-66, 1956
S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included. Naval Research Logistics Quarterly, 1:61-68, 1954

Pioneers of scheduling theory. First results

J. R. Jackson. Scheduling a production to minimize maximum tardiness. Research Report 43, Management Science Research Project, University of California at Los Angeles, 1955
W. E. Smith. Various optimizers for single-stage production. Naval Research Logistic Quarterly, 3:59-66, 1956
S. M. Johnson. Optimal two-and-three-stage production schedules with set-up times included. Naval Research Logistics Quarterly, 1:61-68, 1954

First monograph on Scheduling Theory

R. W. Conway, W. L. Maxwell, L. W. Miller. Theory of Scheduling, 1967 (Russian edition in 1975)

Pioneers of scheduling theory in USSR

> Tanaev, V.S. and Shkurba, V.V. Vvedenie v teoriyu raspisanii (Introduction to Scheduling Theory), Moscow: Nauka, 1975

Computational complexity in Scheduling Theory

Computational complexity

- If computational complexity of the algorithm that solves the problem is $O\left(n^{k}\right)$ operations, where k is some constant number independent from n, then this problem is called solvable in polynomial time. Algorithms for the problems mentioned before (Jackson's, Smith's, Johnson's problems) are polynomial. O(nlogn)
- All problems that are solvable within polynomial time formulate a class of problems denoted as P. Algorithms with corresponding computational complexity are called polynomial.
- If complexity of the algorithm depends on the values of numerical parameters of an example, for example, $O(n A)$, then this algorithm is called pseudo-polynomial.
- If complexity of the algorithm has the form of $O\left(n^{x} y^{n}\right)$, where x and y are some constants, then this algorithm is called exponential.

Class NP

- Suppose that we have a computer that includes a special "guessing" component (oracle).
- The oracle, given correct input data (i.e. a solution to the given instance exists), provides some (possibly correct) output data.
- The output data provided by oracle needs to be verified, i. e. we should construct an algorithm that checks if the output data contains a correct solution that is in accordance with provided input data. The problem of verifying data provided by oracle could also be formulated as an instance of recognition problem.

Class NP

- Class NP includes all the problems to which the solution (if such exists) can be guessed by an oracle, and:
- The amount of data in solution provided by oracle is polynomially bounded;
- The solution provided by oracle can be verified in polynomial time.

Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial time $(A \propto B)$, if a modification algorithm exists, such that:

Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial time $(A \propto B)$, if a modification algorithm exists, such that:

- The algorithm transforms any given instance I_{A} of problem A into a corresponding instance I_{B} of problem B in polynomial time

Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial time $(A \propto B)$, if a modification algorithm exists, such that:

- The algorithm transforms any given instance I_{A} of problem A into a corresponding instance I_{B} of problem B in polynomial time
- The answer to received instance I_{B} of problem B is "YES"' if and only if the answer to the corresponding instance I_{A} of problem A is "YES", too. (Or, less strictly, the solutions of corresponding instances I_{A}, I_{B} of problems A, B always match)

NP-complete and NP-hard problems

Problem B is called NP-hard, if any other problem $A \in N P$ can be reduced to problem B in polynomial time.

NP-complete and NP-hard problems

Problem B is called $N P$-hard, if any other problem $A \in N P$ can be reduced to problem B in polynomial time.

Problem B is called NP-complete, if:

- B is NP-hard;
- B belongs to class NP.

If any $N P$-complete problem is solvable in polynomial time, then all of the $N P$-complete are solvable in polynomial time $(P=N P)$.

NP-complete and NP-hard problems

Problem B is called $N P$-hard, if any other problem $A \in N P$ can be reduced to problem B in polynomial time.

Problem B is called NP-complete, if:

- B is NP-hard;
- B belongs to class NP.

If any $N P$-complete problem is solvable in polynomial time, then all of the NP-complete are solvable in polynomial time $(P=N P)$.
$N P$-hard problem B is called $N P$-hard in the strong sense if there is no pseudo-polynomial algorithm of solving this problem (supposed that $P \neq N P)$.

Classification of problems in Machine scheduling

Each problem is denoted as $\alpha|\beta| \gamma$, where

- α describes characteristics of the problem that are related to machines
- β describes constraints and conditions of processing of requests.
- γ describes objective function.

Classification of problems in Machine scheduling

α describes characteristics of the problem related to machines. Possible values of α :

- 1 - single machine
- Pm - parallel machines
- Qm - parallel machines (non-equivalent)
- Fm - Flow-shop problem
- Om - Open-shop problem
- Jm - Job-shop problem
- ...

Classification of problems in Machine scheduling

β describes constraints and conditions of processing of requests. Possible contents of field β :

- r_{j} - release dates are specified
- d_{j} - due dates are specified
- D_{j} - deadlines are specified
- prec - precedence relations are specified
- pmnt - preemption is allowed
- batch - batching problem: groups of requests (batches) can be processed simultaneously.
- Other conditions: $p_{j}=p, \ldots$
γ describes objective function (e.g., $C_{\max }$).

Denotations in Scheduling Theory

Objective functions:

- C_{j} - completion time
- $L_{j}=C_{j}-d_{j}$ - lateness
- $T_{j}=\max \left\{0, C_{j}-d_{j}\right\}-$ tardiness
- $E_{j}=\max \left\{0, d_{j}-C_{j}\right\}-$ earliness
- U_{j} - unit penalty: equals 1 if job j is late $\left(C_{j}>d_{j}\right)$ and 0 in the opposite case

If request weights w_{j} are provided, all of the previous objective functions are called weighed, and are multiplied by the value of request weight (ex., weighed tardiness $w_{j} T_{j}$ is calculated as $\left.w_{j} \max \left\{0, C_{j}-d_{j}\right\}\right)$

Denotations in Scheduling Theory

Optimization criteria:

1. Min-max criteria

- $C_{\text {max }} \rightarrow$ min - minimizing maximum completion time (makespan), $C_{\max }=\max _{j \in N} C_{j}$. These problems are also called performance problems.
- $L_{\text {max }} \rightarrow$ min - minimizing maximum lateness $L_{\text {max }}=\max _{j \in N} L_{j}$

2. Summary criteria

- $\sum_{j \in N} C_{j} \rightarrow$ min - minimizing total completion time
- $\sum_{j \in N} T_{j} \rightarrow$ min - minimizing total tardiness
- $\sum_{j \in N} U_{j} \rightarrow$ min - minimizing total number of late jobs

Also, problems of maximizing these objective functions are considered (ex., $\left.\sum_{j \in N} T_{j} \rightarrow \max \right)$.

Problem complexity classification

NP-hardness in strong sense is a qualitative property!

Satisfability problem (SAT)

Boolean formula $f\left(x_{1}, x_{2}, \ldots, x_{n}\right)$, operations: AND, OR, NOT, (,)

$$
\exists x_{i}=\{F A L S E, T R U E\}, i \in\{1, \ldots, n\}: f\left(x_{1}, x_{2}, \ldots, x_{n}\right)=\operatorname{TRUE} ?
$$

Cook, S. (1971). The complexity of theorem proving procedures. Proceedings of the Third Annual ACM Symposium on Theory of Computing. pp. 151-158. doi:10.1145/800157.805047.

Garey, M. R.; Johnson, D. S. (1979). Victor Klee (ed.). Computers and Intractability: A Guide to the Theory of NP-Completeness. A Series of Books in the Mathematical Sciences. San Francisco, Calif.: W. H. Freeman and Co. pp. x+338. ISBN 0-7167-1045-5. MR 0519066.

Classification of problems in Machine scheduling

Thus, record $F 2\left|r_{j}\right| C_{\text {max }}$ denotes problem of minimizing makespan in Flow-shop system with two machines in case of non-simultaneous admission of requests. Other examples: $1\left|p_{j}=p, r_{j}\right| \sum w_{j} T_{j}$, $P m\left|r_{j}, p m t n\right| \sum C_{j}, \ldots$

Classification of problems in Machine scheduling

Thus, record $F 2\left|r_{j}\right| C_{\text {max }}$ denotes problem of minimizing makespan in Flow-shop system with two machines in case of non-simultaneous admission of requests. Other examples: $1\left|p_{j}=p, r_{j}\right| \sum w_{j} T_{j}$, Pm|r $r_{j}, p m t n \mid \sum C_{j}, \ldots$

Some of previously considered problems in terms of machine scheduling:

- $1\left|r_{j}\right| L_{\text {max }}$ (Jackson's problem with non-zero release times) is NP-hard in the strong sense
- $1\left|r_{j}\right| \sum C_{j}$ (Smith's problem with non-zero release times) is NP-hard
- $F 3 \| C_{\text {max }}$ (Johnson's problem with more than 2 machines) is NP-hard in the strong sense

Challenges in Scheduling Theory

Complexity challenges in Scheduling Theory

- The majority of formulations are NP-hard in the strong sense.
- In this case for real-life scaled problems it is impossible to find proven optimal solution (if $P \neq N P$).
- It leads to the demand for fast algorithms with «good»solutions?

Complexity challenges in Scheduling Theory

A set of «inspired by nature» heuristic methods

- Tabu search
- Simulated Annealing
- Ant Colony Optimization
- Particle Swarm Optimization
+ speed and simple structure
- no estimations of accuracy (optimization criteria value delta)

Complexity challenges in Scheduling Theory

A set of «inspired by nature» heuristic methods

- Tabu search
- Simulated Annealing
- Ant Colony Optimization
- Particle Swarm Optimization
+ speed and simple structure
- no estimations of accuracy (optimization criteria value delta)

Polynomial-Time Approximation Scheme (PTAS)

+ guaranteed polynomial and accuracy estimations
- accuracy forms the complexity, e.g. $O\left(n^{\epsilon}\right)$

Complexity challenges in Scheduling Theory

Proposed alternative solution method

Metric approach

- Guaranteed accuracy provided by error upper bound estimations.
- Polynomial complexity does not depend on the accuracy.
- Method gives quantitative complexity estimations for the problem in addition to the qualitative property of NP-hardness.

Method is based on:

- a metric function for problem input data instance space;
- metric-based estimations of accuracy;
- polynomially-solvable subclasses of problem input data instances.

Practical challenges in Scheduling Theory

- In industrial cases objective functions are often unknown or are not clearly defined (e.g. RZD schedules, Gagarin Cosmonaut Training Center plans).
- Plans and schedules do not significantly change their structure for years.
- New solutions are formed based on a set of previous schedule structure.

Practical challenges in Scheduling Theory

- In industrial cases objective functions are often unknown or are not clearly defined (e.g. RZD schedules, Gagarin Cosmonaut Training Center plans).
- Plans and schedules do not significantly change their structure for years.
- New solutions are formed based on a set of previous schedule structure.

A new proposition for these cases

Objective function approximation

- There exists a set of previous problem input data instances and solutions.
- Objective function is unknown but linear to the completion time of the job.
- The first goal: to find the form and coefficients of the objective function;
- The second goal: to provide the solution for the next instance.

Section 2

Theoretical results in Scheduling

Theoretical results in Scheduling

(2) Theoretical results in Scheduling

- Metrics approach in scheduling theory
- The problem $1\left|r_{j}\right| L_{\text {max }}$
- $1\left|r_{j}\right| L_{\text {max }}$ solvable cases
- Pareto-optimal cases
- Instance metric
- The closest solvable instance construction LP-problem
- Metrics for $1\left|r_{j}\right| \sum T_{j}$
- Measure of polynomial unsolvability
- Example: Metrics for the railway scheduling problem
- Objective function approximation
- Motivation and basic idea
- The problem $1 \| \sum \omega_{j} C_{j}$
- Solvability
- Approximation problem
- Dual complexity reduction
- Graphical approach

Metrics approach in scheduling theory

The problem $1\left|r_{j}\right| L_{\text {max }}$ - minimizing maximum lateness

$1\left|r_{j}\right| L_{\text {max }}$

Single machine, n jobs
r_{j} - release time;
$p_{j}>0$ - processing time;
d_{j} - due date.
$j \in N=\{1,2, \ldots, n\}$

The problem $1\left|r_{j}\right| L_{\text {max }}$ - minimizing maximum lateness

$1\left|r_{j}\right| L_{\text {max }}$

Single machine, n jobs
r_{j} - release time;
$p_{j}>0$ - processing time;
d_{j} - due date.
$j \in N=\{1,2, \ldots, n\}$

Preemptions of a job are not allowed. The machine can process at most one job at any time.

The problem $1\left|r_{j}\right| L_{\text {max }}$ - minimizing maximum lateness

$1\left|r_{j}\right| L_{\text {max }}$

Single machine, n jobs
r_{j} - release time;
$p_{j}>0$ - processing time;
d_{j} - due date.
$j \in N=\{1,2, \ldots, n\}$

Preemptions of a job are not allowed. The machine can process at most one job at any time.

A schedule describes order of processing the jobs: a permutation(sequence) $\pi=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$.

The problem $1\left|r_{j}\right| L_{\max }$ - minimizing maximum lateness

$1\left|r_{j}\right| L_{\text {max }}$

Single machine, n jobs
r_{j} - release time;
$p_{j}>0$ - processing time;
d_{j} - due date.
$j \in N=\{1,2, \ldots, n\}$

Preemptions of a job are not allowed. The machine can process at most one job at any time.

A schedule describes order of processing the jobs: a permutation(sequence) $\pi=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$.

Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G. 1979

$$
F(\pi)=\max _{j \in N}\left\{C_{j}-d_{j}\right\} \rightarrow \min _{\pi}
$$

NP-hard in strong sense
Lenstra J.K., Rinnooy Kan A.H.G., Brucker, P. 1977

$1\left|r_{j}\right| L_{\text {max }}$ solvable cases

1) $r_{j}=0, \forall j \in N$. $O(n \log n)$
Jackson J.R. 1955
1') $d_{j}=$ const,$\forall j \in N$.
$O(n \log n)$
1') $p_{j}=$ const,$\forall j \in N$.
Simons B. 1983.

$$
O\left(n^{2} \log n\right)
$$

$1\left|r_{j}\right| L_{\text {max }}$ solvable cases

2)

$O\left(n^{3} \log n\right)$

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} \tag{1}\\
d_{1}-r_{1}-p_{1} \geq d_{2}-r_{2}-p_{2} \geq \cdots \geq d_{n}-r_{n}-p_{n}
\end{array}\right.
$$

2') $d_{j}=r_{j}+p_{j}+$ const, $\forall j \in N$.
$O\left(n^{3} \log n\right)$
$\{1, P, Q, R\}\left|r_{j}\right|\left\{L_{\max }, C_{\max }\right\}$
$O\left(n^{3} \log n\right)$
Lazarev A.A., Sadykov R.R., Sevastyanov S.V. 1988-2007

$1\left|r_{j}\right| L_{\text {max }}$ solvable cases

2) $O\left(n^{3} \log n\right)$

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} \tag{1}\\
d_{1}-r_{1}-p_{1} \geq d_{2}-r_{2}-p_{2} \geq \cdots \geq d_{n}-r_{n}-p_{n}
\end{array}\right.
$$

2') $d_{j}=r_{j}+p_{j}+$ const, $\forall j \in N$.
$O\left(n^{3} \log n\right)$
$\{1, P, Q, R\}\left|r_{j}\right|\left\{L_{\max }, C_{\max }\right\}$
$O\left(n^{3} \log n\right)$
Lazarev A.A., Sadykov R.R., Sevastyanov S.V. 1988-2007
3) $\max _{k \in N}\left\{d_{k}-r_{k}-p_{k}\right\} \leq d_{j}-r_{j}, \forall j \in N$.
$O\left(n^{2} \log n\right)$
Hoogeveen J. A. 1996

$1\left|r_{j}\right| L_{\text {max }}$ solvable cases

2) $O\left(n^{3} \log n\right)$

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} \tag{1}\\
d_{1}-r_{1}-p_{1} \geq d_{2}-r_{2}-p_{2} \geq \cdots \geq d_{n}-r_{n}-p_{n}
\end{array}\right.
$$

2') $d_{j}=r_{j}+p_{j}+$ const, $\forall j \in N$.
$O\left(n^{3} \log n\right)$
$\{1, P, Q, R\}\left|r_{j}\right|\left\{L_{\max }, C_{\max }\right\}$
$O\left(n^{3} \log n\right)$
Lazarev A.A., Sadykov R.R., Sevastyanov S.V. 1988-2007
3) $\max _{k \in N}\left\{d_{k}-r_{k}-p_{k}\right\} \leq d_{j}-r_{j}, \forall j \in N$.
$O\left(n^{2} \log n\right)$
Hoogeveen J. A. 1996

$1\left|r_{j}\right| L_{\text {max }}$ solvable cases

4) NP-hard in ordinary sense

$$
O\left(n^{2} P+n p_{\max } P\right)
$$

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} \tag{2}\\
r_{1} \geq r_{2} \geq \cdots \geq r_{n} \\
r_{j}, p_{j}, d_{j} \in \mathbb{Z}^{+}, \forall j \in N
\end{array}\right.
$$

Lazarev A.A., Schulgina O.N. 1998
$P=r_{\text {max }}+\sum_{j=1}^{n} p_{j}-r_{\min }, r_{\max }=\max _{j \in N} r_{j}, r_{\min }=\min _{j \in N} r_{j}, p_{\max }=\max _{j \in N} p_{j}$

$1\left|r_{j}\right| L_{\text {max }}$ solvable cases

5)

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} \tag{3}\\
d_{1}-\alpha r_{1}-\beta p_{1} \geq d_{2}-\alpha r_{2}-\beta p_{2} \geq \cdots \geq d_{n}-\alpha r_{n}-\beta p_{n} \\
\alpha \in[1, \infty), \beta \in[0,1]
\end{array}\right.
$$

$1\left|r_{j}\right| L_{\text {max }}$ solvable cases

5)

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} \tag{3}\\
d_{1}-\alpha r_{1}-\beta p_{1} \geq d_{2}-\alpha r_{2}-\beta p_{2} \geq \cdots \geq d_{n}-\alpha r_{n}-\beta p_{n} \\
\alpha \in[1, \infty), \beta \in[0,1]
\end{array}\right.
$$

5')
$d_{j}=\alpha r_{j}+\beta p_{j}+$ const, $\forall j \in N, \alpha \in[1, \infty), \beta \in[0,1]$.
2009

$1\left|r_{j}\right| L_{\text {max }}$ solvable cases

5)

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} \tag{3}\\
d_{1}-\alpha r_{1}-\beta p_{1} \geq d_{2}-\alpha r_{2}-\beta p_{2} \geq \cdots \geq d_{n}-\alpha r_{n}-\beta p_{n} \\
\alpha \in[1, \infty), \beta \in[0,1]
\end{array}\right.
$$

$$
\begin{aligned}
& \text { 5') } \\
& d_{j}=\alpha r_{j}+\beta p_{j}+\text { const, } \forall j \in N, \alpha \in[1, \infty), \beta \in[0,1] \text {. }
\end{aligned}
$$

Pareto-optimal cases

$$
1 \mid d_{i} \leq d_{j}, d_{i}-\alpha r_{i}-\beta p_{i} \geq d_{j}-\alpha r_{j}-\beta p_{j}
$$

$$
\left\{\begin{array}{l}
d_{1} \leq d_{2} \leq \cdots \leq d_{n} ; \tag{4}\\
d_{1}-\alpha r_{1}-\beta p_{1} \geq d_{2}-\alpha r_{2}-\beta p_{2} \geq \cdots \geq d_{n}-\alpha r_{n}-\beta p_{n} ; \\
\alpha \in[1, \infty), \beta \in[0,1] .
\end{array}\right.
$$

$1\left|d_{i} \leq d_{j}, d_{i}-\alpha r_{i}-\beta p_{i} \geq d_{j}-\alpha r_{j}-\beta p_{j}\right| L_{\max }, C_{\max }$

$$
1 \leq\|\Phi(N, t)\| \leq n
$$

$$
O\left(n^{3} \log n\right)
$$

Pareto-optimal cases

$$
1\left|d_{i} \leq d_{j}, d_{i}-\alpha r_{i}-\beta p_{i} \geq d_{j}-\alpha r_{j}-\beta p_{j}\right|
$$

Instance metric

The approach

- Set of parameters $\Omega=\left\{r_{1}, \ldots, r_{n}, p_{1}, \ldots, p_{n}, d_{1}, \ldots, d_{n}\right\}$ characterizes an instance.
- An instance can be considered as a vector in $3 n$-dimensional space of parameters.

Instance metric

The approach

- Set of parameters $\Omega=\left\{r_{1}, \ldots, r_{n}, p_{1}, \ldots, p_{n}, d_{1}, \ldots, d_{n}\right\}$ characterizes an instance.
- An instance can be considered as a vector in 3n-dimensional space of parameters.

Definitions

- For a particular value of parameter $\omega \in \Omega$ in the instance A we will use upper index : ω^{A}.
- The value of the objective function F in the instance A under the schedule π will be denoted as $F^{A}(\pi)$.
- We denote the optimal schedule for the instance A as π^{A}.

Instance metric

Any instance is point in $m=3 n$-dimension space.

A - "hard" instance

Instance metric

Any instance is point in $m=3 n$-dimension space.
polynomially (pseudo-polynomially) solvable cone

Instance metric

Any instance is point in $m=3 n$-dimension space.
polynomially (pseudo-polynomially) solvable cone

Instance metric

Any instance is point in $m=3 n$-dimension space.
polynomially (pseudo-polynomially) solvable cone

Instance metric

- An absolute error of the approximation scheme is bounded by the metric function $\rho(A, B)$.
- The problem $1\left|r_{j}\right| L_{\text {max }}$ is reduced to the minimization of the function $\rho(A, B)$ - from arbitrary instance A to the closest polynomially solvable instance B.
$1\left|r_{j}\right| L_{\max }$

$$
\begin{aligned}
0 \leq \rho(A, B)=F^{A}\left(\pi^{B}\right)- & F^{A}\left(\pi^{A}\right) \leq \\
& \left(\max \left\{r_{j}^{A}-r_{j}^{B}\right\}-\min \left\{r_{j}^{A}-r_{j}^{B}\right\}\right)+ \\
& \left(\sum\left|p_{j}^{A}-p_{j}^{B}\right|\right)+ \\
& \left(\max \left\{d_{j}^{A}-d_{j}^{B}\right\}-\min \left\{d_{j}^{A}-d_{j}^{B}\right\}\right)
\end{aligned}
$$

Instance metric

Metric properties

$$
\begin{gather*}
\varphi(A)=\max _{j \in N}\left(r_{j}^{A}\right)-\min _{j \in N}\left(r_{j}^{A}\right)+\max _{j \in N}\left(d_{j}^{A}\right)-\min _{j \in N}\left(d_{j}^{A}\right)+\sum_{j \in N}\left|p_{j}^{A}\right| \geq 0 \\
\left\{\begin{array}{l}
\varphi(A)=0 \Longleftrightarrow A \equiv 0 \\
\varphi(\alpha A)=\alpha \varphi(A) ; \\
\varphi(A+B) \leq \varphi(A)+\varphi(B)
\end{array}\right. \tag{5}
\end{gather*}
$$

$\|A\|=\varphi(A) \rho(A, B)=\|A-B\|$.

The closest solvable instance construction LP-problem

$$
\|A\|=\varphi(A)
$$

$$
\rho(A, B)=\|A-B\|
$$

The closest solvable instance construction LP-problem

$\|A\|=\varphi(A)$
$\rho(A, B)=\|A-B\|$
Polynomially (pseudo-polynomially) solvable case

$$
\mathcal{A} R+\mathcal{B} P+\mathcal{C} D \leq \mathcal{H}
$$

$\mathcal{A}, \mathcal{B}, \mathcal{C}$ - matrixes, R, P, D, \mathcal{H} - vectors.

The closest solvable instance construction LP-problem

Projection of an instance A to a polynomially (pseudo-polynomially) solvable case

The minimum absolute error among all instances from solvable area,instance B.

The closest solvable instance construction LP-problem

Projection of an instance A to a polynomially (pseudo-polynomially) solvable case
The minimum absolute error among all instances from solvable area,instance B.

$$
\left\{\begin{array}{l}
\rho(A, B)=\left(x_{r}-y_{r}\right)+\sum\left(x_{p}-y_{p}\right)+\left(x_{d}-y_{d}\right) \rightarrow \min \\
y_{r} \leq r_{j}^{A}-r_{j}^{B} \leq x_{r}, \forall j ; \\
-x_{p}^{j} \leq p_{j}^{A}-p_{j}^{B} \leq x_{p}^{j}, \forall j, x_{p}^{j} \geq 0 ; \\
y_{d} \leq d_{j}^{A}-d_{j}^{B} \leq x_{d}, \forall j ; \\
\mathcal{A} R^{B}+\mathcal{B} P^{B}+\mathcal{C} D^{B} \leq \mathcal{H} .
\end{array}\right.
$$

The closest solvable instance construction LP-problem

$$
\left\{\begin{array}{l}
\rho(A, B)=\left(x_{r}-y_{r}\right)+\sum_{j}\left(x_{p}^{j}-y_{p}^{j}\right)+\left(x_{d}-y_{d}\right) \rightarrow \min _{\substack{x_{r}, y_{r}, j_{p}^{j}, x_{d}, y_{d}, r_{j}^{B}, p_{j}^{B}, d_{j}^{B}, \forall j}} \\
y_{r} \leq r_{j}^{A}-r_{j}^{B} \leq x_{r}, \forall j ; \\
-x_{p}^{j} \leq p_{j}^{A}-p_{j}^{B} \leq x_{p}^{j}, \forall j, x_{p}^{j} \geq 0 ; \\
y_{d} \leq d_{j}^{A}-d_{j}^{B} \leq x_{d}, \forall j ; \\
d_{1}^{B} \leq d_{2}^{B} \leq \cdots \leq d_{n}^{B} ; \\
d_{1}^{B}-\alpha r_{1}^{B}-\beta p_{1}^{B} \geq d_{2}^{B}-\alpha r_{2}^{B}-\beta p_{2}^{B} \geq \cdots \geq d_{n}^{B}-\alpha r_{n}^{B}-\beta p_{n}^{B} ; \\
\alpha \in[1, \infty), \beta \in[0,1] .
\end{array}\right.
$$

$4+4 n$ variables, $8 n-2$ inequalities

The closest solvable instance construction LP-problem

Example of $\mathcal{A} R^{B}+\mathcal{B} P^{B}+\mathcal{C} D^{B} \leq \mathcal{H}$:
Inequalities for the subclass $1\left|d_{i} \leq d_{j}, d_{i}-r_{i}-p_{i} \geq d_{j}-r_{j}-p_{j}\right| L_{\max }$ Instance $I=\left\{\left(r_{j}^{\prime}, p_{j}^{\prime}, d_{j}^{\prime}\right) \mid j \in N\right\}$ belongs to this subclass, if there exists the numbering $\{1,2, \ldots, n\}$, which satisfies the following inequalities

$$
d_{1}^{\prime} \leq \ldots \leq d_{n}^{\prime} ; \quad \Delta_{1}^{\prime} \geq \ldots \geq \Delta_{n}^{\prime},
$$

where $\Delta_{j}^{\prime}=d_{j}^{\prime}-r_{j}^{\prime}-p_{j}^{\prime}$. For this subclass $\mathcal{A}^{(n-1) \times n}$ is

$$
\mathcal{A} R^{B}+\mathcal{A} P^{B}-\mathcal{A} D^{B} \leq 0, \mathcal{A} D^{B} \leq 0 .
$$

$$
\text { and } \mathcal{A}^{(n-1) \times n}=\left[\begin{array}{cccccccc}
1 & -1 & 0 & 0 & \ldots & 0 & 0 & 0 \\
0 & 1 & -1 & 0 & \ldots & 0 & 0 & 0 \\
0 & 0 & 1 & -1 & \ldots & 0 & 0 & 0 \\
\ldots & \ldots \\
0 & 0 & 0 & 0 & \ldots & 1 & -1 & 0 \\
0 & 0 & 0 & 0 & \ldots & 0 & 1 & -1
\end{array}\right] \text {; }
$$

Metrics for $1\left|r_{j}\right| L_{\text {max }}$ and in general case

$1 \mid r_{j} L_{\text {max }}$

Lazarev A.A. Estimation of Absolute Error in Scheduling Problems of Minimizing the Maximum Lateness, Dokl. Math., Vol. 76, 2007, P. 572-574.

General case

$$
\begin{gathered}
F(\pi)=\sum_{j \in N} \phi_{j}\left(\pi, r_{1}, \ldots, r_{n}, p_{1}, \ldots, p_{n}, d_{j}\right) \\
\rho(A, B)=\sum_{j \in N} \sum_{i \in N}\left(R_{j i}\left|r_{j}^{A}-r_{j}^{B}\right|+P_{j i}\left|p_{j}^{A}-p_{j}^{B}\right|\right)+\sum_{j \in N} D_{j}\left|d_{j}^{A}-d_{j}^{B}\right|,
\end{gathered}
$$

where $R_{j i} \geq\left|\frac{\partial \phi_{j}}{\partial r_{i}}\right|, P_{j i} \geq\left|\frac{\partial \phi_{j}}{\partial p_{i}}\right|, D_{j i} \geq\left|\frac{\partial \phi_{j}}{\partial d_{i}}\right|$.

Metrics for $1\left|r_{j}\right| \sum T_{j}$

Problem formulation

Set $N=\{1,2, \ldots, n\}$ of n independent jobs must be processed on a single machine.

- The machine can handle only one job at a time.
- Preemptions are not allowed.
- The machine is ready to start processing at time 0 .

For each job $j, j \in N$, a processing time $p_{j} \geq 0$, release date $r_{j} \geq 0$ and due date d_{j} are given.

In early schedule $\pi: S_{j_{1}}=r_{j_{1}}$ and $S_{j_{k}}=\max \left\{r_{j_{k}}, C_{j_{k-1}}\right\}$ for $k=2, \ldots, n$,

Metrics for $1\left|r_{j}\right| \sum T_{j}$

Objective function

- $T_{j}(\pi)=\max \left\{0, C_{j}(\pi)-d_{j}\right\}$ is the tardiness of the job j in the schedule π.
- $\sum_{j \in N} T_{j}(\pi)$ is the total tardiness in the schedule π.

Metrics for $1\left|r_{j}\right| \sum T_{j}$

Objective function

- $T_{j}(\pi)=\max \left\{0, C_{j}(\pi)-d_{j}\right\}$ is the tardiness of the job j in the schedule π.
- $\sum_{j \in N} T_{j}(\pi)$ is the total tardiness in the schedule π.

The total tardiness minimization problem is denoted as $1\left|r_{j}\right| \sum T_{j}$.

Metrics for $1\left|r_{j}\right| \sum T_{j}$

Objective function

- $T_{j}(\pi)=\max \left\{0, C_{j}(\pi)-d_{j}\right\}$ is the tardiness of the job j in the schedule π.
- $\sum_{j \in N} T_{j}(\pi)$ is the total tardiness in the schedule π.

The total tardiness minimization problem is denoted as $1\left|r_{j}\right| \sum T_{j}$.

Du J., Leung J.Y.T. Minimizing total tardiness on one machine is NP-hard Mathematics of Operations Research, Vol. 15. 1990, N. 3, P. 483-495. Problem $1\left|r_{j}\right| \sum T_{j}$ is NP-hard in the ordinary sense.

Metrics for $1\left|r_{j}\right| \sum T_{j}$

Theorem

Function

$$
\rho(A, B)=n \cdot \max _{j \in N}\left|r_{j}^{A}-r_{j}^{B}\right|+n \cdot \sum_{j \in N}\left|p_{j}^{A}-p_{j}^{B}\right|+\sum_{j \in N}\left|d_{j}^{A}-d_{j}^{B}\right|
$$

satisfies the axioms of metric function and is applicable as parameters space metric.

Lemma

For any instances A, B and schedule π

$$
\left|\sum_{j \in N} T_{j}^{A}(\pi)-\sum_{j \in N} T_{j}^{B}(\pi)\right| \leq \rho(A, B)
$$

Metrics for $1\left|r_{j}\right| \sum T_{j}$

Lemma

For any instances A, B and schedule π

$$
\left|\sum_{j \in N} T_{j}^{A}(\pi)-\sum_{j \in N} T_{j}^{B}(\pi)\right| \leq \rho(A, B)
$$

Theorem

For any instances A and B

$$
\sum_{j \in N} T_{j}^{A}\left(\pi^{B}\right)-\sum_{j \in N} T_{j}^{A}\left(\pi^{A}\right) \leq 2 \rho(A, B)
$$

There π^{A} and π^{B} are optimal schedules for instances A and B, respectively.

Metrics for $1\left|r_{j}\right| \sum T_{j}$

LP approximation model

$$
\min f=n \cdot\left(y^{r}-x^{r}\right)+n \cdot \sum_{j=1}^{n}\left(y_{j}^{p}-x_{j}^{p}\right)+\cdot \sum_{j=1}^{n}\left(y_{j}^{d}-x_{j}^{d}\right)
$$

s.t.

$$
\begin{gathered}
x^{r} \leq r_{j}^{A}-r_{j}^{B} \leq y^{r}, \\
x_{j}^{p} \leq p_{j}^{A}-p_{j}^{B} \leq y_{j}^{p}, \\
x_{j}^{d} \leq d_{j}^{A}-d_{j}^{B} \leq y_{d} \\
r_{j}^{B} \geq 0, p_{j}^{B} \geq 0, j \in N, \\
\mathcal{A} \cdot R^{B}+\mathcal{B} \cdot P^{B}+\mathcal{C} \cdot D^{B} \leq \mathcal{H}
\end{gathered}
$$

Solvable case class constraints
LP with $7 \mathrm{n}+2$ variables : $r_{j}^{B}, p_{j}^{B}, d_{j}^{B}, x_{j}^{p}, y_{j}^{p}, x_{j}^{d}, y_{j}^{d}, x^{r}, y^{r}, j=1, \ldots, n$.

Metrics for $1\left|r_{j}\right| \sum T_{j}$

Solvable classes

- $\left\{\mathcal{P R}\right.$ - case : $\left.p_{j}=p, r_{j}=r, j \in N\right\}$;
- $\left\{\mathcal{P D}\right.$ - case : $\left.p_{j}=p, d_{j}=d, j \in N\right\}$;
- $\left\{\mathcal{R D}\right.$ - case : $\left.r_{j}=r, d_{j}=d, j \in N\right\}$;

Lemma

For each class the minimum of the function $f(p, d, r)$ could be constructed in $O(n)$ operations. For example, for $\mathcal{P} \mathcal{R}$ - case it has the minimum at the point with $p \in\left\{p_{1}^{A}, \ldots, p_{n}^{A}\right\}$ and $r=\frac{r_{\text {max }}^{A}-r_{\text {min }}^{A}}{2}$, where $r_{\text {max }}^{A}=\max _{j \in N} r_{j}^{A}$, $r_{\text {min }}^{A}=\min _{j \in N} r_{j}^{A}$.

Metrics for $1\left|r_{j}\right| \sum T_{j}$

Computational experiments

- $n=4,5, \ldots, 10$
- 10000 instances were generated for each value of n
- $p_{j} \in[1,100]$
- $d_{j} \in[-100,100]$
- $r_{j} \in[0,100]$
- F_{a} denotes an approximate objective value of an instance
- F^{*} denotes an optimal objective value of an instance
- $\delta=F_{a}-F^{*}$ is exeperimental error
- $\Delta=\frac{F_{a}-F^{*}}{2 \rho(A, B)}$ is the ratio of experimental error and it's upper bound

Metrics for $1\left|r_{j}\right| \sum T_{j}$

The typical distribution of experimental error.

Metrics for $1\left|r_{j}\right| \sum T_{j}$

Table: Average experimental error in percentage of the theoretical error

n	$\mathcal{P} \mathcal{R}$-case	$\mathcal{P} \mathcal{D}$-case	$\mathcal{R} \mathcal{D}$-case
4	19%	$4,5 \%$	15%
5	$19,5 \%$	$6,2 \%$	$17,2 \%$
6	$19,2 \%$	$7,3 \%$	$18,4 \%$
7	$19,6 \%$	$8,5 \%$	$19,4 \%$
8	$19,3 \%$	$9,2 \%$	$20,7 \%$
9	$19,4 \%$	10%	$21,7 \%$
10	19%	$10,5 \%$	$22,5 \%$

Measure of polynomial unsolvability

Problem $1\left|r_{j}\right| L_{\text {max }}$ polynomial solvable classes

R). $r_{j}=$ const (Jackson 1955);
D). $d_{j}=$ const (Lawler 1973);
P). $p_{j}=$ const (Simons 1978);
H). $d_{j}-p_{j}-A \leq r_{j} \leq d_{j}-A, A=$ const (Hoogeveen 1991);

RD). $r_{1} \leq \cdots \leq r_{n}, d_{1} \leq \cdots \leq d_{n}$ (Hoogeveen 1991);
L). $d_{1} \leq \cdots \leq d_{n}, d_{1}-p_{1}-r_{1} \geq \cdots \geq d_{n}-p_{n}-r_{n}$ (Lazarev 2008);

LA). $d_{1} \leq \cdots \leq d_{n}, d_{1}-\alpha p_{1}-\beta r_{1} \geq \cdots \geq d_{n}-\alpha p_{n}-\beta r_{n}$,
$\alpha=$ const, $\beta=$ const, $\alpha \in[0,1], \beta \in[0,+\infty]$ (Lazarev, Arkhipov 2010).

Measure of insolvability

Measure of insolvability of the instance A relative to the area X :

$$
\rho^{X}(A)=\min _{B \in X} \rho(A, B)
$$

Complex measure

$E(A)=\min \left\{\rho^{L}(A), \rho^{H}(A), \rho^{P}(A), \rho^{R D}(A)\right\}$.

Scalable parameters

Problem A

$$
r_{1}, r_{2}, \ldots, r_{n} ; p_{1}, p_{2}, \ldots, p_{n} ; d_{1}, d_{2}, \ldots, d_{n}
$$

$$
L_{\text {max }}^{*}(A)=L^{A} .
$$

Problem kA

$k r_{1}, k r_{2}, \ldots, k r_{n} ; k p_{1}, k p_{2}, \ldots, k p_{n} ; k d_{1}, k d_{2}, \ldots, k d_{n}$.

$$
L_{\max }^{*}(A)=L^{k A}=k L^{A} .
$$

Scalable parameters

Problem A

$$
r_{1}, r_{2}, \ldots, r_{n} ; p_{1}, p_{2}, \ldots, p_{n} ; d_{1}, d_{2}, \ldots, d_{n}
$$

$$
L_{\text {max }}^{*}(A)=L^{A} .
$$

Problem kA

$k r_{1}, k r_{2}, \ldots, k r_{n} ; k p_{1}, k p_{2}, \ldots, k p_{n} ; k d_{1}, k d_{2}, \ldots, k d_{n}$.

$$
L_{\max }^{*}(A)=L^{k A}=k L^{A} .
$$

Problems kA \& kB

$$
\rho(k A, k B)=k \rho(A, B) .
$$

Normalization

Normalization factor

$N F(A)=\sqrt{\sum_{j=1}^{n} r_{j}+\sum_{j=1}^{n} p_{j}+\sum_{j=1}^{n} d_{j}}$

Normalized parameters

$r_{j}^{A^{\prime}}=\frac{r_{j}^{A}}{N F(A)} ; p_{j}^{A^{\prime}}=\frac{p_{j}^{A}}{N F(A)} ; d_{j}^{A^{\prime}}=\frac{d_{j}^{A}}{N F(A)}$.

Upper bound estimation

Theorem

For each instance A^{\prime} which belongs to the 3n-dimensional unit sphere following inequalities holds:

$$
E\left(A^{\prime}\right)<1
$$

And if $\forall j \in N$ parameters $r_{j}, p_{j}, d_{j} \geq 0$, then:

$$
E\left(A^{\prime}\right)<\frac{1}{\sqrt{2}}
$$

holds.

Proof

$$
N F\left(A^{\prime}\right)=\sum_{j=1}^{n} r_{j}^{A^{\prime}}+\sum_{j=1}^{n} p_{j}^{A^{\prime}}+\sum_{j=1}^{n} d_{j}^{A^{\prime}}=1,
$$

$\rho^{R D}\left(A^{\prime}\right)=\min _{R, D \geq 0}\{R+D\}, \forall i, j \in N$, which holds
$\left(d_{j}^{A^{\prime}}-d_{i}^{A^{\prime}}\right)\left(r_{j}^{A^{\prime}}-r_{i}^{A^{\prime}}\right)<0$:

$$
\left[\begin{array}{l}
\left|r_{i}^{A^{\prime}}-r_{j}^{A^{\prime}}\right| \leq R ; \\
\left|d_{i}^{A^{\prime}}-d_{j}^{A^{\prime}}\right| \leq D .
\end{array}\right.
$$

Proof

Hence, $\exists i_{1}, j_{1}, i_{2}, j_{2} \in N$:

$$
\left\{\begin{array}{l}
r_{i_{1}}^{A^{\prime}}-r_{j_{1}}^{A^{\prime}} \geq E\left(A^{\prime}\right) \\
d_{i_{2}}^{A^{\prime}}-d_{j_{2}}^{A^{\prime}} \geq E\left(A^{\prime}\right)
\end{array}\right.
$$

And, due to $E\left(A^{\prime}\right) \leq \rho^{P}\left(A^{\prime}\right), \exists j_{3}$:

$$
\begin{gathered}
p_{j_{3}}>0 \\
N F\left(A^{\prime}\right)=1 \geq\left(r_{i_{1}}^{A^{\prime}}\right)^{2}+\left(r_{j_{1}}^{A^{\prime}}\right)^{2}+\left(d_{i_{2}}^{A^{\prime}}\right)^{2}+\left(d_{j_{2}}^{A^{\prime}}\right)^{2}+\left(p_{j_{3}}^{A^{\prime}}\right)^{2} .
\end{gathered}
$$

Proof

$$
\left(r_{i_{1}}^{A^{\prime}}\right)^{2}+\left(r_{j_{1}}^{A^{\prime}}\right)^{2}+\left(d_{i_{2}}^{A^{\prime}}\right)^{2}+\left(d_{j_{2}}^{A^{\prime}}\right)^{2}+\left(p_{j_{3}}^{A^{\prime}}\right)^{2}>E\left(A^{\prime}\right)^{2}
$$

and

$$
\left(r_{i_{1}}^{A^{\prime}}\right)^{2}+\left(r_{j_{1}}^{A^{\prime}}\right)^{2}+\left(d_{i_{2}}^{A^{\prime}}\right)^{2}+\left(d_{j_{2}}^{A^{\prime}}\right)^{2}+\left(p_{j_{3}}^{A^{\prime}}\right)^{2}>2 E\left(A^{\prime}\right)^{2}
$$

if $r_{i_{1}}^{A^{\prime}}, r_{j_{1}}^{A^{\prime}}, d_{i_{2}}^{A^{\prime}}, d_{j_{2}}^{A^{\prime}}, r_{j_{3}}^{A^{\prime}}$ are non-negative. Hence,

$$
E\left(A^{\prime}\right)<1
$$

and

$$
E\left(A^{\prime}\right)<\frac{1}{\sqrt{2}}
$$

if $r_{i_{1}}^{A^{\prime}}, r_{j_{1}}^{A^{\prime}}, d_{i_{2}}^{A^{\prime}}, d_{j_{2}}^{A^{\prime}}, r_{j_{3}}^{A^{\prime}}$ are non-negative. QED.

Strengthening theorem

Algorithm Shrage: for every instance A with non-negative parameters of jobs it is possible to construct the solution in $O(n \log n)$ operations with guaranteed accuracy $e^{E D}=\max _{j \in N} p_{j}$

Strengthen theorem

For each instance A which belongs to the 3 n-dimensional unit sphere following inequalities holds that if $\forall j \in N$ parameters $r_{j}, p_{j}, d_{j} \geq 0$, then

$$
\min \left\{e^{E D}, E(A)\right\}<\frac{1}{\sqrt{3}} .
$$

Schrage L. Obtaining Optimal Solutions to Resource Constrained Network Scheduling Problems. Unpublished manuscript 1971.

Metrics approach and Insolvability measure : conclusion

- Metrics allow to construct solutions with guaranteed accuracy in polynomial time.

Metrics approach and Insolvability measure : conclusion

- Metrics allow to construct solutions with guaranteed accuracy in polynomial time.
- Measure of polynomial insolvability forms the quantitative property in addition to the NP-hardness qualitative property!
- Theoretically and practically significant result.

Metrics approach and Insolvability measure : conclusion

- Metrics allow to construct solutions with guaranteed accuracy in polynomial time.
- Measure of polynomial insolvability forms the quantitative property in addition to the NP-hardness qualitative property!
- Theoretically and practically significant result.
- Example: Metrics for the railway scheduling problem.

Example: Metrics for the railway scheduling problem

St. 1
p
St. 2

Initial data

- $\left|N_{1}\right|=n,\left|N_{2}\right|=n^{\prime}, N=N_{1} \cup N_{2},|N|=n+n^{\prime}$.
- All trains have equal speed, track traversing time - p.
- Minimal time between the departure of two trains from one station $-\beta$.
- The transportation starts at time $t=0$.

Objective function

- We consider a family of objective functions. In schedule σ, for each train $i \in N S_{i}(\sigma)$ - it's departure time; $C_{i}(\sigma)$ - arrival time, $C_{i}(\sigma)=S_{i}(\sigma)+p$.
- The approach is demonstrated on the maximum lateness objective function $L_{\max }(\sigma), L_{\max }(\sigma)=\max _{i \in N} L_{i}=\max _{i \in N}\left\{C_{i}(\sigma)-d_{i}\right\}$.

Example: Metrics for the railway scheduling problem

Instances

- Denote the problem as STR2 (Single Track Railway Scheduling Problem).
- The STR2 $\left|r_{j}\right| L_{\text {max }}$ (with release times r_{j}) problem instance: $2 n+2$ parameters, d_{j} and r_{j} for each train $j \in N$ are given plus two general parameters β and p.
- We consider the problem instances as points in the $2 n$-dimensional space of parameters, denoted as $\Omega=\left\{r_{1}, \ldots, r_{n}, d_{1}, \ldots, d_{n}\right\}$.

Metric function

$$
\rho(A, B)=\max _{j \in N}\left|r_{j}^{A}-r_{j}^{B}\right|+\max _{j \in N}\left|d_{j}^{A}-d_{j}^{B}\right|
$$

satisfies the axioms of metric function. For any instances A, B and schedule π

$$
\left|L_{\max }^{A}(\pi)-L_{\max }^{B}(\pi)\right| \leq \rho(A, B)
$$

Example: Metrics for the railway scheduling problem

Optimal schedules π^{A} and π^{B} for instances A and B, respectively

For any instances A and $B: L_{\text {max }}^{A}\left(\pi^{B}\right)-L_{\text {max }}^{A}\left(\pi^{A}\right) \leq 2 \rho(A, B)$.

LP approximation model (find solvable instance B for A)

$$
\min y+x
$$

subject to

$$
\begin{gathered}
-y \leq d_{j}^{A}-d_{j}^{B} \leq y, \forall j \in N \\
-x \leq r_{j}^{A}-r_{j}^{B} \leq x, \forall j \in N \\
0 \leq r_{j}^{B}, \forall j \in N
\end{gathered}
$$

$\mathcal{A} \cdot R^{B}+\mathcal{B} \cdot D^{B} \leq H$ (solvable instance class constraints) ${ }^{*}$.

- r_{j}^{A} and d_{j}^{A} are given, and x, y, and r_{j}^{B}, d_{j}^{B} are unknown for all $j \in N$;
- $2 n+2$ variables and $5 n+m$ constraints, $n=|N|, m$ - the number of inequalities in *.

Example: Metrics for the railway scheduling problem

Polynomially solvable cases

- For $\left\{P R: r_{j}=r, \forall j \in N\right\}$, which is the problem $S T R 2 \| L_{\text {max }}$, we have $\rho(A, B)_{P R}=\max _{j \in N}\left|r_{j}^{A}-r\right|$.
- For $\left\{P D: d_{j}=d, \forall j \in N\right\}$, which is the problem $S T R 2\left|r_{j}\right| C_{\text {max }}$ that has the same complexity as $S T R 2\left|\mid L_{\text {max }}\right.$, we have $\left.\rho(A, B)_{P D}=\max _{j \in N}\right| d_{j}^{A}-d \mid$.
- For $\left\{P D R: r_{i} \leq r_{j} \Rightarrow d_{i} \leq d_{j}, \forall i, j \in N, i<j\right\}$ when i and j are from the same station, the case with agreeable due dates and arrival dates for each station, we have $\rho(A, B)_{P D R}=\max _{j \in N}\left|r_{j}^{A}-r_{j}^{B}\right|+\max _{j \in N}\left|d_{j}^{A}-d_{j}^{B}\right|$.

Thus, for an arbitrary instance A, the nearest instance

- in class $P R$ is $\left\{B_{P R}: r_{j}^{B}=\frac{r_{\text {max }}^{A}+r_{\text {min }}^{A}}{2}, d_{j}^{B}=d_{j}^{A}, \forall j \in N\right\}$;
- in class $P D$ is $\left\{B_{P D}: d_{j}^{B}=\frac{d_{\text {max }}^{A}+d_{\text {min }}^{A}}{2}, r_{j}^{B}=r_{j}^{A}, \forall j \in N\right\}$;
- in class $P D R$ the nearest instance B is constructed by solving the LP with the special form of the inequality $\left({ }^{*}\right)$.

Objective function approximation

Motivation

- Basically, a person (company, organization) often constructs schedules and plans for a day, week, month, etc...
- What is your personal planning goal?

Motivation

- Basically, a person (company, organization) often constructs schedules and plans for a day, week, month, etc...
- What is your personal planning goal?
- To catch all the deadlines or due dates?

Motivation

- Basically, a person (company, organization) often constructs schedules and plans for a day, week, month, etc...
- What is your personal planning goal?
- To catch all the deadlines or due dates?
- Maximize the number of completed tasks or the income?

Motivation

- Basically, a person (company, organization) often constructs schedules and plans for a day, week, month, etc...
- What is your personal planning goal?
- To catch all the deadlines or due dates?
- Maximize the number of completed tasks or the income?
- For many cases the criterion is not clearly formalized.
- However, the schedule structure in general is the same from one period to another.

Motivation

- Basically, a person (company, organization) often constructs schedules and plans for a day, week, month, etc...
- What is your personal planning goal?
- To catch all the deadlines or due dates?
- Maximize the number of completed tasks or the income?
- For many cases the criterion is not clearly formalized.
- However, the schedule structure in general is the same from one period to another.
- How can we use the previous schedules to construct the next one if we have no clear objective function?

Motivation

- Basically, a person (company, organization) often constructs schedules and plans for a day, week, month, etc...
- What is your personal planning goal?
- To catch all the deadlines or due dates?
- Maximize the number of completed tasks or the income?
- For many cases the criterion is not clearly formalized.
- However, the schedule structure in general is the same from one period to another.
- How can we use the previous schedules to construct the next one if we have no clear objective function?
- And if we have the schedules: π_{-N},

Motivation

- Basically, a person (company, organization) often constructs schedules and plans for a day, week, month, etc...
- What is your personal planning goal?
- To catch all the deadlines or due dates?
- Maximize the number of completed tasks or the income?
- For many cases the criterion is not clearly formalized.
- However, the schedule structure in general is the same from one period to another.
- How can we use the previous schedules to construct the next one if we have no clear objective function?
- And if we have the schedules: $\pi_{-N}, \pi_{-(N-1)}$,

Motivation

- Basically, a person (company, organization) often constructs schedules and plans for a day, week, month, etc...
- What is your personal planning goal?
- To catch all the deadlines or due dates?
- Maximize the number of completed tasks or the income?
- For many cases the criterion is not clearly formalized.
- However, the schedule structure in general is the same from one period to another.
- How can we use the previous schedules to construct the next one if we have no clear objective function?
- And if we have the schedules: $\pi_{-N}, \pi_{-(N-1)}, \ldots$,

Motivation

- Basically, a person (company, organization) often constructs schedules and plans for a day, week, month, etc...
- What is your personal planning goal?
- To catch all the deadlines or due dates?
- Maximize the number of completed tasks or the income?
- For many cases the criterion is not clearly formalized.
- However, the schedule structure in general is the same from one period to another.
- How can we use the previous schedules to construct the next one if we have no clear objective function?
- And if we have the schedules: $\pi_{-N}, \pi_{-(N-1)}, \ldots, \pi_{0}$ and we must construct the next schedule π_{1} ?

The basic idea

- We consider the «inverted»scheduling problem.
- There is a set K of given pairs of instances I_{k} and schedules π_{k}^{0}, $|K|=N$,
- Schedule π_{k}^{0} is the optimal solution for the corresponding instance I_{k}.
- The problem is to find the form and coefficients of the objective function.
- The objective function is linear to the completion time of the job.

The problem $1 \| \sum \omega_{j} C_{j}$

$1 \| \sum \omega_{j} C_{j}$

- Single machine, n jobs;
- $p_{j}>0$ - processing time;
- $j \in N=\{1,2, \ldots, n\}$;
- no precedence relations between jobs.

Preemptions of a job are not allowed. The machine can process at most one job at any time.

A schedule describes order of processing the jobs: a permutation(sequence) $\pi=\left(j_{1}, j_{2}, \ldots, j_{n}\right)$.

Solvability

$1\left|r_{j}\right| \sum \omega_{j} C_{j}$ is NP-hard in the strong sence

Лазарев А.А., Гафаров Е.Р. Теория расписаний. Задачи и алгоритмы // Москва, МГУ, 2011, 222 С.

$1\left|\mid \sum \omega_{j} C_{j}\right.$ is solvable - generalized Smith theorem

There exists an optimal schedule $\pi^{*}=\left(j_{1}, \ldots, j_{n}\right)$, such that

$$
\frac{\omega_{j_{1}}}{p_{j_{1}}} \geq \frac{\omega_{j_{2}}}{p_{j_{2}}} \geq \ldots \geq \frac{\omega_{j_{n}}}{p_{j_{n}}} .
$$

Smith W.E. Various optimizers for single-stage production // Naval Res. Logist. Quart. 1956. No. 3. P. 59-66.

Approximation problem

- We consider the problem $1 \| \sum \omega_{j} C_{j}$.
- N given pairs of instances $I_{k}=\left\{p_{1}, \ldots, p_{n}\right\}$ and schedules π_{k}^{0}.
- Schedule π_{k}^{0} is the optimal solution for the corresponding instance I_{k}.
- The problem is to find the coefficients ω_{j} of the objective function.

The property of an optimal schedule

$$
\sum_{j=1}^{n} C_{j}^{k}(\pi) \omega_{j} \geq \sum_{j=1}^{n} C_{j}^{k}\left(\pi_{k}^{0}\right) \omega_{j}, \forall \pi \neq \pi_{k}^{0}, k \in\{1, \ldots, N\}
$$

- In general case ω_{j} are defined by the set of $N(n!-1)$ inequalities.
- Is it possible to allocate the subset of M (polynomial number) of independent inequalities, which forms the equal system?.

Approximation problem

Basic system of inequalities for $1\left|r_{j}\right| \sum \omega_{j} C_{j}$

$$
\frac{\omega_{j_{1}^{k}}}{p_{j_{1}^{k}}} \geq \frac{\omega_{j_{2}^{k}}}{p_{j_{2}^{k}}} \geq \ldots \geq \frac{\omega_{j_{n}^{k}}}{p_{j_{n}^{k}}}, k \in\{1, \ldots, N\} .
$$

Transformations

- Consider arbitrary pair of jobs $\forall i, j \in\{1, \ldots, n\}, i \neq j$.
- Separate the set K into two subsets $K_{i, j}$ and $K_{j, i}$, depending on the positions of i and j in π_{k}^{0}.

$$
\begin{aligned}
& K_{i, j}=\left\{k \in K: \pi_{k}^{0}=(\ldots, i, \ldots, j, \ldots)\right\} \\
& K_{j, i}=\left\{k \in K: \pi_{k}^{0}=(\ldots, j, \ldots, i, \ldots)\right\} .
\end{aligned}
$$

- From the basic system:
$\frac{\omega_{j k}}{\omega_{i k}} \leq \frac{p_{j k}}{p_{i k}}, k \in K_{i, j}$ and $\frac{\omega_{j k}}{\omega_{i k}} \geq \frac{p_{j k}}{p_{i k}}, k \in K_{j, i}$.

Approximation problem

Effective system of inequalities

$$
\begin{gathered}
\forall i, j \in\{1, \ldots, n\}, i \neq j ; \\
K_{i, j}=\left\{k \in K: \pi_{k}^{0}=(\ldots, i, \ldots, j, \ldots)\right\}, K_{j, i}=\left\{k \in K: \pi_{k}^{0}=(\ldots, j, \ldots, i, \ldots)\right\} ; \\
X(i, j)=\max _{k \in K_{j, i}}\left(\frac{p_{j}^{k}}{p_{i}^{k}}\right), Y(i, j)=\min _{k \in K_{i, j}}\left(\frac{p_{j}^{k}}{p_{i}^{k}}\right) ; \\
X(i, j) \leq \frac{\omega_{j}}{\omega_{i}} \leq Y(i, j) .
\end{gathered}
$$

Lemmas

- The basic and effective systems of inequalities are equal.
- The set of solutions of both systems is the convex polyhedral cone.

Approximation problem

The strengthening of inequalities

Multiplication property of inequaltites forms the strengthening procedure:

$$
X(i, j):=\max \left\{X(i, j), \max _{I=\{1, \ldots, n\}, l \neq i, l \neq j}\{X(i, l) X(I, j)\}\right\}, i, j \in\{1, \ldots, n\}, i \neq j .
$$

It can be repeated till some final \tilde{X} and \tilde{Y}.

If $\omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is the solution of approximation problem $1 \| \sum \omega_{j} C_{j}$, then $\gamma \omega=\left\{\gamma \omega_{1}, \ldots, \gamma \omega_{n}\right\}$ is also the soltuion of this problem, i.e. it can be scaled. Therefore, we can always assume that $\omega_{l}=1$ for some arbitrary one index l.

Theorem

Vector $\omega=\left\{\omega_{1}, \ldots, \omega_{n}\right\}$ is the solution of the effective system, if

$$
\omega_{j}=\left\{\begin{array}{cc}
1, & \text { if } j=I ; \tag{6}\\
(\tilde{X}(I, j)+\tilde{Y}(I, j) / 2, & j \neq I
\end{array}\right.
$$

Computations

- Random sets with N instances $I_{k}=\left\{p_{1}^{k}, \ldots, p_{n}^{k}\right\}, n$ jobs and ω_{j}^{0} were generated (distributed in $[0,1]$).
- All the valued were rationed $\omega_{j}:=\frac{\omega_{j}}{\|\omega\|}, \omega_{j}^{0}:=\frac{\omega_{j}^{0}}{\left\|\omega^{0}\right\|}$.
- $\epsilon(N, n)=\frac{1}{n} \sum_{j=1}^{n} \frac{\left|\omega_{j}-\omega_{j}^{0}\right|}{\omega_{j}^{j}}$, the error decreases (converges to 0) with growing N !

Dual complexity reduction

Duality for non-decreasing penalty functions

Initial problem

$$
\begin{equation*}
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=\overline{1, n}} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right), \tag{7}
\end{equation*}
$$

Non-decreasing functions $\varphi_{j}\left(C_{j}(\pi)\right)$

Duality for non-decreasing penalty functions

Initial problem

$$
\begin{equation*}
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=\overline{1, n}} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right), \tag{7}
\end{equation*}
$$

Non-decreasing functions $\varphi_{j}\left(C_{j}(\pi)\right)$

Dual problem

$$
\begin{equation*}
\nu^{*}=\max _{k=\overline{1, n}} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) . \tag{8}
\end{equation*}
$$

$r_{j}=0, \forall \quad j \in N$
Conway R.W., Maxwell W.L., Miller L.W. Theory of Scheduling // Addison-Wesley, Reading, MA. 1967.

Duality for non-decreasing penalty functions

$$
\nu^{*}=\max _{k=1, n} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right)
$$

Duality for non-decreasing penalty functions

$$
\nu^{*}=\max _{k=1, n} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right)
$$

$$
\begin{equation*}
\nu_{k}=\min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right), k=1,2, \ldots, n . \tag{9}
\end{equation*}
$$

Duality for non-decreasing penalty functions

$$
\nu^{*}=\max _{k=1, n} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right)
$$

$$
\begin{equation*}
\nu_{k}=\min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right), k=1,2, \ldots, n \tag{9}
\end{equation*}
$$

$$
\begin{equation*}
\nu^{*}=\max _{k=1, n} \nu_{k} . \tag{10}
\end{equation*}
$$

Duality for non-decreasing penalty functions

Lemma

$$
\begin{aligned}
& \varphi_{j}(t), j=1,2, \ldots, n, \text { any not decreasing functions } 1\left|r_{j}\right| \varphi_{\max }, \\
& \forall k=1,2, \ldots, n, \quad \nu_{n} \geq \nu_{k}, \quad \nu^{*}=\nu_{n} .
\end{aligned}
$$

Duality for non-decreasing penalty functions

Lemma

$\varphi_{j}(t), j=1,2, \ldots, n$, any not decreasing functions $1\left|r_{j}\right| \varphi_{\max }$, $\forall k=1,2, \ldots, n, \quad \nu_{n} \geq \nu_{k}, \quad \nu^{*}=\nu_{n}$.

Algorithm

$$
\begin{aligned}
& \pi^{r}=\left(i_{1}, i_{2}, \ldots, i_{n}\right), \quad r_{i_{1}} \leq r_{i_{2}} \leq \cdots \leq r_{i_{n}} ; \\
& \pi_{k}=\left(\pi^{r} \backslash i_{k}, i_{k}\right), k=1,2, \ldots, n, \quad \varphi_{i_{k}}\left(C_{i_{k}}\left(\pi_{k}\right)\right) \\
& \nu^{*}=\max _{k=1, n} \varphi_{i_{k}}\left(C_{i_{k}}\left(\pi_{k}\right)\right)
\end{aligned}
$$

Duality for non-decreasing penalty functions

Lemma

$\varphi_{j}(t), j=1,2, \ldots, n$, any not decreasing functions $1\left|r_{j}\right| \varphi_{\max }$, $\forall k=1,2, \ldots, n, \quad \nu_{n} \geq \nu_{k}, \quad \nu^{*}=\nu_{n}$.

Algorithm

$$
\begin{aligned}
& \pi^{r}=\left(i_{1}, i_{2}, \ldots, i_{n}\right), \quad r_{i_{1}} \leq r_{i_{2}} \leq \cdots \leq r_{i_{n}} ; \\
& \pi_{k}=\left(\pi^{r} \backslash i_{k}, i_{k}\right), k=1,2, \ldots, n, \quad \varphi_{i_{k}}\left(C_{i_{k}}\left(\pi_{k}\right)\right) \\
& \nu^{*}=\max _{k=1, n} \varphi_{i_{k}}\left(C_{i_{k}}\left(\pi_{k}\right)\right)
\end{aligned}
$$

$$
O\left(n^{2}\right)
$$

Duality for non-decreasing penalty functions

Initial problem

$$
\begin{equation*}
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=\overline{1, n}} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) \tag{11}
\end{equation*}
$$

Non-decreasing function $\varphi_{j}\left(C_{j}(\pi)\right)$

Duality for non-decreasing penalty functions

Initial problem

$$
\begin{equation*}
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=1, n} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right), \tag{11}
\end{equation*}
$$

Non-decreasing function $\varphi_{j}\left(C_{j}(\pi)\right)$

Dual problem

$$
\begin{equation*}
\nu^{*}=\max _{k=1, n} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) . \tag{12}
\end{equation*}
$$

Duality for non-decreasing penalty functions

Initial problem

$$
\begin{equation*}
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=1, n} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right), \tag{11}
\end{equation*}
$$

Non-decreasing function $\varphi_{j}\left(C_{j}(\pi)\right)$

Dual problem

$$
\nu^{*}=\max _{k=1, n} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) .
$$

Theorem

$\varphi_{j}(t), j=1,2, \ldots, n$, any non-decreasing functions $1\left|r_{j}\right| \varphi_{\max }$, $\forall k=1,2, \ldots, n$,

$$
\mu^{*} \geq \nu^{*}
$$

Duality for non-decreasing penalty functions

Initial problem

$$
\mu^{*}=\min _{\pi \in \Pi(N)} \max _{k=1, n} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right),
$$

Non-decreasing function $\varphi_{j}\left(C_{j}(\pi)\right)$

Dual problem

$$
\nu^{*}=\max _{k=1, n} \min _{\pi \in \Pi(N)} \varphi_{j_{k}}\left(C_{j_{k}}(\pi)\right) .
$$

Theorem

$\varphi_{j}(t), j=1,2, \ldots, n$, any non-decreasing functions $1\left|r_{j}\right| \varphi_{\max }$, $\forall k=1,2, \ldots, n$,

$$
\mu^{*} \geq \nu^{*} .
$$

Branch and bound

Duality for non-decreasing penalty functions

Initial problem is NP-hard in the strong sense!

Preceding, Dual problem

$G: \quad$ single machine $O\left(n^{2}\right)$
G : many machines $N P$-hard in the ordinary sense
Non-decreasing penalty functions $\varphi_{j}\left(C_{j}(\pi)\right)$

Graphical approach

Graphical approach

Partition problem

Consider a sorted set of n positive integer numbers $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$. Divide the set B into two subsets B_{1}, B_{2}, so that

$$
\left|\sum_{i \in B_{1}} b_{i}-\sum_{i \in B_{2}} b_{i}\right| \rightarrow \min
$$

Graphical approach

Partition problem

Consider a sorted set of n positive integer numbers $B=\left\{b_{1}, b_{2}, \ldots, b_{n}\right\}$, $b_{1} \geq b_{2} \geq \cdots \geq b_{n}$. Divide the set B into two subsets B_{1}, B_{2}, so that

$$
\left|\sum_{i \in B_{1}} b_{i}-\sum_{i \in B_{2}} b_{i}\right| \rightarrow \min
$$

One-dimensional Knapsack problem

This problem can be viewed as an integer programming problem:

$$
\left\{\begin{array}{l}
f(x)=\sum_{i=1}^{n} c_{i} x_{i} \rightarrow \max \\
\sum_{i=1}^{n} w_{i} x_{i} \leq W \\
x_{i} \in\{0,1\}, i=1, \ldots, n
\end{array}\right.
$$

Graphical approach

If $c_{i}=a_{i}=b_{i}, i=1, \ldots, n$ and $W=\frac{1}{2} \sum_{i=1}^{n} b_{i}$, then Partition problem and
One-dimensional Knapsack problem are equivalent.
$f(x)=5 x_{1}+7 x_{2}+6 x_{3}+3 x_{4} \longrightarrow \max$

$$
\begin{gathered}
2 x_{1}+3 x_{2}+5 x_{3}+7 x_{4} \leq 9 \\
x_{i} \in\{0,1\}, i=1, \ldots, 4
\end{gathered}
$$

Step 1

t	$g_{1}(t)$	$x(t)$
0	0	$(0,,)$,
1	0	$(0,,)$,
2	5	$(1,,)$,
3	5	$(1,,)$,
4	5	$(1,,)$,
5	5	$(1,,)$,
6	5	$(1,)$,
7	5	$(1,)$,
8	5	$(1,)$,
9	5	$(1,,)$,

$f(x)=5 x_{1}+7 x_{2}+6 x_{3}+3 x_{4} \longrightarrow \max$

$$
\begin{gathered}
2 x_{1}+3 x_{2}+5 x_{3}+7 x_{4} \leq 9 \\
x_{i} \in\{0,1\}, i=1, \ldots, 4
\end{gathered}
$$

t	0	2
g	0	5
$x(t)$	$(0,,)$,	$(1,,)$,

Let's consider $\mathbf{4}$ points:
$0,2,0+3,2+3$

t	0	2	3	5
g	0	5	7	12
$x(t)$	$(0,0,)$,	$(1,0,)$,	$(0,1,)$,	$(1,1,)$,

Step 2

$$
\begin{gathered}
f(x)=5 x_{1}+7 x_{2}+6 x_{3}+3 x_{4} \longrightarrow \max \\
2 x_{1}+3 x_{2}+5 x_{3}+7 x_{4} \leq 9 \\
x_{i} \in\{0,1\}, i=1, \ldots, 4
\end{gathered}
$$

$$
\text { Step } 3
$$

t	0	2	3	5
g	0	5	7	12
$x(t)$	$(0,0,)$,	$(1,0,)$,	$(0,1,)$,	$(1,1,)$,

Let's consider 7 points:
$\mathbf{0 , 2 , 3 , 5 , ~ 0 + 5 , ~ 2 + 5 , ~ 3 + 5 . ~}$
Point $5+5>9$ is not considered

t	0	2	3	5	8
g	0	5	7	12	13
$x(t)$	$(0,0,0)$,	$(1,0,0)$,	$(0,1,0)$,	$(1,1,0)$,	$(0,1,1)$,

$f(x)=5 x_{1}+7 x_{2}+6 x_{3}+3 x_{4} \longrightarrow \max$

$$
2 x_{1}+3 x_{2}+5 x_{3}+7 x_{4} \leq 9
$$

Step 4

$$
x_{i} \in\{0,1\}, i=1, \ldots, 4
$$

t	$g_{1}(t)$	$x(t)$	$g_{2}(t)$	$x(t)$	$g_{3}(t)$	$x(t)$	$g_{4}(t)$	$x(t)$
0	0	$(0,,)$,	0	$(0,0,)$,	0	$(0,0,0)$,	0	$(0,0,0,0)$
1	0	$(0,,)$,	0	$(0,0)$,	0	$(0,0,0)$,	0	$(0,0,0,0)$
2	5	$(1,,)$,	5	$(1,0)$,	5	$(1,0,0)$,	5	$(1,0,0,0)$
3	5	$(1,,)$,	7	$(0,1,)$,	7	$(0,1,0)$,	7	$(0,1,0,0)$
4	5	$(1,,)$,	7	$(0,1)$,	7	$(0,1,0)$,	7	$(0,1,0,0)$
5	5	$(1,,)$,	12	$(1,1,)$,	12	$(1,1,0)$,	12	$(1,1,0,0)$
6	5	$(1,,)$,	12	$(1,1)$,	12	$(1,1,0)$,	12	$(1,1,0,0)$
7	5	$(1,,)$,	12	$(1,1,)$,	12	$(1,1,0)$,	12	$(1,1,0,0)$
8	5	$(1,,)$,	12	$(1,1)$,	13	$(0,1,1)$,	13	$(0,1,1,0)$
9	5	$(1,,)$,	12	$(1,1,)$,	13	$(0,1,1)$,	13	$(0,1,1,0)$

t	0	2	3	5	8
g	0	5	7	12	13
$x(t)$	$(0,0,0,0)$	$(1,0,0,0)$	$(0,1,0,0)$	$(1,1,0,0)$	$(0,1,1,0)$

$$
\frac{c_{1}}{a_{1}} \geq \frac{c_{2}}{a_{2}} \geq \cdots \geq \frac{c_{n}}{a_{n}} .
$$

$$
B=\{100,70,50,20\}
$$

Step 1

-100	100
$(100 ;)$	$(; 100)$

$$
B=\{100,70,50,20\}
$$

Step 2

$$
B=\{100,70,50,20\}
$$

Step 3

$$
40 \geq b_{1} \geq b_{2} \geq \ldots \geq b_{n} . \quad n=4,5, \ldots, 10 .
$$

1	2	3	4	5	6	7	8	9	10
4	123410	9	307	328	20	443	640	2	63684
5	1086008	16	444	512	40	564	1000	2	337077
6	8145060	29	542	738	60	687	1440	4	1140166
7	53524680	48	633	1004	140	811	1960	11	2799418
8	314457495	76	725	1312	212	933	2560	23	5348746
9	1677106640	115	814	1660	376	1053	3240	83	8488253
10	8217822536	168	905	2050	500	1172	4000	416	11426171

$1^{\text {st }}$ column: dimensionality of the problem (n);
$2^{\text {nd }}$ column: total number of solved instances for given $n\left(C_{n}^{b_{\max }+n-1}\right.$, where $\left.b_{\max }=40\right)$;
$3^{\text {rd }}$ column: average value of computational complexity of graphic algorithm;
$4^{\text {th }}$ column: average value of computational complexity of Balsub algorithm;
$5^{\text {th }}$ column: average value of computational complexity of dynamic programming algorithm;
$6^{\text {th }}$ column: maximal value of computational complexity of graphic algorithm;
$7^{\text {th }}$ column: maximal value of computational complexity of Balsub algorithm;
$8^{\text {th }}$ column: maximal value of computational complexity of dynamic programming algorithm;
$9^{\text {th }}$ column: amount of instances for which complexity of Balsub algorithm is less than the complexity of graphic algorithm;
$10^{\text {th }}$ column: amount of instances for which complexity of dynamic programming algorithm is less than complexity of Balsub algorithm.

Project investment problem

n potential projects
A - an investment budget (for all A from interval $\left[A^{\prime}, A^{\prime \prime}\right]$)
$f_{j}(t)$-- a profit function of project j
The goal is to define an amount t_{j} in $[0, \mathrm{~A}]$ (integer) for each project to maximize the total profit.
$\sum \mathrm{t}_{\mathrm{j}}<=\mathrm{A}$

Project investment problem

Graphical algorithm for the project investment problem

Dynamic programming algorithm $\mathrm{O}\left(\mathrm{nA}^{2}\right)$. Or $\mathrm{O}\left(\sum \mathrm{k}_{\mathrm{j}} \mathrm{A}\right)$
$F_{j}(T)=\max _{t=0,1, \ldots, T}\left\{f_{j}(t)+F_{j-1}(T-t)\right\}, T=A, A-1, \ldots, 1$,
In Graphical Algorithm functions $f_{j}(t)$ and Bellman's functions (value function) $F_{j}(t)$ are saved in tabular form:

K	1	2	\cdots	k_{j}
interval K	$\left[t_{j}^{1}, t_{j}^{2}\right)$	$\left[t_{j}^{2}, t_{j}^{3}\right)$	\cdots	$\left[t_{j}^{k_{j}}, A\right)$
b_{j}^{K}	b_{j}^{1}	b_{j}^{2}	\cdots	$b_{j}^{k_{j}}$
u_{j}^{K}	u_{j}^{1}	u_{j}^{2}	\cdots	$u_{j}^{k_{j}}$

Running time for the $1^{\text {st }}$ version of Graphical Algorithm $\mathrm{O}\left(\mathrm{nk}_{\max } \mathrm{A} \log \left(\mathrm{k}_{\max } \mathrm{A}\right)\right)$

Running time for the $2^{\text {nd }}$ version of Graphical Algorithm $\mathrm{O}\left(\sum \mathrm{k}_{\mathrm{j}} \mathrm{A}\right)$

Scheduling, line balancing and investments problems: Complexity and Algorithms

Graphical algorithm for Investments problem

K	1	2	3	4
interval K	$[0,3)$	$[3,10)$	$[10,13)$	$[13,25]$
b_{1}^{K}	0	0	7	8
u_{1}^{K}	0	1	$\frac{1}{3}$	0

Scheduling, line balancing and investments problems: Complexity and Algorithms

Scheduling, line balancing and investments problems: Complexity and Algorithms

FPTAS for 6 scheduling problems

(a)
(b)

Scheduling, line balancing and investments problems: Complexity and Algorithms

FPTAS for 6 scheduling problems

Problem	Time complexity of the GrA	Time complex- ity of the FP- TAS	Time complex- ity of the classical DPA	
$1\left\|\mid \sum w_{j} U_{j}\right.$	$O\left(\min \left\{2^{n}, n \cdot \min \left\{d_{\max }, F_{\text {opt }}\right\}\right\}\right)[5]$	-	$O\left(n d_{\max }\right)$	
$1\left\|d_{j}=d_{j}^{\prime}+A\right\| \sum U_{j}$	$O\left(n^{2}\right)[5](\operatorname{GrA})$	-	$O\left(n \sum p_{j}\right)$	
$1 \mid \sum \sum T_{j}$	$O\left(\min \left\{2^{n}, n \cdot\left\{d_{\max }, n F^{*}\right\}\right\}\right)$	$O\left(n^{2} \log \log n+\right.$ $\frac{n^{2}}{\varepsilon}$	$O\left(n d_{\max }\right)$	
$1\left\|\mid \sum T_{j}\right.$ special case $B-1$	$O\left(\min \left\{2^{n}, n \cdot \min \left\{d_{\max }, F^{*}\right\}\right\}\right)$	$O\left(n^{2} / \varepsilon\right)$	$O\left(n d_{\max }\right)$	
$1 \\| \sum T_{j}$ special case $B-1 G$	$O\left(\min \left\{n^{2} \cdot \min \left\{d_{\max }, F^{*}\right\}\right\}\right)$	$O\left(n^{3} / \varepsilon\right)$	$O\left(n^{2} d_{\max }\right)$	
$1\left\|d_{j}=d\right\| \sum w_{j} T_{j}$	$O\left(\min \left\{n^{2} \cdot \min \left\{d, F^{*}\right\}\right\}\right)$	$O\left(n^{3} / \varepsilon\right)$	$O\left(n^{2} d_{\max }\right)$	
$1(n o-$ idle $) \\| \max \sum w_{j} T_{j}$	$O\left(\min \left\{2^{n}, n \cdot \min \left\{d_{\max }, n F^{*}, \sum w_{j}\right\}\right\}\right)$ $[5]$	$O\left(n^{2} \log \log n+\right.$ $\left.\frac{n^{2}}{\varepsilon}\right)$	$O\left(n d_{\max }\right)$	
$1(n o-$ $i d l e) \\| \max \sum T_{j}$	$O\left(n^{2}\right)[4](\operatorname{GrA})$	-	$O\left(n d_{\max }\right)$	

Dynamic Programming Algorithms for the Problem

$1 / d_{j}=d / \sum w_{j} T_{j}$
Single machine
n jobs
$j=1,2, \ldots, n$
p_{j} processing time
$d_{j}=d$ common due date w_{j} weight

Tardiness of job j in schedule $\pi: T_{j}(\pi)=\max \left\{0, C_{j}(\pi)-d\right\}$

Goal: Find a schedule π^{*} that minimizes $\sum w_{j} T_{j}$

Dynamic Programming Algorithms for the Problem $1 / d_{j}=d \mid \sum w_{j} T_{j}$

Lemma 1: There exists an optimal schedule

$$
\pi=(G, x, H) \text {, where }
$$

all jobs from set G are on-time and processed in non-increasing order of the values p_{j} / w_{j};
all jobs from set H are tardy and processed in non-decreasing order of the values p_{j} / w_{j};
the straddling job x starts before time d and is completed no earlier than time d.

First Dynamic Programming Algorithm for the
 Problem 1/ $d_{j}=d / \sum w_{j} T_{j}$

Let $x=1$ be the straddling job.

In step $I, I=1,2, \ldots, n \quad$ for each state $t=\left[0, \sum p_{j}\right]$ or $[0, d]$ we choose one of two positions for job l:

The running time is $O(n d)$ for each straddling job $x=1,2, \ldots, n$

The Second Dynamic Programming Algorithm for the Problem 1/d $d_{j}=d / \sum w_{j} T_{j}$

Let $x=1$ be the straddling job.

t is the total processing time of the jobs scheduled at the beginning of a schedule. In step $l=n$, two states are saved: $\left(p_{n} F_{1}\right)$ and $\left(p_{n} F_{2}\right)$

n	$n-1$				
		$t=p_{n}+p_{n-1}$		$\sum p_{j}$	
n-1			n-1	n	
	$t=p_{n-1}$			Σp_{j}	

4 states are saved in step $1=n-1$

Comparison of Dynamic Programming Algorithms

In the first algorithm, all integer points (states) $\boldsymbol{t}=[0, d]$ are considered.
The running time is $O(n d)$.
In the second algorithm, only possible points $t=[0, d]$ are considered, which are computed if the processing of the jobs starts at time 0 .
The running time is $O(n d)$ as well.
The second algorithm is faster (since it considers not all points t), but the first algorithm finds an optimal solution for each integer starting time from [$0, d]$.

Graphical Algorithm

Dynamic Programming (Bellman 1954)

Functional equations:
consider in each step j all states $t \in[0, A] \cap Z$
$f_{j}(t)=\min \begin{cases}\Phi^{1}(t)=\alpha_{j}(t)+f_{j-1}\left(t-a_{j}\right), & j=1,2, \ldots, n ; \\ \Phi^{2}(t)=\beta_{j}(t)+f_{j-1}\left(t-b_{j}\right), & j=1,2, \ldots, n .\end{cases}$
Idea of the graphical algorithm:
Combine several states into a new state

For $t \in\left[t_{l}, t_{l+1}\right)$, we have
$f_{j}(t)=\varphi_{l+1}(t)$ and an optimal solution $X\left(t_{l}\right)$

Graphical Algorithm

Computations in the first dynamic programming algorithm

t	0	1	2	\ldots	y	\ldots	A
$f_{j}(t)$	value $_{0}$	value $_{1}$	value $_{2}$	\ldots	value $_{y}$	\ldots	value $_{A}$
optimal partial solution $X(t)$	$X(0)$	$X(1)$	$X(2)$	\cdots	$X(y)$	\cdots	$X(A)$

Computations in the graphical algorithm

t	$\left[t_{0}, t_{1}\right)$	$\left[t_{1}, t_{2}\right)$	\ldots	$\left[t_{l}, t_{l+1}\right)$	\ldots	$\left[t_{m_{j}-1}, t_{m_{j}}\right]$
$f_{j}(t)$	$\varphi_{1}(t)$	$\varphi_{2}(t)$	\ldots	$\varphi_{l+1}(t)$	\ldots	$\varphi_{m_{j}}(t)$
optimal partial solution $X(t)$	$X\left(t_{0}\right)$	$X\left(t_{1}\right)$	\ldots	$X\left(t_{l}\right)$	\ldots	$X\left(t_{m_{j}-1}\right)$

For $t \in\left[t_{l}, t_{l+1}\right)$, we have
$f_{j}(t)=\varphi_{l+1}(t)$ and an optimal solution $X\left(t_{l}\right)$

Graphical Algorithm
 (a)

(b)

k	1	2	\ldots	$m_{j}+1$	$m_{j}+2$
interval k	$\left(-\infty, t_{j}^{1}\right]$	$\left(t_{j}^{1}, t_{j}^{2}\right]$	\cdots	$\left(t_{j}^{m_{j}}, t_{j}^{m_{j}+1}\right]$	$\left(t_{j}^{m_{j}+1},+\infty\right)$
b_{j}^{k}	0	b_{j}^{2}	\cdots	$b_{j}^{m_{j}+1}$	$+\infty$
u_{j}^{k}	0	u_{j}^{2}	\cdots	$u_{j}^{m_{j}+1}$	0
π_{j}^{k}	π_{j}^{1}	π_{j}^{2}	\cdots	$\pi_{j}^{m_{j}+1}$	$(1,2, \ldots, j)$

Graphical Algorithm

k	1	2	\ldots	$m_{j}+1$	$m_{j}+2$
interval k	$\left(-\infty, t_{j}^{1}\right]$	$\left(t_{j}^{1}, t_{j}^{2}\right]$	\ldots	$\left(t_{j}^{m_{j}}, t_{j}^{m_{j}+1}\right]$	$\left(t_{j}^{m_{j}+1},+\infty\right)$
b_{j}^{k}	0	b_{j}^{2}	\ldots	$b_{j}^{m_{j}+1}$	$+\infty$
u_{j}^{k}	0	u_{j}^{2}	\ldots	$u_{j}^{m_{j}+1}$	0
π_{j}^{k}	π_{j}^{1}	π_{j}^{2}	\ldots	$\pi_{j}^{m_{j}+1}$	$(1,2, \ldots, j)$

Graphical Algorithm

k	1	2	\ldots	$m_{j}+1$	$m_{j}+2$
interval k	$\left(-\infty, t_{j}^{1}\right]$	$\left(t_{j}^{1}, t_{j}^{2}\right]$	\ldots	$\left(t_{j}^{m_{j}}, t_{j}^{m_{j}+1}\right.$	
b_{j}^{k}	0	b_{j}^{2}	\cdots	$\left(t_{j}^{m_{j}+1},+\infty\right)$	
u_{j}^{k}	0	u_{j}^{2}	\cdots	$u_{j}^{m_{j}+1}$	$+\infty$
π_{j}^{k}	π_{j}^{1}	π_{j}^{2}	\cdots	$\pi_{j}^{m_{j}+1}$	$(1,2, \ldots, j)$

In the table, $0<b_{l}^{1}<b_{l}^{2}<\ldots$ since function $F(t)$ is monotonic with t being the starting time.
Function $F_{l}(t)$ can be defined for all t from $(-\infty,+\infty)$.
Let $U B$ be an upper bound on the optimal objective function value. Then we have to save only the columns with $b_{l}^{k}<U B$.

The running time of the Graphical Algorithm is $O(n \min \{U B, d\})$ for each straddling job x.

FPTAS based on the Graphical Algorithm

k	1	2	\ldots	$m_{j}+1$	$m_{j}+2$
interval k	$\left(-\infty, t_{j}^{1}\right]$	$\left(t_{j}^{1}, t_{j}^{2}\right]$	\cdots	$\left(t_{j}^{m_{j}}, t_{j}^{m_{j}+1}\right]$	$\left(t_{j}^{m_{j}+1},+\infty\right)$
b_{j}^{k}	0	b_{j}^{2}	\cdots	$b_{j}^{m_{j}+1}$	$+\infty$
u_{j}^{k}	0	u_{j}^{2}	\cdots	$u_{j}^{m_{j}+1}$	0
π_{j}^{k}	π_{j}^{1}	π_{j}^{2}	\cdots	$\pi_{j}^{m_{j}+1}$	$(1,2, \ldots, j)$

In the table, $0<b_{l}^{1}<b_{l}^{2}<\ldots$ since function $F(t)$ is monotonic with t being the starting time.
The running time of the Graphical Algorithm is $O(n \min \{U B, d\})$ for each straddling job x.

To reduce the running time, we can round (approximate) the values $b_{1}^{k}<U B$ to get a polynomial number of different values b_{l}^{k}

Let $\delta=\frac{\varepsilon U B}{2 n}$. Round b_{l}^{k} up or down to the nearest multiple of δ

FPTAS based on the Graphical Algorithm

no more than $\frac{{ }^{\prime} U B}{\delta}=\frac{2 n}{\varepsilon}$ different values $\overline{b_{l}^{k}}$
no more than $4 \frac{n}{\varepsilon}$ columns
cumulative error will be no more than $n \delta \leq \varepsilon F\left(\pi^{*}\right)$
The running time of the FPTAS is $O\left(\frac{n^{3}}{\varepsilon}\right)$

Comparison of Dynamic Programming and Graphical Algorithms

Note	Classical DPA	GrA	Alternative DPA		
Can it solve instances with $p_{j} \notin Z$ and instances with large values p_{j}	no	yes	yes		
states t considered	all $t \in[0, d] \cap Z$	only t, where the slope of the function $F_{l}(t)$ is changed	only t from the set Θ_{l}		
The running time for the initial instance - of the problem $1 \\| \sum G T_{j}$ is - of the problem 1 (noidle) $\\| \max \sum w_{j} T_{j}$ is	$\begin{aligned} & O(n \min \{d, U B\}) \\ & O\left(n d_{\max }\right) \\ & O\left(n \min \left\{d_{\max }, U B\right\}\right) \end{aligned}$	$\begin{aligned} & O(n \min \{d, U B\}) \\ & O\left(n \min \left\{d_{\max }, U B\right\}\right) \\ & O\left(n \min \left\{d_{\max }, U B, \sum w_{j}\right\}\right) \end{aligned}$	$\begin{aligned} & O(n \min \{d, U B\}) \\ & O\left(n \min \left\{d_{\max }, U B\right\}\right) \\ & O\left(n \min \left\{d_{\max }, U B\right\}\right) \end{aligned}$		

$\Theta_{l}=\left\{x_{1} p_{1}+x_{2} p_{2}+\cdots+x_{l} p_{l} \mid x_{1}, x_{2}, \ldots, x_{l} \in\{0,1\}\right\}$

Comparison of Dynamic Programming and Graphical Algorithms

Note	Classical DPA	GrA	Alternative DPA
It finds all optimal sched- ules for all starting times $t \in[0, d]$ in time	$O(n d)$	$O(n d)$	-
If finds all optimal sched- ules for all starting times $t \in\left(-\infty, t_{n}^{U B}\right]$ in time	$O(n U B)$	$O(n U B)$	-
It finds all optimal sched- ules for all starting times $t \in(-\infty,+\infty)$ in time	$O\left(n F\left(\pi^{\prime}, d\right)\right)$	$O\left(n F\left(\pi^{\prime}, d\right)\right)$	-
The running time of the FPTAS is	$\left.O\left(\frac{n^{3}}{\varepsilon} \log \frac{n}{\varepsilon}\right)\right)$	$O\left(n^{3} / \varepsilon\right)^{*}$	$O\left(n^{3} / \varepsilon\right)^{* *}$

* In this time, for all $t \in\left(-\infty, t_{n}^{U B}\right]$ solutions can be found with an absolute error restricted by $\varepsilon L B$. For all $t \in\left[t_{n}^{L B}, t_{n}^{U B}\right], t_{n}^{L B} \leq 0 \leq t_{n}^{U B}$, solutions can be found with a relative error restricted by ε.
** An approximate solution is only found for the starting time $t=0$.

Graphical Algorithms and the corresponding FPTAS

Problem	Time complexity of GrA	Time complex- ity of FPTAS	Time complex- ity of classical DPA	
$1 \\| \sum w_{j} U_{j}$	$O\left(\min \left\{2^{n}, n \cdot \min \left\{d_{\max }, F_{o p t}\right\}\right\}\right)[5]$	-	$O\left(n d_{\max }\right)$	
$1\left\|d_{j}=d_{j}^{\prime}+A\right\| \sum U_{j}$	$O\left(n^{2}\right)[5]$	-	$O\left(n \sum p_{j}\right)$	
$1 \\| \sum G T_{j}$	$O\left(\min \left\{2^{n}, n \cdot\left\{d_{\max }, n F^{*}\right\}\right\}\right)$	$O\left(n^{2} \log \log n+\right.$ $\frac{n^{2}}{\varepsilon}$	$O\left(n d_{\max }\right)$	
$1 \\| \sum T_{j}$ special case $B-1$	$O\left(\min \left\{2^{n}, n \cdot \min \left\{d_{\max }, F^{*}\right\}\right\}\right)$	$O\left(n^{2} / \varepsilon\right)$	$O\left(n d_{\max }\right)$	
$1 \\| \sum T_{j}$ special case $B-1 G$	$O\left(\min \left\{n^{2} \cdot \min \left\{d_{\max }, F^{*}\right\}\right\}\right)$	$O\left(n^{3} / \varepsilon\right)$	$O\left(n^{2} d_{\max }\right)$	
$1\left\|d_{j}=d\right\| \sum w_{j} T_{j}$	$O\left(\min \left\{n^{2} \cdot \min \left\{d, F^{*}\right\}\right\}\right)$	$O\left(n^{3} / \varepsilon\right)$	$O\left(n^{2} d_{\max }\right)$	
$1(n o-$ $i d l e) \\| \max \sum w_{j} T_{j}$	$O\left(\min \left\{2^{n}, n \cdot \min \left\{d_{\max }, n F^{*}, \sum w_{j}\right\}\right\}\right)$ $[5]$	$O\left(n^{2} \log \log n+\right.$ $\left.\frac{n^{2}}{\varepsilon}\right)$	$O\left(n d_{\max }\right)$	
$1(n o-$ $i d l e) \\| \max \sum T_{j}$	$O\left(n^{2}\right)[4]$	-	$O\left(n d_{\max }\right)$	

Section 3

Practical results

Practical results

(3) Practical results

- Education planning
- Cosmonaut training scheduling problem
- Cosmonaut training scheduling problem statement
- Volume planning problem
- Timetabling problem
- Results
- Railway operational and maintenance scheduling
- Railway scheduling problems and existing methods
- Laboratory projects in railway scheduling
- Two-station single track railway scheduling problem
- Dynamic programming approach
- Results for STR2
- Single track railway scheduling problem with a siding
- Dynamic programming approach for STR2S
- Results for STR2S
- Freight car routing
- Locomotive assignment scheduling problem

Education planning

Education planning

1C Software product

1С: Автоматизированное составление расписания. Университет / Колледж / Школа

Education planning

－Schedule construction in manual／automatic／mixed mode．
－ 30 universities， 55 colleges， 160 schools

	День	Интервал	АДФ 1 （50 чел．）	K2 10 （30 чел．）	K2 11 （56 чел．）	K2 23 （30 чел．）	914 к．к．（25 чел．）	C3
앙		08：00－09：35	4200a Нем．язык Свирид	9006 Мат．анализ Петро宜	901а МСФО Иванов И．И．		4200 a Франц．язык Pacn	420
䁁		09：50－11：25	4200a Линейная алгебра	9006 Мат．аналиs Петро	резерв под кафедру			420
		11：40－13：15	4200a Линейная алгебра	9006 Мат．анализ Петро三				420
		14：00－15：35	42016 3D моделирования		реsepe под кафедру			
		15：45－17：20						
	1	17：30－19：05						
울		08：00－09：35	4200a Линейная алгебра			905a Бухгалтерский учет		42 C
		09：50－11：25	4200a Линейная алгебра			905 а Бухгалтерский учет		420
		11：40－13：15	4200a Линейная алгебра	42016 3D моделированиє				
O-		14：00－15：35	4200a Линейная алгебра	42016 3D моделированиб				
こ్ש్ర		15：45－17：20						
	2	17：30－19：05						
		08：00－09：35	4200а Франц．язык Расп	9006 Мат．анализ Петроб	901a МССО Иванов И．И．	905a Бухгаптерский уч	4200а Нем．язык Свирия	900
		09：50－11：25	4200a Макроэкономика A					
		11：40－13：15	4200a Макроэкономика A					
		14：00－15：35			деканат совещание			
		15：45－17：20						
	3	17：30－19：05						
		08：00－09：35		Несколько занятий				900
		09：50－11：25		4200а Макроэкономика		$905 \mathrm{\square}$ Бухгалтерский уче－		900
잉		11：40－13：15				905 а Бухгалтерский учет		
号		14：00－15：35		901а МСФО Иеанов И．И．				
		15：45－17：20						
5	4	17：30－19：05						
		08：00－09：35		$901 \mathrm{\square}$ МСФО Иванов И．И．				
		09：50－11：25						
O		11：40－13：15						
	4			r				

Education planning

The goal

- To construct a feasible schedule that fits in all constraints,
- or an optimal schedule that minimizes the number of
- windows (blank spaces) in a schedule;
- transitions between buildings during a day;
- unfulfilled staff wishes;
- used rooms;

Mathematical problem

- Timetabling (over 1600 papers on similar problems on ScienceDirect.com).
- Problem is NP-hard.
- Fast metaheuristic ant-colony based solution approach was proposed.

Cosmonaut training scheduling problem

Cosmonaut training scheduling problem

Cosmonaut training scheduling problem statement

- Set of on-board systems.
- Sets of cosmonauts and crews.
- Set of resources (equipment, teachers, etc.).
- Dates of starts.

It is necessary to prepare appropriate crews to dates of their starts.

Our goals

- to develop mathematical model
- to find approaches to solve it
- to implement Planner system
- to reduce labor costs
- to form new and reschedule available timetable

Cosmonauts Training Scheduling Problem

Mathematical formulation - RCPSP (Resource-Constrained Project Scheduling Problem).

- Resource constraints.
- Precedence constraints.
- More than 4000 publications are devoted to this problem at scholar.google.ru.
- NP-hard in strong sense, there are no pseudo-polynomial algorithms.

Methods for solving RCPSP

- Dynamic programming.
- Methods of Integer Linear Programming.
- Methods of Constraint Programming.
- Heuristic algorithms.

Volume planning problem

Problem statement

- set of on-board systems (near 140);
- required number of cosmonauts of different skills for each on-board system.

Goal: to distribute training qualifications between cosmonauts, minimizing the difference between the maximum and minimum total time of training of cosmonauts.

Results

- heuristic greedy algorithm;
- branch and bound method (CPLEX).

Initial data

for volume planning problem

	требсмое коминество квалификаций						часы на подготовку					
	Кораб̆ль КI			Корабпь K2			пеопитныий			опитииый		
	C	0	\square	C	0	\square	C	0	II	C	0	II
Срочное покиданне в аварнйных ситуаииях	0	3	0	0	3	0	23	23	22	23	23	22
Система инвенгарного учета	0	0	3	0	1	2	0	17	2	0	9	0
Ииформационно-управтяюшая система	2	0	0	1	0	0	12	12	1	4	4	1
Борговая вычислительнах система	1	0	2	1	0	2	15	11	5,5	2	2	2
Система упровтения бортовым комппексом/ бортовой аппаратурой	1	0	2	1	0	2	28	22	9,5	2	2	2
Система бортовых измерсний	1	0	2	1	0	2	15	13	2	4	4	0
Средства радиосвззи	1	1	1	1	0	2	35	28	11,25	4	4	2
Телевизионная система	1	0	2	1	0	2	11	11	2	4	4	0
Система обеспечения жвнедеятельности	1	1.	1	1	0	2	70	57,25	26	12	12	5
Система знсргоснабжения	1	0	2	1	0	2	20	18	2	8	6	0
Система удравления движением и навигацией	1	1	1	1	1	1	38	17.5	2	8	8	1
Двигатетьныс установки	1	0	0	1	0	0	4	0	0	2	0	0
Оптико-виуалные системы	1	0	0	1	0	0	0	4	0	0	2	0
Kypc	1	0	0	1	0	0	7	7	0	2	2	0
Система стыковки	1	0	2	1	0	2	16	13	4	4	4	2
Конструкциия и компоновка	0	2	1	0	2	1						
Система обеспетения тепиового режима	1.	1	1	1	0	2	43	24	6,5	8	8	2
Фoroamaparypa	0	1	2	0	1	2	0	19	0	0	8	0
Видеоатпаратура, аудиоаппаратура	0	1	2	0	1	2	0	28	0	0	12	0
IPC	1	0	0	1	0	0	22	14	5	11	8	5
Оборудование ддя ВКД (скафандр Орлан, штозовой отсек, инструменты для ВКД)	0	2	0	0	1	0	0	60	8	0	32	8

The experimental results for volume planning problem

№	Опыт	Жадный алгоритм			CPLEX		
		max	min	δ	max	min	δ
1	3 неоп.	889.5	887.0	2.5	888.05	887.75	0.3
	3 оп.	570.5	569	1.5	570	569.5	0.5
	1 оп., 2 неоп.	721.7	694.5	27.2	697.25	695.25	2
	2 оп., 1 неоп.	669.7	598.0	71.7	616.5	612.75	3.75
2	3 неоп.	266.25	265	1.25	265.75	265.2	0.55
	3 оп.	234.2	233	1.2	233.75	233.25	0.5
	1 оп., 2 неоп.	245.5	244.0	1.5	244.45	244	0.45
	2 оп., 1 неоп.	235.0	233.25	1.75	233.75	233.25	0.5
3	3 неоп.	660.2	659.5	0.7	659.85	659.75	0.1
	3 оп.	353.5	353.05	0.45	353.5	353	0.5
	1 оп.,2 неоп.	497.95	493.5	4.45	484.05	481.75	2.3
	2 оп., 1 неоп.	398.05	394.0	4.05	393.5	392.5	1
4	3 неоп.	925.75	924.2	1.55	925	924.8	0.2
	3 оп.	587	586.5	0.5	587	586.5	0.5
	1 оп., 2 неоп.	774.5	694.5	80.0	731.5	730.75	0.75
	2 неоп., 1 оп.	649.2	648.5	0.7	628.75	628	0.75

Measure of unsolvability

Timetabling problem

- Planing horizon is about 3 years.
- Each cosmonaut has an individual learning plan.
- 10 crews are studying simultaneously.
- There are main and backup crews.

	Trıcych opgecn $5 k 77$	Tricyeciekt		tracecaskr	тпксисл PAEABHOCEXO7	tok cocras 	$\left\lvert\, \begin{gathered} \text { rixacrapean } \\ \text { givaz } \end{gathered}\right.$	mecycki she	T1200062 6×37	incoyacenn OMCBEX Sk	тпсудсбла коррцмМ Бка	тексудскал PAEKYDCEKAB	ТПисудСЕлА ADDCEKRE
		maxoles НадД6e31			TК $0 С 8 \cap Л$ Pesperwid5 EKELIO				susp				\$04.po
obea	oosea	¢ea	oben	coen	osea	asea	oreas	Com	osen	oven	ocen	© Sea	06024
			arres	тпкссепа LTPDNPA5 SKElO	ті ссая пншс		*-nes	TTM Ccencermo			Triccosagra		Trw chrchs bexin Extio
									ТПН СУДСЕЛЛ OC5kA8			ens-m	Theorck 6 mot
anso	,	onsp		On-m		antres	manexio	ons-m					TTK CMO T3

		2encs		TПKKKIX K EM2 EKKI	тпккик пз neven 5kis	tracact 	тахсудакл ОСан 6к*5	тпк судакпз HEN2 $6 \mathrm{~K}=5$		тнксуддхпз 				tris xcoxncorcEanti2
		BMZ EMT	$\begin{gathered} \text { TMK ThK } A \text { Ha3H } \\ \text { GKH2 } \end{gathered}$	909.78			таксодалл ррыхбано	avorso			TnK CVCA ACASHO SuI?			
о6en		06en	¢ten	oben	C6en	obea	Ofea	obea	¢6en	Obea	о6en	06en	Ofes	06en
		ТТ世 кИК ПОТС EK2 EKEI	m,	mank 3 Emz		тхкдупнини	\&k+13	твсуддни Н6м2 бке	4nenes			ternes	таксудсел onsmi pax	тннсудсвил ду5 5126003
				тпккихзвум						(Tllicrent				
					overs		antr,m			Sur-po			оия-5	
			тапкк бкнг											

Review of other space agencies systems

NASA - TAMS, FOCAS, STAR

KAREN AU, SAMUEL SANTIAGO, RICHARD PAPASIN, MAY WINDERM, TRISTAN LE. Streamlining Space
Training Mission Operations with Web Technologies. An Approach to Developing Integral Business Applications for Large Organizations // IEEE 4th International Conference on. Space Mission Challenges for Information Technology (SMC-IT), 2011, pp.159-166.

SPAGNULO, M., FLEETER, R., BALDUCCINI, M., NASINI, F. Space Program Management : Methods and Tools // Spagnulo, M., Fleeter, R., Balduccini, M., Nasini, F., Springer-Verlag New York - 2013. - 352 c.

Problem statement

- K - a number of cosmonauts;
- J_{k} - each cosmonaut k has his own set of training tasks;
- p_{j} - execution time of task $j \in J$;
- R - set of resources.

The goal is

to form a training schedule for each cosmonaut

Time intervals

- W - set of planning weeks, where $|W|=156$ weeks (3 years);
- $D_{w}=\{1,2,3,4,5\}$ - set of work days per week, $w \in W$;
- $H_{w d}=\{1, \ldots, 18\}$ - set of half-hour intervals of day $d \in D_{w}$ of week $w \in W$.

$$
Y=\left\{(w, d, h) \mid w \in W, d \in D_{w}, h \in H_{w d}\right\}, \quad|Y| \approx 14040
$$

$t(w, d, h)$ - considering time moment.

Variables

$x_{j w d h}= \begin{cases}1, & \text { iff task } j \text { is started } \\ & \text { from interval } h \text { of day } d \text { of week } w ; \\ 0, & \text { else. }\end{cases}$

Constraints

Precedence relations between the tasks (academic plan)

$$
\begin{gathered}
\sum_{(w, d, h) \in Y} t(w, d, h)\left(x_{j_{2} w d h}-x_{j_{1} w d h}\right) \geq p_{j_{1}}, \\
\forall\left(j_{1}, j_{2}\right) \in \Gamma_{k} .
\end{gathered}
$$

The resource limits (teachers, simulators, trainers)

$$
\begin{gather*}
\sum_{j \in J} r c_{j r} \sum_{\substack{h^{\prime}>0, h-p_{j}+1 \leq h^{\prime} \leq h}} x_{j w d h^{\prime}} \leq r a_{r w d h}, \tag{14}\\
\forall r \in R, \forall(w, d, h) \in Y . \quad|Y| \approx 14040,|R| \approx 100 .
\end{gather*}
$$

Constraints

No more than ... (frequency of classes)

$$
\sum_{j \in J^{F}} \sum_{d \in D_{w}} \sum_{h \in H_{w d}} x_{j w d h} \leq 2, \quad \forall w \in W
$$

Each cosmonaut may have no more than 2 physical trainings per week.

Excluding some time intervals

$$
\begin{gather*}
\sum_{j \in J_{\left[h_{1} ; h_{2}\right]}} \sum_{h_{1}-p_{j}+1 \leq h \leq h_{2}} x_{j w d h}=0, \tag{16}\\
\forall w \in W, \quad \forall d \in D_{w}
\end{gather*}
$$

[$h_{1} ; h_{2}$] - time period when performing task j is forbidden.
It is forbidden to practice in the hyperbaric chamber after lunch.

Comparison of two approaches to solving the scheduling problem for 1 crew

N	CPLEX MIP				CPLEX CP			
	Time, c	Var.	Constr.	Iter.	Time, c	Var.	Constr.	Branch.
1	09.06	26820	37620	21922	0.250	291	2170	1272
2	30.75	52680	60066	54234	0.329	363	2788	1512
3	559.84	73500	87846	5019412	0.438	492	3548	2008
4	375.834	108720	121578	2032790	0.703	606	4263	2784
5	374.63	115200	125466	2022320	0.610	642	4348	2912
7	346.30	144480	157920	820534	0.640	654	4374	2648
10	6657.98	204000	210646	16917014	1.317	852	5738	3448

N is a number of on-board systems.

Results

Results

- Schedule for 1 crew for 1 year 3 moths

Our plans

- Schedule for 2 crew for 2 year

Railway operational and maintenance scheduling

Railway scheduling pioneers

Frank, O., Two-Way Traffic on a Single Line of Railway, Oper. Res., 1966, vol. 14, no. 5, pp. 801-811.

Szpigel, B., Optimal Train Scheduling on a Single Line Railway, Oper. Res., 1973, pp. 344-351.

Relation between railway planning problems and classical scheduling problems

- track segments = «machines»
- trains $=$ «jobs»

Existing approaches and solution methods

1. Considering in terms of job-shop.

Szpigel B. Optimal train scheduling on a single line railway. Oper Res, 344-351, 1973.

Sotskov Y. Shifting bottleneck algorithm for train scheduling in a single-track railway. Proccedings of the 14th IFAC Symposium on Information Control Problems. Part 1. Bucharest/Romania. 87-92. 2012.

Gafarov E.R., Dolgui A., Lazarev A.A. Two-Station Single-Track Railway Scheduling Problem With Trains of Equal Speed. Computers and Industrial Engineering. 85:260-267. 2015.

Harbering J., Ranade A., Schmidt M. Single Track Train Scheduling. Institute of Numerical and Applied Mathematics. preprint. 18. 2015.

Existing approaches and solution methods

2. Integer linear programming

Brannlund U., Lindberg P.O, Nou A. and Nilsson J.E.
Railway Timetabling Using Lagrangian Relaxation.
Transportation Science 32(4):358-369. 1998.

Lazarev, A.A. and Musatova, E.G.
Integer Formulations of the Problem of Railway Train Formation and Timetabling, Upravlen. Bol'shimi Sist., 2012, no. 38, pp. 161-169.

Exicting approaches and solution methods

3. Heuristics

Sotskov Y.
Shifting bottleneck algorithm for train scheduling in a single-track railway. Proccedings of the 14th IFAC Symposium on Information Control Problems. Part 1. Bucharest/Romania. 87-92. 2012.

Mu S., Maged D.
Scheduling freight trains traveling on complex networks.
Transportation Research Part B: Methodological. 45(7):1103-1123. 2011.

Carey M., and Lockwood D.
A model, algorithms and strategy for train pathing.
The Journal of Operational Research Society. 8(46):988-1005. 1995.

Exicting approaches and solution methods

Allocation of polynomially solvable cases of railway scheduling problems
Gafarov E.R., Dolgui A., Lazarev A.A.
Two-Station Single-Track Railway Scheduling Problem With Trains of Equal Speed.
Computers and Industrial Engineering. 85:260-267. 2015.

Harbering J., Ranade A., Schmidt M.
Single Track Train Scheduling.
Institute of Numerical and Applied Mathematics. preprint. 18. 2015.

Disser Y., Klimm M., Lubbecke E.
Scheduling Bidirectional Traffic on a Path.
In Proceedings of the 42nd International Colloquium on Automata, Languages, and Programming (ICALP). 406-418. 2015.

Laboratory projects in railway scheduling

Small-scale problems

- Scheduling problem on single railway tracks.
- Goal - the development of exact polynomially solvable algorithms with small computational complexity.
- Solution approach - dynamical programming.

Large-scale problems

- The freight car routing problem.
- Goal - the construction of operational plan with feasible solution time.
- Solution approach - integer linear programming, LP-relaxation, column generation.

Two-station single track railway scheduling problem

$$
\text { St. } 1
$$

p

Initial data

- $\left|N_{1}\right|=n,\left|N_{2}\right|=n^{\prime}, N=N_{1} \cup N_{2},|N|=n+n^{\prime}$.
- All trains have equal speed, track traversing time - p.
- Minimal time between the departure of two trains from one station - β.
- The transportation starts at time $t=0$.

Denote the problem as STR2 (Single Track Railway Scheduling Problem).

Problem formulation

Schedule

In schedule σ, for each train $i \in N$

- $S_{i}(\sigma)$ - it's departure time;
- $C_{i}(\sigma)$ - arrival time, $C_{i}(\sigma)=S_{i}(\sigma)+p$.

Objective function

- Family of objective functions.
- The approach will be demonstrated on the maximum lateness objective function $L_{\max }(\sigma)$,

$$
L_{\max }(\sigma)=\max _{i \in N} L_{i}=\max _{i \in N}\left\{C_{i}(\sigma)-d_{i}\right\}
$$

Dynamic programming approach

Assumption

We will consider schedule schedule σ which possess the following property: for any point in time t such that $0 \leq t \leq C_{\max }(\sigma)$ there exists at least one train $i \in N$ satisfying the condition $S_{i}(\sigma) \leq t \leq C_{i}(\sigma)$.

Dynamic programming approach

Assumption

Train departure order is specified.

Maximum lateness $L_{\text {max }}$

For objective function $L_{\max }(\sigma)=\max _{i \in N}\left\{C_{i}(\sigma)-d_{i}\right\}$ there exists an optimal schedule σ in which trains depart from each station in a nondecreasing order of due dates d_{i}.

Numbering of trains

On each station trains are numbered in the decreasing order of their departure times, $i>j$ implies that, in any schedule $\sigma, S_{i}(\sigma)<S_{j}(\sigma)$.

Dynamic programming approach

Subproblem $\mathbf{P}\left(\boldsymbol{k}_{\mathbf{1}}, \boldsymbol{k}_{\mathbf{2}}\right.$, ,'s);

set of unsent trains
on station 1 ,
$k_{1} \in\{0,1,2, \ldots, n\} \in N_{1}$

set of unsent trains on station 2,

$$
k_{2} \in\left\{0,1,2, \ldots, n^{\prime}\right\} \in N_{2}
$$

Optimal value of the objective function for $P\left(k_{1}, k_{2}^{\prime}, s\right)$

$$
f\left(k_{1}, k_{2}^{\prime}, s\right)=F\left(\sigma^{*}\right)
$$

where σ^{*} is an optimal schedule for $P\left(k_{1}, k_{2}^{\prime}, s\right)$.

Solution algorithm

Station 2
Siding

Station 1

Solution algorithm

$$
f\left(k_{1}, k_{2}^{\prime}, 2\right)+\beta
$$

Station 1

Dynamic programming approach

$$
f\left(k_{1}, k_{2}^{\prime}+1,2\right)=\max \left\{\begin{array}{l}
p-d_{k_{2}^{\prime}+1} ; \\
\min \left\{\begin{array}{l}
f\left(k_{1}, k_{2}^{\prime}, 1\right)+p ; \\
f\left(k_{1}, k_{2}^{\prime}, 2\right)+\beta ;
\end{array}\right.
\end{array}\right.
$$

for each $k_{2}^{\prime} \in\left\{1^{\prime}, \ldots, n^{\prime}-1^{\prime}\right\}, k_{1} \neq 0$.

Dynamic programming approach

Setting

$$
\begin{aligned}
& f\left(1,0^{\prime}, 1\right)=p-d_{1} \\
& f\left(0,1^{\prime}, 2\right)=p-d_{1^{\prime}}
\end{aligned}
$$

Bellman equation

$$
\begin{aligned}
& f\left(k_{1}+1, k_{2}^{\prime}, 1\right)=\max \left\{\begin{array}{l}
p-d_{k_{1}+1} ; \\
\min \left\{\begin{array}{l}
f\left(k_{1}, k_{2}^{\prime}, 1\right)+\beta ; \\
f\left(k_{1}, k_{2}^{\prime}, 2\right)+p .
\end{array}\right. \\
f\left(k_{1}, k_{2}^{\prime}+1,2\right)=\max \left\{\begin{array}{l}
p-d_{k_{2}^{\prime}+1} ; \\
\min \left\{\begin{array}{l}
f\left(k_{1}, k_{2}^{\prime}, 1\right)+p ; \\
f\left(k_{1}, k_{2}^{\prime}, 2\right)+\beta .
\end{array}\right.
\end{array} k_{2}^{\prime} \in\left\{1^{\prime}, \ldots, n^{\prime}-1^{\prime}\right\}, k_{1} \neq 0\right.
\end{array}\right.
\end{aligned}
$$

Dynamic programming approach

Optimal objective function value of the original problem

$$
\min \left\{f\left(n, n^{\prime}, 1\right), f\left(n, n^{\prime}, 2\right)\right\}
$$

Computational complexity

$$
O\left(\left(n+n^{\prime}\right)^{2}\right)
$$

Value of $f\left(k_{1}, k_{2}^{\prime}, s\right)$ is computed for:

- each pair of $\left.k_{1}, k_{1} \in\{1, \ldots, n\}\right)$, and $k_{2}^{\prime}, k_{2} \in\left\{1, \ldots, n^{\prime}\right\}$.

Dynamic programming approach

Other objective functions

This solution procedure can applied to a set of objective functions, for example for

$$
\sum w_{i} C_{i}(\sigma)=\sum_{i \in N} w_{i} C_{i}(\sigma)
$$

Condition

- "Shifted" schedule σ_{t} of schedule $\sigma, C_{i}(\sigma)-C_{i}\left(\sigma_{t}\right)=t$ for all $i \in N$.
- There exists $G\left(k_{1}, k_{2}^{\prime}, s\right)$ so that $F\left(\sigma_{t}\right)=F(\sigma)+G\left(k_{1}, k_{2}^{\prime}, t\right)$.
- for $L_{\text {max }}: G\left(k_{1}, k_{2}^{\prime}, t\right)=t$;
- for $\sum w_{i} C_{i}(\sigma): G\left(k_{1}, k_{2}^{\prime}, t\right)=\sum_{i=1}^{k_{1}} w_{i} t+\sum_{j=1}^{k_{2}^{\prime}} w_{j} t$.

Dynamic programming approach

General form of objective functions

$$
\bigodot_{i \in N} \varphi_{i}\left(C_{i}(\sigma)\right)
$$

where

- $\varphi_{i}(\cdot)$ - nondecreasing function, defined for each train $i \in N$,
- \odot - some commutative and associative operation such,
- for any numbers $a_{1}, a_{2}, b_{1}, b_{2}, \odot$ satisfy $a_{1} \leq a_{2}$ and $b_{1} \leq b_{2}$,

$$
a_{1} \odot b_{1} \leq a_{2} \odot b_{2} .
$$

Dynamic programming approach

Solution procedure

$$
\operatorname{STR} 2 \| \bigodot_{i \in N} \varphi_{i}\left(C_{i}(\sigma)\right)
$$

- Specified train departure order on each station.
- Polynomial set of possible departure times $T,|T|=O\left(\left(n+n^{\prime}\right)^{2}\right)$.
- Subproblem: $P\left(k_{1}, k_{2}^{\prime}, s, t\right), f\left(k_{1}, k_{2}^{\prime}, s, t\right)$ is calculated for
- each pair of $k_{1}, k_{1} \in\{1, \ldots, n\}$;
- each pair of $k_{2}^{\prime}, k_{2} \in\left\{1, \ldots, n^{\prime}\right\}$;
- all $t \in T$.

Computational complexity $-O\left(\left(n+n^{\prime}\right)^{4}\right)$.

Dynamic programming approach

Minimization of maximum cost functions

$$
F_{\max }(\sigma)=\max _{i \in N} \varphi_{i}\left(C_{i}(\sigma)\right)
$$

- No specified order of train departure on each station.

Iterative optimization procedure

dynamic programming algorithm for STR2|| $L_{\text {max }}$ general optimisation scheme, presented by Zinder and Shkurba ${ }^{1}$
${ }^{1}$ Zinder, Y. and Shkurba, V. Effective iterative algorithms in scheduling theory. Cybernetics, 21(1), 86-90. 1985.

Dynamic programming approach

Iterative optimisation procedure

```
Algorithm 1 Solution method for the train scheduling
problem \(S T R 2 \| F_{\text {max }}\)
    1: \(V:=\max _{i \in N} \varphi_{i}(p)\) (lower bound)
```

```
    if \(i:=1\) to \(n+n\) do Due date setting
```

 if \(i:=1\) to \(n+n\) do Due date setting
 if \(\varphi_{i}\left(\tau_{r}\right) \leq V\) then
 if \(\varphi_{i}\left(\tau_{r}\right) \leq V\) then
 \(d_{i}:=\tau_{r}\)
 \(d_{i}:=\tau_{r}\)
 else
 else
 choose \(\tau_{k}\) so that \(\varphi_{i}\left(\tau_{k}\right) \leq V<\varphi_{i}\left(\tau_{k+1}\right)\)
 choose \(\tau_{k}\) so that \(\varphi_{i}\left(\tau_{k}\right) \leq V<\varphi_{i}\left(\tau_{k+1}\right)\)
 \(d_{i}:=\tau_{k}\)
 \(d_{i}:=\tau_{k}\)
 end if
 end if
 end for
 end for
 10: construct schedule σ by solving $S T R 2 \| L_{\max }$
11: $L:=L_{\max }(\sigma)$
12: if $L>0$ then Lower bound checking
13: $\quad V:=\min _{i \in\left\{j: j \in N,\left(d_{j}+L\right) \in T^{\prime}\right\}} \varphi_{i}\left(d_{i}+L\right)$ (lower bound)
14: go to 2
15: else
16: return σ is an optimal value
17: end if

```

Computational complexity

\section*{Results for STR2}

\section*{Dynamic programming procedure for a set of objective functions}
\[
F(\sigma)=\bigodot_{i \in N} \varphi_{i}\left(C_{i}(\sigma)\right)
\]

Computational complexity is \(O\left(\left(n+n^{\prime}\right)^{4}\right)\), can be reduced for a subset of objective functions - \(O\left(\left(n+n^{\prime}\right)^{2}\right)\).

\section*{Iterative optimisation procedure for maximum cost functions}
\[
F_{\max }(\sigma)=\max _{i \in N} \varphi_{i}\left(C_{i}(\sigma)\right)
\]

Computational complexity is \(O\left(\left(n+n^{\prime}\right)^{5} \log \left(n+n^{\prime}\right)\right)\).

\section*{Results for STR2}

\section*{Solution algorithm complexity}
\begin{tabular}{|c|c|}
\hline Problem & Complexity \\
\hline \(\operatorname{STR} 2\left|\mid L_{\max }\right.\) & \(O\left(n^{2}\right)\) \\
\(\operatorname{STR} 2\left|\mid \sum_{j} w_{j} C_{j}\right.\) & \(O\left(n^{2}\right)\) \\
\(\operatorname{STR2}\left|\mid \max _{j \in N} \varphi_{j}\left(C_{j}(\sigma)\right)\right.\) & \(O\left(n^{5} \log n\right)\) \\
\(\operatorname{STR} 2|p(j), \lambda| L_{\max }\) & \(O\left(n^{\lambda}\right)\) \\
\(\operatorname{STR2}|p(j), \lambda| \sum_{j} w_{j} C_{j}\) & \(O\left(n^{\lambda}\right)\) \\
\(\operatorname{STR} 2|p(j), \lambda| \sum_{j} U_{j}(\sigma)\) & \(O\left(n^{2 \lambda}\right)\) \\
\(\operatorname{STR} 2|p(j), \lambda| \bigodot_{j} \varphi\left(C_{j}\right)\) & \(O\left(n^{\alpha^{2}+\alpha} n^{\lambda}\right)\) \\
\(\operatorname{STR2|p(j),\lambda ,V|\operatorname {max}_{j\in N}\varphi _{j}(C_{j}(\sigma ))}\) & \(O\left(q^{2} \log q n^{2 \alpha^{2}+2 \alpha+1} n^{\lambda} \log n\right)\) \\
\hline
\end{tabular}
\(\lambda\) - the number of subsets with possible fixed departure order \(p(j)\) - different train traversing times \(V\) - feasible intervals of movement

\section*{Single track railway scheduling problem with a siding}

What is the siding?


Main track

Additional track

\section*{Single track railway scheduling problem with a siding}


\section*{Initial data}
- One siding, capacity is one train.
- \(\left|N_{1}\right|=n_{1},\left|N_{2}\right|=n_{2}\), all trains have equal speed.
- Traversing times: \(p_{1}, p_{2}, p_{1} \geq p_{2}\).
- For each train \(i\) from station \(s, i \in N_{s}, s \in\{1,2\}\), due date \(d_{s}^{i}\) and cost coefficient \(w_{s}^{i}\) are given;
- Release times: \(r_{s}^{i}=0, i \in N_{s}, s \in\{1,2\}\).

Denote the problem as STR2S (STR2 with a siding).

\section*{Single track railway scheduling problem with a siding}

\section*{Schedule}

We need to construct optimal schedule \(\sigma\), i.e. to set for each train number \(i\) moving from station \(s, i \in N_{s}, s \in\{1,2\}\), it's departure time \(S_{s}^{i}(\sigma)\), stop time in the siding \(\tau_{s}^{i}(\sigma)\) and arrival time \(C_{s}^{i}(\sigma)\).

\section*{Objective function}

Minimizing maximum lateness
\[
L_{\max }=\max _{i \in N_{s}, s \in\{1,2\}}\left\{L_{s}^{i}\right\},
\]
where
\[
L_{s}^{i}=C_{s}^{i}-d_{s}^{i},
\]
and weighted sum of arrival moments
\[
\sum w_{j} C_{j}=\sum_{i \in N_{s}, s \in\{1,2\}} w_{s}^{i} C_{s}^{i} .
\]

\section*{Schedule properties for presented model}

\section*{Express}

Express is the train \(i\) moving from station \(s, i \in N_{s}, s \in\{1,2\}\), if it doesn't stop in the siding, i.e. \(\tau_{s}^{i}=0\).


\section*{Schedule properties for presented model}


Station 2
Siding

\section*{Station 1}


\section*{Schedule properties for presented model}


Station
Siding

\section*{Station 1}


\section*{States}

1) Batch moving from station 1 with empty siding.

\section*{States}

2) Batch moving from station 2 with empty siding.

\section*{States}

3) Batch moving from station 1 with occupied siding.

\section*{States}

4) Batch moving from station 2 with occupied siding.

\section*{States}

\section*{Express state \((\boldsymbol{s}, \boldsymbol{b})\)}
express departure station,
\[
s \in\{1,2\}
\]

\section*{States}

Express state \((\boldsymbol{s}, \boldsymbol{b})\)
express departure station,
\[
s \in\{1,2\}
\]
«0»


\section*{States}

Express state \((\boldsymbol{s}, \boldsymbol{b})\)
express departure station, \(s \in\{1,2\}\)


\section*{States}

Express state \((\boldsymbol{s}, \boldsymbol{b})\)


\section*{States}

Express state \((\boldsymbol{s}, \boldsymbol{b})\)


\section*{Regular schedule and expresses states sequences}

\section*{Theorem 1.}

For each regular schedule there exists one and only one sequence of expresses states.

\[
(2,1)(2,1)(2,2)(1,1)(1,1)(1,1)(1,2)(2,0)
\]

\section*{States}


\section*{States}

\((2,2)(1,0)(2,0)\)

\section*{Solution algorithm}

\section*{}
number of unsent trains on station \(1, k_{1} \in\left\{0,1,2, \ldots, n_{1}\right\}\)
additional condition:
state of the first express, \(s \in\{1,2\}, b \in\{0,1,2\}\)
number of unsent trains on
station \(2, k_{2} \in\left\{0,1,2, \ldots, n_{2}\right\}\)
Number of different subproblems - \(O\left(n^{2}\right)\)

\section*{Solution algorithm}


\section*{Solution algorithm}

\section*{Initial values}
\[
\begin{gathered}
F(1,0,1,0))=p_{1}+p_{2}-d_{1}^{1} ; \\
F(0,1,2,0))=p_{1}+p_{2}-d_{2}^{1} ; \\
F(1,1,1,2)=\max \left\{\begin{array}{l}
2 p_{1}-d_{2}^{1} ; \\
p_{2}+p_{1}-d_{1}^{1} ;
\end{array}\right. \\
F(1,1,2,2)=\max \left\{\begin{array}{l}
2 p_{2}-d_{1}^{1} ; \\
p_{2}+p_{1}-d_{2}^{1} .
\end{array}\right.
\end{gathered}
\]

Exclusion of impossible subtasks
- \(F\left(0, k_{2}, 1,0\right)=\infty\);
- \(F\left(k_{1}, 0,2,0\right)=\infty\);
- \(F\left(k_{1}, k_{2}, s, b\right)=\infty\) if \(k_{1}=0\) or \(k_{2}=0\), where \((s, b) \notin\{(1,0),(2,0)\}\).

\section*{Solution algorithm}

\section*{Bellman equation}

Optimal objective function value in the subproblem \(P\left(k_{1}, k_{2}, s, b\right)\)
\(F\left(k_{1}, k_{2}, s, b\right)=\min _{\left(k_{1}^{\prime}, k_{2}^{\prime}, s^{\prime}, b^{\prime}\right) \in T\left(k_{1}, k_{2}, s, b\right)} \max \left\{\begin{array}{l}H\left(k_{1}, k_{2}, s, b\right) ; \\ F\left(k_{1}^{\prime}, k_{2}^{\prime}, s^{\prime}, b^{\prime}\right)+g\left((s, b),\left(s^{\prime}, b^{\prime}\right)\right.\end{array}\right.\)
Objective function value of express in state \((s, b)\) and skipping train
\[
H\left(k_{1}, k_{2}, s, b\right)= \begin{cases}\max \left\{p_{1}+p_{2}-d_{s}^{k_{s}} ; 2 p_{s}-d_{s}^{k_{s}}\right\}, & \text { if } b=2 \\ p_{1}+p_{2}-d_{s}^{k_{s}} & \text { otherwise }\end{cases}
\]

\section*{Results for STR2S}

\section*{Results for STR2S}
- Exact solution algorithm based on the dynamical programming method was proposed for the described problem.
- Presented algorithm allows to construct set of optimal schedules in \(O\left(n^{2}\right)\) operations.

\section*{Algorithm for \(\sum w_{j} C_{j}\)}

For objective function \(\sum w_{j} C_{j}\) algorithm is the same, some operations and variables changes.

\section*{The freight car routing problem: overview}

initial car distribution
transportation demands

\section*{Specificity of freight rail transportation in Russia}

The state company
- Freight car blocking
- Freight train scheduling
- Locomotives management

\section*{Independent freight car} management companies

- Personnel management

Distances are large, and average freight train speed is low ( \(\approx 300 \mathrm{~km} /\) day \()\) : discretization in periods of 1 day is reasonable

\section*{The freight car routing problem: input and output}

\section*{Input}
- Railroad network (stations)
- Initial locations of cars (sources)
- Transportation demands and associated profits
- Costs: transfer costs and standing (waiting) daily rates;

\section*{Output: operational plan}
- A set of accepted demands and their execution dates
- Empty and loaded cars movements to meet the demands (car routing)

\section*{Objective}

\section*{Maximize the total net profit}

\section*{Similar works in the literature}

\section*{[Fukasawa, Poggi, Porto, Uchoa, ATMOS02]}
- Train schedule is known
- Cars should be assigned to trains to be transported
- Discretization by the moments of arrival and departure of trains.
- Smaller time horizon (7 days)

\section*{Other works}
- [Holmberg, Joborn, Lundren, TS98]
- [Löbel, MS98]
- [Campetella, Lulli, Pietropaoli, Ricciardi, ATMOS06]
- [Caprara, Malaguti, Toth, TS11]

\section*{Data: overview}
- \(T\) - planning horizon (set of time periods);
- I - set of stations;
- C - set of car types;
- K - set of product types;
- \(Q\) - set of demands;
- \(S\) - set of sources (initial car locations);
- \(M\) - empty transfer cost function;
- \(D\) - empty transfer duration function;

\section*{Demands data}

\section*{For each order \(q \in Q\)}
- origin and destination stations;
- product type
- set of car types, which can be used for this demand \(-C_{q} \subseteq C\)
- maximum (minimum) number of cars, needed to fulfill (partially) the demand \(-n_{q}^{\max }\left(n_{q}^{\min }\right)\)
- time window for starting the transportation
- profit vector (for delivery of one car with the product), depends on the period on which the transportation is started
- transportation time of the demand
- daily standing rates charged for one car waiting before loading (after unloading) the product at origin (destination) station

\section*{Sources and car types data}

\section*{For each source \(s \in S\)}
- station where cars are located
- type of cars
- period, starting from which cars can be used
- daily standing rate charged for cars
- type of the latest delivered product
- number of cars in the source \(-\vec{n}_{s} \in \mathbb{N}\)

\section*{For each car type \(c \in C\)}
- \(Q_{c}\) - set of demands, which a car of type \(c\) can fulfill
- \(S_{c}\) - set of sources for car type \(c\)

\section*{Commodity graph}

Commodity \(c \in C\) represents the flow (movements) of cars of type \(c\).

\section*{Graph \(G_{c}=\left(V_{c}, A_{c}\right)\) for commodity \(c \in C\) :}
station 3
station 2
station 1

....... waiting arc
- empty transfer arc
\(\longrightarrow\) loaded transfer arc

Each vertex \(v \in V_{c}\) represent location of cars of type \(c\) on a certain station at a certain time standing at a certain rate
\(g_{a}-\) cost of arc \(a \in A_{c}\)

\section*{Multi-commodity flow formulation}

\section*{Variables}
- \(x_{a} \in \mathbb{Z}_{+}\)- flow size along arc \(a \in A_{c}, c \in C\)
- \(y_{q} \in\{0,1\}\) - demand \(q \in Q\) is accepted or not
\[
\begin{aligned}
\min \sum_{c \in C} \sum_{a \in A_{c}} g_{a} x_{a} & \\
\sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \leq n_{q}^{\max } y_{q} & \forall q \in Q \\
\sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \geq n_{q}^{\min } y_{q} & \forall q \in Q \\
\sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a} & =\vec{n}_{v} \\
x_{a} & \in \mathbb{Z}_{+} \\
y_{q} & \in\{0,1\}
\end{aligned} \quad \forall c \in C, v \in V_{c}, \forall q \in Q, a \in V_{c} .
\]

We concentrate on solving its LP-relaxation

\section*{Multi-commodity flow formulation}

\section*{Variables}
- \(x_{a} \in \mathbb{Z}_{+}\)- flow size along arc \(a \in A_{c}, c \in C\)
- \(y_{q} \in\{0,1\}\) - demand \(q \in Q\) is accepted or not
\[
\begin{aligned}
\min \sum_{c \in C} \sum_{a \in A_{c}} g_{a} x_{a} & \\
\sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \leq n_{q}^{\max } y_{q} & \forall q \in Q \\
\sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \geq n_{q}^{\min } y_{q} & \forall q \in Q \\
\sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a} & =\vec{n}_{v} \\
x_{a} & \in \mathbb{Z}_{+} \\
y_{q} & \in\{0,1\}
\end{aligned} \quad \forall c \in C, v \in V_{c}, \forall q \in Q, a \in V_{c} .
\]

We concentrate on solving its LP-relaxation

\section*{Multi-commodity flow formulation}

\section*{Variables}
- \(x_{a} \in \mathbb{Z}_{+}\)- flow size along arc \(a \in A_{c}, c \in C\)
- \(y_{q} \in\{0,1\}\) - demand \(q \in Q\) is accepted or not
\[
\begin{array}{cl}
\min \sum_{c \in C} \sum_{a \in A_{c}} g_{a} x_{a} & \\
\sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \leq n_{q}^{\max } y_{q} & \forall q \in Q \\
\sum_{c \in C_{q}} \sum_{a \in A_{c q}} x_{a} \geq n_{q}^{\min } y_{q} & \forall q \in Q \\
\sum_{a \in \delta^{-}(v)} x_{a}-\sum_{a \in \delta^{+}(v)} x_{a}=\vec{n}_{v} & \forall c \in C, v \in V_{c} \\
0 \leq x_{a} & \forall c \in C, a \in V_{c} \\
0 \leq y_{q} \leq 1 & \forall q \in Q
\end{array}
\]

We concentrate on solving its LP-relaxation

\section*{Path reformulation}
- \(P_{s}\) - set of paths (car routes) from source \(s \in S\)

\section*{Variables}
- \(\lambda_{s} \in \mathbb{Z}_{+}\)- flow size along path \(p \in P_{s}, s \in S\)
\[
\begin{aligned}
& \min \sum_{c \in C} \sum_{s \in S_{c}} \sum_{p \in P_{s}} g_{p}^{p a t h} \lambda_{p} \\
& \sum_{c \in C_{q}} \sum_{s \in S_{c}} \sum_{p \in P_{s}:} \lambda_{a \in Q_{p}^{\text {path }}} \leq n_{q}^{\max } y_{q} \quad \forall q \in Q
\end{aligned}
\]
\[
\sum_{c \in C_{q}} \sum_{s \in S_{c}} \sum_{p \in P_{s}:} \lambda_{a} \geq n_{q}^{\min } y_{q} \quad \forall q \in Q
\]
\[
\sum_{p \in P_{s}} \lambda_{p}=\vec{n}_{s} \quad \forall c \in C, s \in S_{c}
\]
\[
\lambda_{p} \in \mathbb{Z}_{+} \quad \forall c \in C, s \in S_{c}, p \in P_{s}
\]
\[
y_{q} \in\{0,1\} \quad \forall q \in Q
\]

\section*{Column generation for path reformulation}
- Pricing problem decomposes to shortest path problems, one for each source
- slow: number of sources are thousands
- To accelerate, for each commodity \(c \in C\), we search for a shortest path in-tree to the terminal vertex from all sources in \(S_{c}\)
- drawback: some demands are severely "overcovered", bad convergence
- We developed iterative procedure which removes covered demands and cars assigned to them, and the repeats search for a shortest path in-tree

\section*{Flow enumeration reformulation}
- \(F_{c}\) - set of fixed flows for commodity \(c \in C\)

\section*{Variables}
- \(\omega_{f} \in\{0,1\}\) - commodity \(c\) is routed accordity to flow \(f \in F_{c}\) or not
\[
\begin{aligned}
\min \sum_{c \in C} \sum_{f \in F_{s}} g_{f}^{f l o w} \omega_{f} & \\
\sum_{c \in C_{q}} \sum_{f \in F_{c}} \sum_{a \in A_{c q}} f_{a} \omega_{f} \leq n_{q}^{\max } y_{q} & \forall q \in Q \\
\sum_{c \in C_{q}} \sum_{f \in F_{c}} \sum_{a \in A_{c q}} f_{a} \omega_{f} \geq n_{q}^{\min } y_{q} & \forall q \in Q \\
\sum_{f \in F_{c}} \omega_{f}=1 & \forall c \in C \\
\omega_{p} \in\{0,1\} & \forall c \in C, f \in F_{c} \\
y_{q} \in\{0,1\} & \forall q \in Q
\end{aligned}
\]

\section*{Approach CGEF}
- Pricing problem decomposes to minimum cost flow problems, one for each commodity
- slow: very bad convergence
- "Column generation for extended formulations" (CGEF) approach: we disaggregate the pricing problem solution to arc flow variables, which are added to the master.
- The master then becomes the multi-commodity flow formulation with restricter number of arc flow variables, i.e. "improving" variables are generated dynamically

\section*{Proposition}

If an arc flow variable \(x\) has a negative reduced cost, there exists a negative reduced cost pricing problem solution in which \(x>0\). (consequence of the theorem by S. and Vanderbeck)

\section*{Tested approaches}
- Direct: solution of the multi-commodity flow formulation by the Clp LP solver
- Problem specific solver source code modifications
- Problem specific preprocessing is applied (not public)
- Tested inside the company
- ColGEn: solution of the path reformulation by column generation (BaPCod library and Cplex LP solver)
- Initialization of the master by "doing nothing" routes
- Stabilization by dual prices smoothing
- Restricted master clean-up
- ColGenEF: "dynamic" solution of multi-commodity flow formulation by the CGEF approach (BaPCod library, Lemon min-cost flow solver and Cplex LP solver)
- Initialization of the master by all waiting arcs
- Only trivial preprocessing is applied

\section*{First test set of real-life instances}
\begin{tabular}{lrrr} 
Instance name & x3 & x3double & 5 k 0711 q \\
\hline Number of stations & 371 & 371 & \(1^{\prime} 900\) \\
Number of demands & \(1^{\prime} 684\) & \(3^{\prime} 368\) & \(7^{\prime} 424\) \\
Number of car types & 17 & 17 & 1 \\
Number of cars & \(1^{\prime} 013\) & \(1^{\prime} 013\) & \(15^{\prime} 008\) \\
Number of sources & 791 & 791 & \(11^{\prime} 215\) \\
Time horizon, days & 37 & 74 & 35 \\
\hline Number of vertices, thousands & 62 & 152 & 22 \\
Number of arcs, thousands & 794 & \(2{ }^{\prime} 846\) & \(1^{\prime} 843\) \\
\hline Solution time for DIRECT & 20 s & 1 h 34 m & 55 s \\
Solution time for COLGEN & 22 s & 7 m 53 s & 8 m 59 s \\
Solution time for COLGENEF & 3 m 55 s & \(>2 \mathrm{~h}\) & 43 s
\end{tabular}

\section*{Real-life instances with larger planning horizon}

1'025 stations, up to 6'800 demands, 11 car types, 12 ' 651 cars, and 8'232 sources.
Up to \(\approx 300\) thousands nodes and 10 millions arcs.

\begin{tabular}{rrr} 
Horizon & Direct & ColGenEF \\
\hline 80 & 5 m 24 s & 1 m 52 s \\
90 & 7 m 05 s & 1 m 47 s \\
100 & 9 m 42 s & 2 m 19 s \\
110 & 13 m 38 s & 3 m 11 s \\
120 & 17 m 19 s & 3 m 57 s \\
130 & 25 m 52 s & 5 m 03 s \\
140 & 35 m 08 s & 5 m 25 s \\
150 & 44 m 58 s & 7 m 02 s \\
160 & 57 m 11 s & 8 m 19 s \\
170 & 1 h 13 m 58 s & 10 m 53 s \\
180 & \(1 h 26 \mathrm{~m} 46 \mathrm{~s}\) & 12 m 16 s
\end{tabular}

Convergence of ColGenEF in less than 15 iterations.
About 3\% of arc flow variables at the last iteration.

\section*{Conclusions}
- Three approaches tested for a freight car routing problem on real-life instances
- Approach ColGen is the best for instances with small number of sources
- Problem-specific preprocessing is important: good results for DIRECT
- Approach ColGenEF is the best for large instances
- Combination of ColGenEF and problem-specific preprocessing would allow to increase discretization and improve solutions quality

\section*{Problems of the marshalling yard}

Three problems of the marshalling yard:
- trains must be disbanded and new ones formed;
- locomotives must undergo maintenance in the PML;
- each train must be assigned by a locomotive.


\section*{PML problem}

You must specify the order of maintenance of locomotives, specifying the start times of service for each locomotive and a service position where the locomotive will be served.


\section*{Done work}

The considered objective functions:
- total idle time;
- total waiting time;
- maximum waiting time;
- makespan.

Obtained results:
- for dynamic programming \(O\left(\left(\sum_{s} n_{s}\right)^{m} n_{1}^{m+1} \ldots n_{s}^{m+1}\right)\) of states must be checked;
- CP model for IBM ILOG CPLEX optimizer is developed. Finding of an approximate solution takes more than 4 hours;
- a heuristic algorithm is developed that gives a solution with the value of the objective function \(20 \%\) more than that of the IBM ILOG CPLEX optimizer;
- the algorithm of local search is applied to the schedule received by heuristic algorithm. The value of the objective function decreased by \(1 \%\).

\section*{Section 4}

\section*{About the author}

\section*{About the author}

\begin{abstract}
Alexander Lazarev - the specialist in scheduling theory, optimization and discrete mathematics, author of more then 200 publications on scheduling problems, applications and combinatorial optimization, including three monographs. The Head of the laboratory of scheduling theory and discrete optimization in V. A. Trapeznikov Institute of Control Sciences of Russian Academy of Sciences, doctor of physical and mathematical sciences, professor (Lomonosov Moscow State University and Institute of Physics and Technology State University).
\end{abstract}
- 211 publications, h-index in Scopus 7, in WoS 25, 47 citations.
- Directed four PhD and one doctor of physical and mathematical sciences.
- Dissertation board ICS RAS D002 member.
- «Operational research» department editor in abstract journal «Mathematics» VINITI.
- Editorial board member of journals «Automation and remote control», «Control sciences» and «Large-scale Systems Control».```

