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Gantt chart and assembly line
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Gantt chart

Henry Laurence Gantt (1861-1919), American me-
chanical engineer and management consultant who
is best known for his work in the development of sci-
entific management. In the 1903 he introduced a
graphical method of project schedule representation
known as the Gantt chart (Gantt diagram).

"A graphical daily balance in manufacture" (1903)
"Organizing for Work" (1919)
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Gantt chart
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Gantt chart
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Modern Gantt chart for production lines
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The history of assembly line - The Ford Company

Henry Ford (July 30, 1863 — April 7, 1947) — a
business magnate, the founder of the Ford Motor
Company, and the sponsor of the development of the
assembly line technique of mass production.
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Ford assembly

Ford magneto assembly line, 1913 Ford Model T assembly line
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Scheduling theory term and pioneers
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Scheduling theory term

Richard Ernest Bellman (1920-1984), American ap-
plied mathematician, famous for his work on dynamic
programming and numerous important contributions
in other fields of mathematics. In the 1954 he intro-
duced the term "scheduling theory”.

T 11.. ‘

II""!I % . W ‘ ""Mathematical Aspects of Scheduling Theory" (1955)
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Pioneers of scheduling theory. First results

J. R. Jackson. Scheduling a production to minimize maximum tardiness.

Research Report 43, Management Science Research Project, University of
California at Los Angeles, 1955
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Pioneers of scheduling theory. First results

J. R. Jackson. Scheduling a production to minimize maximum tardiness.
Research Report 43, Management Science Research Project, University of
California at Los Angeles, 1955

W. E. Smith. Various optimizers for single-stage production. Naval
Research Logistic Quarterly, 3:59-66, 1956

S. M. Johnson. Optimal two-and-three-stage production schedules with
set-up times included. Naval Research Logistics Quarterly, 1:61-68, 1954

First monograph on Scheduling Theory

R. W. Conway, W. L. Maxwell, L. W. Miller. Theory of Scheduling, 1967
(Russian edition in 1975)
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Pioneers of scheduling theory in USSR

Tanaev, V.S. and Shkurba, V.V.
Vvedenie v teoriyu raspisanii (Introduction to
Scheduling Theory), Moscow: Nauka, 1975
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Computational complexity in Scheduling Theory
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Computational complexity

If computational complexity of the algorithm that solves the problem
is O(nk) operations, where k is some constant number independent
from n, then this problem is called solvable in polynomial time.
Algorithms for the problems mentioned before (Jackson's, Smith's,
Johnson'’s problems ) are polynomial. O( nlogn)

All problems that are solvable within polynomial time formulate a class
of problems denoted as P. Algorithms with corresponding
computational complexity are called polynomial.

If complexity of the algorithm depends on the values of numerical
parameters of an example, for example, O(nA), then this algorithm is
called pseudo-polynomial.

If complexity of the algorithm has the form of O(n*y"), where x and
y are some constants, then this algorithm is called exponential.
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Class NP

e Suppose that we have a computer that includes a special "guessing”
component (oracle).

e The oracle, given correct input data (i.e. a solution to the given
instance exists), provides some (possibly correct) output data.

e The output data provided by oracle needs to be verified, i. e. we
should construct an algorithm that checks if the output data contains
a correct solution that is in accordance with provided input data. The
problem of verifying data provided by oracle could also be formulated
as an instance of recognition problem.
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Class NP

e Class NP includes all the problems to which the solution (if such
exists) can be guessed by an oracle, and:

e The amount of data in solution provided by oracle is polynomially

bounded;
e The solution provided by oracle can be verified in polynomial time.
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Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial
time (A « B), if a modification algorithm exists, such that:
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Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial
time (A « B), if a modification algorithm exists, such that:

e The algorithm transforms any given instance /4 of problem A into a
corresponding instance /g of problem B in polynomial time

e The answer to received instance Ig of problem B is "YES”

if and only if the answer to the corresponding instance 4 of

problem A is "YES”, too. (Or, less strictly, the solutions of
corresponding instances /4, Ig of problems A, B always match)
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NP-complete and NP-hard problems

Problem B is called NP-hard, if any other problem A € NP can be
reduced to problem B in polynomial time.
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NP-complete and NP-hard problems

Problem B is called NP-hard, if any other problem A € NP can be
reduced to problem B in polynomial time.

Problem B is called NP-complete, if:
e B is NP-hard;
e B belongs to class NP.

If any NP-complete problem is solvable in polynomial time, then all of
the NP-complete are solvable in polynomial time (P = NP).
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NP-complete and NP-hard problems

Problem B is called NP-hard, if any other problem A € NP can be
reduced to problem B in polynomial time.

Problem B is called NP-complete, if:
e B is NP-hard;
e B belongs to class NP.

If any NP-complete problem is solvable in polynomial time, then all of
the NP-complete are solvable in polynomial time (P = NP).

NP-hard problem B is called NP-hard in the strong sense if there is no
pseudo-polynomial algorithm of solving this problem (supposed that
P + NP).
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Classification of problems in Machine scheduling

Each problem is denoted as a3|y, where

e « describes characteristics of the problem that are related to
machines

e (3 describes constraints and conditions of processing of requests.

e v describes objective function.
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Classification of problems in Machine scheduling

o describes characteristics of the problem related to machines. Possible
values of a:

e 1 — single machine

e Pm — parallel machines

e Qm — parallel machines (non-equivalent)
e Fm — Flow-shop problem

e Om — Open-shop problem

e Jm — Job-shop problem
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Classification of problems in Machine scheduling

B describes constraints and conditions of processing of requests. Possible
contents of field §:

e rj — release dates are specified

e d; — due dates are specified

e D; — deadlines are specified

e prec — precedence relations are specified
e pmnt — preemption is allowed

e batch — batching problem: groups of requests (batches) can be
processed simultaneously.

e Other conditions: p; = p, ...

-y describes objective function (e.g., Cmax).
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Denotations in Scheduling Theory

Objective functions:
e C; — completion time
o [; = C; — d; — lateness
o T; = max{0, C; — d;} — tardiness
e £; = max{0, dj — C;} — earliness
e U; — unit penalty: equals 1 if job j is late (C; > dj) and 0 in the
opposite case

If request weights w; are provided, all of the previous objective functions
are called weighed, and are multiplied by the value of request weight (ex.,
weighed tardiness w; T; is calculated as w; max{0, C; — d;})

Alexander Lazarev Metrics and approximations May 21, 2019 24 / 188



Denotations in Scheduling Theory

Optimization criteria:
1. Min-max criteria
e Cpax — min — minimizing maximum completion time
(makespan), Cpax = rjnea,\>l< Cj. These problems are also called

performance problems.
® L max — min — minimizing maximum lateness L.« = maxL;
jEN
2. Summary criteria
e > C; — min — minimizing total completion time
JEN
e > T; — min — minimizing total tardiness
jeN
e > U; = min — minimizing total number of late jobs
jen
Also, problems of maximizing these objective functions are considered (ex.,
> T; — max).
jen
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Problem complexity classification

NP-hardness in strong sense is a qualitative property!

Satisfability problem (SAT)

Boolean formula f(x1, x2, ..., x»), operations: AND, OR, NOT, (, )

dx; = {FALSE, TRUE},i € {1,...,n} : f(x1,x2,...,xn) = TRUE?

Cook, S. (1971). The complexity of theorem proving procedures.
Proceedings of the Third Annual ACM Symposium on Theory of
Computing. pp. 151-158. doi:10.1145/800157.805047.

Garey, M. R.; Johnson, D. S. (1979). Victor Klee (ed.). Computers and
Intractability: A Guide to the Theory of NP-Completeness. A Series of
Books in the Mathematical Sciences. San Francisco, Calif.: W. H. Freeman
and Co. pp. x+338. ISBN 0-7167-1045-5. MR 0519066.

v
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Classification of problems in Machine scheduling

Thus, record F2|rj|Crax denotes problem of minimizing makespan in
Flow-shop system with two machines in case of non-simultaneous
admission of requests. Other examples: 1|p; = p, rj| >° w; T;,

Pmir;, pmtn| )" G, ...
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Classification of problems in Machine scheduling

Thus, record F2|rj|Crax denotes problem of minimizing makespan in
Flow-shop system with two machines in case of non-simultaneous
admission of requests. Other examples: 1|p; = p, rj| >° w; T;,

Pmir;, pmtn| )" G, ...

Some of previously considered problems in terms of machine
scheduling:
e 1|rj|Lmax (Jackson's problem with non-zero release times)
is NP-hard in the strong sense
e 1ir;| >~ C; (Smith's problem with non-zero release times)
is NP-hard
e F3||Cmax (Johnson's problem with more than 2 machines)
is NP-hard in the strong sense
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Challenges in Scheduling Theory
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Complexity challenges in Scheduling Theory

e The majority of formulations are NP-hard in the strong sense.

e In this case for real-life scaled problems it is impossible to find proven
optimal solution (if P # NP).

e |t leads to the demand for fast algorithms with «good» solutions?

Alexander Lazarev Metrics and approximations May 21, 2019 29 / 188



Complexity challenges in Scheduling Theory

A set of «inspired by nature» heuristic methods

Tabu search

Simulated Annealing

Ant Colony Optimization
Particle Swarm Optimization

+ speed and simple structure
— no estimations of accuracy (optimization criteria value delta)
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Complexity challenges in Scheduling Theory

A set of «inspired by nature» heuristic methods

Tabu search

Simulated Annealing

Ant Colony Optimization

Particle Swarm Optimization

+ speed and simple structure
— no estimations of accuracy (optimization criteria value delta)

Polynomial-Time Approximation Scheme (PTAS)

+ guaranteed polynomial and accuracy estimations
— accuracy forms the complexity, e.g. O(n°)
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Complexity challenges in Scheduling Theory

Proposed alternative solution method

Metric approach

e Guaranteed accuracy provided by error upper bound estimations.

e Polynomial complexity does not depend on the accuracy.
e Method gives quantitative complexity estimations for the problem in
addition to the qualitative property of NP-hardness.
Method is based on:
e a metric function for problem input data instance space;
e metric-based estimations of accuracy;

e polynomially-solvable subclasses of problem input data instances.
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Practical challenges in Scheduling Theory

e In industrial cases objective functions are often unknown or are not clearly
defined (e.g. RZD schedules, Gagarin Cosmonaut Training Center plans).

e Plans and schedules do not significantly change their structure for years.

e New solutions are formed based on a set of previous schedule structure.
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Practical challenges in Scheduling Theory

e In industrial cases objective functions are often unknown or are not clearly
defined (e.g. RZD schedules, Gagarin Cosmonaut Training Center plans).

e Plans and schedules do not significantly change their structure for years.

e New solutions are formed based on a set of previous schedule structure.

A new proposition for these cases

Objective function approximation

e There exists a set of previous problem input data instances and solutions.

e Objective function is unknown but linear to the completion time of the job.

e The first goal: to find the form and coefficients of the objective function;

e The second goal: to provide the solution for the next instance.
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Section 2

Theoretical results in Scheduling
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Theoretical results in Scheduling

© Theoretical results in Scheduling

@ Metrics approach in scheduling theory
@ The problem 1|rj|Lmax
@ 1|rj|Lmax solvable cases
@ Pareto-optimal cases
@ Instance metric
@ The closest solvable instance construction LP-problem
@ Metrics for 1|r| > T;
@ Measure of polynomial unsolvability
@ Example: Metrics for the railway scheduling problem

@ Objective function approximation
@ Motivation and basic idea
@ The problem 1|| > w; G
@ Solvability
@ Approximation problem
@ Dual complexity reduction

@ Graphical approach
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Metrics approach in scheduling theory
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The problem 1|rj|Lmax - minimizing maximum lateness

Single machine, n jobs

rj — release time;

p; > 0 — processing time;
d; — due date.
jeN={1,2,....n}
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The problem 1|rj|Lmax - minimizing maximum lateness

1{7j| Lnax

Single machine, n jobs

rj — release time;

p; > 0 — processing time;
d; — due date.
jeN={1,2,....n}

Preemptions of a job are not allowed. The machine can process at most
one job at any time.

A schedule describes order of processing the jobs: a permutation(sequence)
™ = (,jlu.j27 7.//1)
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The problem 1|rj|Lmax - minimizing maximum lateness

1{7j| Lnax

Single machine, n jobs

rj — release time;

p; > 0 — processing time;
d; — due date.
jeN={1,2,....n}

Preemptions of a job are not allowed. The machine can process at most
one job at any time.

A schedule describes order of processing the jobs: a permutation(sequence)
™ = (,jlu.j27 7.//1)

Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G. 1979
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L S R —
0 ri d G rj G d

F(r) = G —d i
(m) Tea}\)/({ j—di} — min

NP-hard in strong sense

Lenstra J.K., Rinnooy Kan A.H.G., Brucker, P. 1977
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1|rj|Lmax solvable cases

1) rp=0,YjeN. O(nlog n)
Jackson J.R. 1955

1') dj = const,V j € N. O(nlog n)

1") pj = const,V j € N.
Simons B. 1983. O(n? log n)
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1|rj|Lmax solvable cases

2) O(n>log n)
d1 < dp <o <dp; (1)
di—n—p1>d—rn—p2>---2>dy—ry— pp

2') dj = rj+ pj + const,¥ j € N. O(n®log n)

{17 P: Qa R}|rj|{LmaX7 Cmax} O(n3 |og n)

Lazarev A.A., Sadykov R.R., Sevastyanov S.V. 1988-2007
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1|rj|Lmax solvable cases

2) O(n3log n)
di—n—p1>d—rn—p2>---2>dy—ry— pp

2') dj = rj+ pj + const,¥ j € N. O(n®log n)
{17P7 Q, R}|rj|{LmaX7 Cmax} O(n3 log n)
Lazarev A.A., Sadykov R.R., Sevastyanov S.V. 1988-2007

3) Ta/il({dk —r—px} < dj—r,VjeN. O(n? log n)

€
Hoogeveen J. A. 1996
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1|rj|Lmax solvable cases

4) NP-hard in ordinary sense O(n?P + npmaxP)

d<dh<---<dpy
n>rmn2>--2rn (2)
rj, pj,di € ZT,Y j € N.

Lazarev A.A., Schulgina O.N. 1998
n

[P = Gese o0 Do (2 — vt Fivesg — TREDS By (e = I 6 fBhms = (IEDY/2)
j=1 JEN JEN JEN
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1|rj|Lmax solvable cases

di < dp <o < dp;
di—an —Bpr>dr—an —PBp2>--->d, —ar, — Bpp; (3)
a € [1,00),8 € [0,1].
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1|rj|Lmax solvable cases

5)
di < dp <o < dp;
di—an —Bpr>dr—an —PBp2>--->d, —ar, — Bpp; (3)
a € [1,00),8 € [0,1].

5')

di = arj+ fBp; + const, ¥ j € N,a € [1,00), 8 € [0,1]. 2009
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1|rj|Lmax solvable cases

5)
d <dp < < dp;
di—an —Bpr>dy—an—Bpp > >dy —ar,— Bpn; (3)
a € [1,00),8 € [0,1].
5)
di = ar; + Bpj + const, ¥ j € N, a € [1,00), 8 € [0,1]. 2009
O(n3log n)

v
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Pareto-optimal cases

1| d <dj,di—ar—fBpi>d —ar— Bpj|

di < dp <o < dp;
di—oan—Bpr>dr—arn—Fp>--->dy— ary,— Bpa; (4)
a € [1,00), 5 € [0,1].

1|digdjadi_ari_ﬁpizdj_arj_ﬁpj|LmaX7Cma><

L<[| ®(N, 1) [[<n

O(nlog n)

v
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Pareto-optimal cases
1|d <djdi—ar—B8p >d —ar—Bp|
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Instance metric

The approach

e Set of parameters Q = {r, ..., rn, P1, ..., Pn, d1, ..., dn } characterizes an
instance.

e An instance can be considered as a vector in 3n-dimensional space of
parameters.
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Instance metric

e Set of parameters Q = {r, ..., rn, P1, ..., Pn, d1, ..., dn } characterizes an
instance.

e An instance can be considered as a vector in 3n-dimensional space of

parameters.

Definitions
e For a particular value of parameter w € € in the instance A we will
use upper index : wA.
e The value of the objective function F in the instance A under the
schedule 7 will be denoted as FA(7r).
A

e We denote the optimal schedule for the instance A as 7*.
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Instance metric

Any instance is point in m = 3n-dimension space.

9

A — "hard" instance
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Instance metric

Any instance is point in m = 3n-dimension space.

polynomially (pseudo-polynomially) solvable cone

. p(A,B) = FA(x®) — FA(x*)

Cire

A — "hard" instance
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Instance metric

e An absolute error of the approximation scheme is bounded by the
metric function p(A, B).

e The problem 1|rj|Lmax is reduced to the minimization of the function
p(A, B) — from arbitrary instance A to the closest polynomially
solvable instance B.

1| 7| Linax

0< oA B)= FA(®) — FA(n) <
(max{rf’ = P} = min{rf = r?}) +

(Z ’pJA - JB|) +
(max{df — df'} — min{d} — df})
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Instance metric

Metric properties

_ A . A A . A A
©(A) = max(r;") — min(r{") + %ag(dj ) — jrg',g(dj )+ e >0.

N ieN
J J jen

P(A)=0<= A=0;
p(aA) = ap(A); (5)
(A + B) < p(A) + ¢(B).

1Al = ¢(A) p(A, B) = ||A - B|.
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The closest solvable instance construction LP-problem

141l = #(A) p(A.B) = ||A— B] |
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The closest solvable instance construction LP-problem

141l = #(A) p(A.B) = ||A— B] |

Polynomially (pseudo-polynomially) solvable case

AR+ BP+CD <H
A, B, C — matrixes, R, P, D, H — vectors.
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The closest solvable instance construction LP-problem

Projection of an instance A to a polynomially (pseudo-polynomially)

solvable case
The minimum absolute error among all instances from solvable area,—

instance B.
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The closest solvable instance construction LP-problem

Projection of an instance A to a polynomially (pseudo-polynomially)

solvable case
The minimum absolute error among all instances from solvable area,—

instance B.

O(nlog n)

( p(A,B) = (xr — yr) + 2_(xp — ¥p) + (Xd — ya) — min
P < =P < x5
xégp —PB<X;jz;VJ7XjZO;
<dA B < x4,V J:
ARB i+ BP5J+ CDB <.

<
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The closest solvable instance construction LP-problem

( p(A,B) = (x — yr) + Z(X{; — yf,) + (xg — yd) — min

J Xr:}/nX{nXd»Ydy
r?.pPdP Y j

df — arf — BpE > df —arf — Bpf > ... > dB — arf — BpF;
\ ac [LOO)’BG [Oa 1]

4 + 4n variables, 8n — 2 inequalities O(nlog n)
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The closest solvable instance construction LP-problem

Example of ARE 4+ BPB +CDEB < H:

Inequalities for the subclass 1|d; < d;, d; — ri — p;i > d; — r; — pj|Lmax

Instance | = {(r], p/, d/)|j € N} belongs to this subclass, if there exists the
numbering {1,2, ..., n}, which satisfies the following inequalities

dl <..<di Al >..>A0

where Aj’- = dJ’ = rj’ = p}. For this subclass A(=1)xn jg

ARB + APB — ADB <0, ADB < 0.

1 -1 0 0 0 0 0
0 1 -1 0 0 0 0

nd A0 _ [0 01 -1 0 0 0]
0 0 0 0 1 -1 0
0 0 0 O 0 1 -1
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Metrics for 1|rj|Lmax and in general case

1]7j] Lmax
Lazarev A.A. Estimation of Absolute Error in Scheduling Problems of
Minimizing the Maximum Lateness, Dokl. Math., Vol. 76, 2007, P.

572-574. )

General case
71-) = quj(ﬂ-v rla"'vrnapla"'7pn7dj)

JEN

p(AB) = > (Rilrf — P+ Pilpf = 1) + Y Dildf — df,

JEN ieN JEN

where R; > |9, P; > |94, Dy > |9%].
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Metrics for 1|rj| > T;

Problem formulation

Set N ={1,2,...,n} of nindependent jobs must be processed on a single
machine.

e The machine can handle only one job at a time.
e Preemptions are not allowed.
e The machine is ready to start processing at time 0.

For each job j, j € N, a processing time p; > 0, release date r; > 0 and
due date d; are given.

In early schedule 7: S;; = r;; and Sj, = max{r;,, C

}for k=2, .. J

Jk—1
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Metrics for 1|rj| > T;

Objective function

o Tj(m) = max{0, Cj(7) — d;} is the tardiness of the job j in the
schedule 7.

e > Tj(m) is the total tardiness in the schedule .
JEN
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schedule 7.

e > Tj(m) is the total tardiness in the schedule .
JEN

The total tardiness minimization problem is denoted as 1|r;| > T;. )
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Metrics for 1|rj| > T;

Objective function

o Tj(m) = max{0, Cj(7) — d;} is the tardiness of the job j in the
schedule 7.

e > Tj(m) is the total tardiness in the schedule .
JEN

The total tardiness minimization problem is denoted as 1|r;| > T;. )

Du J., Leung J.Y.T. Minimizing total tardiness on one machine is NP-hard
Mathematics of Operations Research, Vol. 15. 1990, N. 3, P. 483 — 495.
Problem 1|rj| > T; is NP-hard in the ordinary sense.
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Metrics for 1|rj| > T;

Function

p(A,B)=n- max|r Pl +n- Z]pj —pj|—|—Z]dA df|
JEN JEN

satisfies the axioms of metric function and is applicable as parameters
space metric.

Lemma

For any instances A, B and schedule 7

1> TAm) =D TE(m)| < p(A, B)

JEN JEN
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Metrics for 1|rj| > T;

Lemma

For any instances A, B and schedule 7

1Y TAR) =D TE()| < p(A B)

JEN JEN

Theorem

For any instances A and B

> TA®) = 3 TR < 2(A.6)

JEN JEN

v

There 7# and 78 are optimal schedules for instances A and B, respectively.
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Metrics for 1|rj| > T;

LP approximation model

A-RBE+B.-PE+Cc.DBE<H

Solvable case class constraints

LP with 7n+2 variables : er, pJB, ij, XJP, yJP, xjd, yjd, x",ytj=1,...n.
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Metrics for 1|rj| > T;

Solvable classes

o {PR—case:pj=p, ri=r, je N};
o {PD—case:pj=p, dj=d, j€ N};
e {RD—case:ri=r, di=d, je N};

Lemma

For each class the minimum of the function f(p, d, r) could be constructed
in O(n) operations. For example, for PR — case it has the minimum at the

. . rA —fA-
point with p € {pf', ..., p'} and r = "mImin \where rf,, = Tga,&( rf‘,
A A
ro = min i
min jen
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Metrics for 1|rj| > T;

Computational experiments

e n=45..10

e 10000 instances were generated for each value of n

p; € [1,100]
d; € [~100,100]
r; € [0,100]

F, denotes an approximate objective value of an instance

F* denotes an optimal objective value of an instance

e § = F, — F* is exeperimental error

e A= % is the ratio of experimental error and it's upper bound
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Metrics for 1|rj| > T;

%
5
4
£
=
s 3
e
=
il
-
2
1
0
0 10 20 30 40 %
Experimental error

The typical distribution of experimental error.
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Metrics for 1|rj| > T;

Table: Average experimental error in percentage of the theoretical error

n ‘PR-case PD-case ‘RD-case
4 19% 4 5% 15%
5 19,5% 6,2% 17,2%
6 19,2% 7,3% 18,4%
7 19,6% 8,5% 19,4%
8 19,3% 9,2% 20,7%
9 19,4% 10% 21,7%
10 19% 10,5% 22,5%
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Measure of polynomial unsolvability

Problem 1|rj|L.x polynomial solvable classes

R). rj = const (Jackson 1955);

D). d; = const (Lawler 1973);

P). p;j = const (Simons 1978);

H). di—pj— A<r <d;j— A, A= const (Hoogeveen 1991);
RD). n <---<rpdi <--- <d, (Hoogeveen 1991);

L) s <---<dydi—p1—n>--->d,— pn— r, (Lazarev 2008);
LA). i <+ <dp,di —ap1 — frn >+ > dy — apn — Bra,

const, f = const, a € [0,1], B € [0, +o0] (Lazarev, Arkhipov 2010).
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Measure of insolvability

Measure of insolvability of the instance A relative to the area X:

X o .
P~ (A) = min p(A, B).

Complex measure

E(A) = min{pL(A), " (A), p”(A), pFO(A)}.
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Scalable parameters

Problem A

My, .oy n) PLy P2,y Pn; di,do, ..., dp.

Linax(A) = L%,

Problem kA
kry, kra, ..., krn; kp1, kpo, ..., kpn; kdi, kdo, . .., kd,.

L (A) = L4 = kLA,
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Scalable parameters

Problem A

My F, .oy ny PLy P2y« P d1,d2, ... dy.

Linax(A) = L%,

Problem kA

kry, kra, ..., krn; kp1, kpo, ..., kpn; kdi, kdo, . .., kd,.

*
Lmax

(A) = L = kLA,

A\

Problems kA & kB

p(kA, kB) = kp(A, B).

v
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Normalization

Normalization factor

j=1

NHM=¢20+ZM+Z¢
= j=1

V.

Normalized parameters

A A A
A = /. : pA/ S : dA = L
j NF (A) NF(A)' 9 NF (A)

B
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Upper bound estimation

Theorem

For each instance A’ which belongs to the 3n-dimensional unit sphere
following inequalities holds:

E(A") < 1.
And ifVj € N parameters rj, pj, d; > 0, then:

E(A) <

Sl

holds.

Alexander Lazarev Metrics and approximations May 21, 2019

66 / 188



n n

LGRS SRS SIVED ST
j 1

=1 =1 =
RD / _ . P .
PP (A) = RrﬁDlgo{R + D}, Vi,j € N, which holds
A JANGA A :
(" =d)(r* —r") <O
i = < R;

@ —d¥| <D.
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Hence, di1, j1,i2,jo € N :

i~ > E(A)
d,.g" d > E(A).

And, due to E(A") < pP(A), Jjs:
pjs > 0.

AN2 A2 A'\2 2
NF(A) = 1> () + ()7 + () + () + (P ).
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(2 4+ () + (A + () + (p5 ) > E(AY,
and
(V2 (7 + ()7 + ()7 + ()7 > 2E(A)?

if r,f/7 rjfl, d;;‘/, djfgl, rjf;‘/ are non-negative. Hence,
E(A") < 1,
and
, 1
E(A)

. U / ! U
if KA A dA dA

A/ .
i, dydi,ril are non-negative. QED.
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Strengthening theorem

Algorithm Shrage: for every instance A with non-negative parameters of

jobs it is possible to construct the solution in O(nlog n) operations with

guaranteed accuracy efP = max pj

jEN

Strengthen theorem

| \

For each instance A which belongs to the 3n-dimensional unit sphere
following inequalities holds that if ¥j € N parameters r;, p;, d; > 0, then

min{eE2, E(A)} < \;g

Schrage L. Obtaining Optimal Solutions to Resource Constrained Network
Scheduling Problems. Unpublished manuscript 1971.
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Metrics approach and Insolvability measure : conclusion

e Metrics allow to construct solutions with guaranteed accuracy in
polynomial time.
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Metrics approach and Insolvability measure : conclusion

e Metrics allow to construct solutions with guaranteed accuracy in
polynomial time.

e Measure of polynomial insolvability forms the quantitative property in
addition to the NP-hardness qualitative property!

e Theoretically and practically significant result.
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Metrics approach and Insolvability measure : conclusion

e Metrics allow to construct solutions with guaranteed accuracy in
polynomial time.
e Measure of polynomial insolvability forms the quantitative property in

addition to the NP-hardness qualitative property!

Theoretically and practically significant result.

Example: Metrics for the railway scheduling problem.
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Example: Metrics for the railway scheduling problem

st.1 p

Initial data

o |[Ny|=n,|Na|=n", N=N UN,, [IN|=n+n'.

e All trains have equal speed, track traversing time — p.

e Minimal time between the departure of two trains from one station — (3.
e The transportation starts at time t = 0.

Objective function

e We consider a family of objective functions. In schedule o, for each train
i€ N Si(o) — it's departure time; Cj(o) — arrival time, Ci(o) = Si(o) + p.

e The approach is demonstrated on the maximum lateness objective function
Lie @)y Limll@) = max L= r’jneal\T{C,-(a) —d;}.
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Example: Metrics for the railway scheduling problem

Instances

e Denote the problem as STR2 (Single Track Railway Scheduling Problem).

o The STR2|rj|Lyax (with release times r;) problem instance: 2n + 2
parameters, d; and r; for each train j € /N are given plus two general
parameters /3 and p.

e We consider the problem instances as points in the 2n-dimensional space of
parameters, denoted as Q = {ry, ..., ry, di, ..., dp}.

Metric function
_ A B A B
p(A,B)_rJnEaA?drj —r |+rjn€a,\>l<\dj —d|

satisfies the axioms of metric function. For any instances A, B and schedule 7

| Lo () = L ()| < p(A, B)

max
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Example: Metrics for the railway scheduling problem

Optimal schedules 74 and 78 for instances A and B, respectively
For any instances A and B: L4, (7B) — L4, (77) < 2p(A, B).

max

LP approximation model (find solvable instance B for A)

min y + x
subject to
—y<di—dP <y, VjeN,
—xgrf‘—ergx, VjeN,

0<rf vjeN,

A-RE4+B-DE<H (solvable instance class constraints) *.

. rjA and de are given, and x, y, and rJ-B, ij are unknown for all j € N;
e 2n+ 2 variables and 5n + m constraints, n = |N|, m — the number of
inequalities in *.
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Example: Metrics for the railway scheduling problem

Polynomially solvable cases

e For {PR:rj=r, Vj € N}, which is the problem STR2||Lax, we have
P(A, B)pr = max|rft — r|.
j

e For {PD : d; = d, Vj € N}, which is the problem STR2|rj|Cpax that has the
same complexity as STR2||Lax, we have p(A, B)pp = max |d? — d|.
j

e For {PDR:rj <rj=d; <dj, Vi,j € N, i <j} when i and j are from the
same station, the case with agreeable due dates and arrival dates for each
station, we have p(A, B = max |r? — rB max |d? — dB|.

P(A, B)ppr jeN\j J|+jeN|J J|

Thus, for an arbitrary instance A, the nearest instance

. . A A .
e inclass PR is {Bpg : er = fmnctmin ij = de, Vje N},

. . dA  +d2, .

o inclass PD is {Bpp : df = Smef®on B = A Vje N};

e in class PDR the nearest instance B is constructed by solving the LP with
the special form of the inequality (*).
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Objective function approximation
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e Basically, a person (company, organization) often constructs schedules
and plans for a day, week, month, etc...

e What is your personal planning goal?
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Basically, a person (company, organization) often constructs schedules
and plans for a day, week, month, etc...

What is your personal planning goal?
To catch all the deadlines or due dates?

Maximize the number of completed tasks or the income?
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e Basically, a person (company, organization) often constructs schedules
and plans for a day, week, month, etc...

e What is your personal planning goal?

e To catch all the deadlines or due dates?

e Maximize the number of completed tasks or the income?
e For many cases the criterion is not clearly formalized.

e However, the schedule structure in general is the same from one
period to another.
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have no clear objective function?
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Basically, a person (company, organization) often constructs schedules
and plans for a day, week, month, etc...

What is your personal planning goal?

To catch all the deadlines or due dates?

Maximize the number of completed tasks or the income?
e For many cases the criterion is not clearly formalized.

However, the schedule structure in general is the same from one
period to another.

e How can we use the previous schedules to construct the next one if we
have no clear objective function?

And if we have the schedules: 7_, T_(N=1)s -+ 70 and we must
construct the next schedule 717
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The basic idea

We consider the «inverted» scheduling problem.
e There is a set K of given pairs of instances /, and schedules 7r2,
K| = N,

Schedule 7T2 is the optimal solution for the corresponding instance /.

The problem is to find the form and coefficients of the objective
function.

The objective function is linear to the completion time of the job.
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The problem 1|| >~ w;C;

1> wiG
e Single machine, n jobs;
e p; > 0 — processing time;
e jeN={1,2,...,n};
e no precedence relations between jobs.

Preemptions of a job are not allowed. The machine can process at most
one job at any time.

A schedule describes order of processing the jobs: a permutation(sequence)
™ = (jlaj2a"'7.jn)- )
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Solvability

1|rj| >- w;C; is NP-hard in the strong sence

Nazapes A.A., Tadpapos E.P. Teopusi pacnucanwnii. 3agaum n anroputmei
// Mockea, MI'V, 2011, 222 C.

1| >° w;C; is solvable — generalized Smith theorem

There exists an optimal schedule 7* = (ji, ..., jn), such that

Wiy > W > > Win

Pjii  Pj Pj,,'

Smith W.E. Various optimizers for single-stage production // Naval Res.
Logist. Quart. 1956. No. 3. P. 59-66.
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Approximation problem

e We consider the problem 1|| > w;C;.

e N given pairs of instances Ik = {p1, ..., pn} and schedules 7%.

Schedule 79 is the optimal solution for the corresponding instance /.

The problem is to find the coefficients w; of the objective function.

The property of an optimal schedule

D Ci(m)wj =Y CF(r)wj, Y # 7, k € {1,.., N}
j=1 j=1

e In general case w; are defined by the set of N(n! — 1) inequalities.

e Is it possible to allocate the subset of M (polynomial number) of
independent inequalities, which forms the equal system?.

Alexander Lazarev Metrics and approximations May 21, 2019 81 / 188



Approximation problem

Basic system of inequalities for 1|rj| ijCJ

Wk

Pj«

1

Transformations

e Consider arbitrary pair of jobs Vi,j € {1,....,n}, i #j.

Pji

2

v
Y]

p, , ke{l,...,N}.

n

e Separate the set K into two subsets K;; and K;;, depending on the

positions of j and j in 0.

Kii={keK: mp=(wfsori,.)}

e From the basic system:
w .
%_p keK,Jand fi:,keKL,_

v
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Approximation problem

Effective system of inequalities

Vi,je{l,... n}, i #j;

Kij={keK: m)=C(uiyrjy)}s Kii={k € K: 70 = (ordyorir )}
k k
. P P
X(IJ)_kngijx,(p_’k) Y(i.j) = m;p(pk)

X(i,j) < <L < Y(i,j).

Wi

e The basic and effective systems of inequalities are equal.

e The set of solutions of both systems is the convex polyhedral cone.
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Approximation problem

The strengthening of inequalities

Multiplication property of inequaltites forms the strengthening procedure:

X(i,j) = max{X(i,j),I:{1 mmnfx#l_ /;éj{X(i’ NX(L,ND}YY, ivj€{1,....n}, i #].

It can be repeated till some final X and Y.

If w={wi,...,wn} is the solution of approximation problem 1|| Y~ w;C;, then
yw = {yw1, ..., Ywy } is also the soltuion of this problem, i.e. it can be scaled.
Therefore, we can always assume that w; = 1 for some arbitrary one index /.

Theorem
Vector w = {wy, ...,w, } is the solution of the effective system, if

v = { 1, if j = I
XL+ YU 2 AL
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Computations

e Random sets with N instances /x = {pf, ..., pk}, n jobs and w? were
generated (distributed in [0, 1]).

o]
. ) o
e All the valued were rationed w; := 24 w9 = —4_.
J [wll" ™) [lwoT]

N lwi—w® . .
e ¢(N,n)=1 21 ‘WJW%J' the error decreases (converges to 0) with growing N!
j=

&(N,n), n=100 £(N,n), n=250
€ 0.025 € 0.014
00121 *
002 *
0.01
S * 0.008
0.006
0.01
0.004
L ]
0.005 LB &
i 0.002
* -
* b N -
.l FEE e E Y& e
0 0
0 10 20 30 40 5 60 70 8 9 100 0 10 20 30 40 5 60 70 8 9 100

N N
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Dual complexity reduction
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Duality for non-decreasing penalty functions

Initial problem

W= min, maxe;(Gi(m)), (7)

Non-decreasing functions ¢;(Cj(7))
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Duality for non-decreasing penalty functions

Initial problem

Y= mi e 7
H 7£TI1'II(nN) kn;al?fv(pjk( (7)), (7)

Non-decreasing functions ¢;(Cj(7))

Dual problem

AL pﬂ'(nN)%k( 5 (7)) (8)

=0, jeN

Conway R.W., Maxwell W.L., Miller L.W. Theory of Scheduling //
Addison-Wesley, Reading, MA. 1967. J
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Duality for non-decreasing penalty functions

*

v" = max min ™
max min ¢i(G(m) J
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Duality for non-decreasing penalty functions

vt = max g i (G (7)) J
uk:Wrtllll(n )gojk( G (m), k=1,2,...,n. (Q)J
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Duality for non-decreasing penalty functions

vt = T mm T
ve=_ min o (G(m))k=1,2,..n 9)
v* = max V. (10)
k=1,n
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Duality for non-decreasing penalty functions

©j(t),j =1,2,...,n, any not decreasing functions 1 | rj | ¢max,
YV k=1,2,...,n, Up > Vg, v =u,.
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Duality for non-decreasing penalty functions

©j(t),j =1,2,...,n, any not decreasing functions 1 | rj | ¢max,
YV k=1,2,...,n, Up > Uk, v =u,.
Algorithm
= (i1, 12, -, In), rp<rp <<
Tk = (ﬂ-r\ikalk)vk Wy 2 e a0 1 QDik(Cik(ﬂ-k));
vt = km?l Qoik(clk(ﬂ-k))

=1,n
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Duality for non-decreasing penalty functions

©j(t),j =1,2,...,n, any not decreasing functions 1 | rj | ¢max,
YV k=1,2,...,n, Up > Vg, v =u,.
Algorithm
= (i1, 12, -, In), rp<rp <<
Tk = (ﬂ-r\ikalk)vk Wy 2 e a0 1 QDik(Cik(ﬂ-k));
v = max ¢ (G (mk))-

k=1,n

O(n?)
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Duality for non-decreasing penalty functions

Initial problem

— (C; 11
T s i (G (7)), (11)

Non-decreasing function ¢;(Cj())
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Initial problem

— (C; 11
T s i (G (7)), (11)

Non-decreasing function ¢;(Cj())

Dual problem

Alexander Lazarev Metrics and approximations May 21, 2019 90 / 188



Duality for non-decreasing penalty functions

Initial problem

= mi i (G 11
M werrllll(nN) k”;al?;‘pjk( 7 (7)), (11)

Non-decreasing function ¢;(Cj())

Dual problem

7= max  min G 12
k:l,n ﬂeﬂ(N)SOJk( Jk( )) ( )
Theorem
@j(t),j =1,2,...,n, any non-decreasing functions 1 | rj | Ymax,
VY k=1,2,...,n, W > v,
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Duality for non-decreasing penalty functions

Initial problem

= mi i (G 11
M werrllll(nN) k”;al);‘pjk( 7 (7)), (11)

)

Non-decreasing function ¢;(Cj())

Dual problem

7= max  min G 12
k:l,n ﬂeﬂ(N)SOJk( Jk( )) ( )
Theorem
@j(t),j =1,2,...,n, any non-decreasing functions 1 | rj | Ymax,
VY k=1,2,...,n, W > v,

Branch and bound
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Duality for non-decreasing penalty functions

Initial problem is NP-hard in the strong sense!

Preceding, Dual problem

G : single machine O(n?)
G : many machines NP-hard in the ordinary sense

Non-decreasing penalty functions ¢;(C;())
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Graphical approach
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Graphical approach

Partition problem

Consider a sorted set of n positive integer numbers B = { by, b, ..., bp},
by > by > --- > b,. Divide the set B into two subsets By, B;, so that

| > bi— > bi| = min

i€B1 i€B>
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Graphical approach

Partition problem

Consider a sorted set of n positive integer numbers B = {by, b, ..., b,},
by > by > --- > b,. Divide the set B into two subsets By, B;, so that

|Zb,~—Zb,—|—>min

i€EBy i€B>

One-dimensional Knapsack problem

This problem can be viewed as an integer programming problem:

n
f(x) = > cixi — max
i=1

n
Z Wi X; < W
i=1

X,'E{O, 1},i:1,...,n

v
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Graphical approach

n
fc¢=a=b;,i=1,...,nand W = % > b;, then Partition problem and
i=1

One-dimensional Knapsack problem are equivalent.
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flz) = bz + Txg + 6x3 + 314
2ry + 319 + dxg3 + Try <9

€ {0,1}, i=1,...,4

» Imnax

4 &(t)
i 0 2
g 0 5
I [:T) ([}- . (J-'- 2 )
5 S
oa 2 M

tlaglt) | =(t)
0] 0 |0,
T 0 [(0,.)
31 5 | (L.)
351 5 (L)
1] 5 | (L.
51 5 | (L.)
61 5 | (L)
71 5 (L)
51 5 | (L.
0 5 | (L)




flz) = bz + Tzg + 6z3 + 374 — max

Step 2

2ry + 319 + dxg3 + Try <9

€ {0,1}, i=1,...,4

i 0 2
q 0 5]
z(t) | (0,,,) ] (1,.,)
t 0 2 3 b
Let’s consider 4 points: g 0 5 7 12
0,2, 0+3, 2+3 ;i’:(i) ([), [)._.,) (J_ 0 ,) ([) 1 ) (J. 1 )
glt) glt)
12 12 —
7 7 —
5 5 —
_— S — An
0 23 5 9, o 23 5 9,




flz) = bz + Tzg + 6z3 + 374 — max

2ry + 319 + dxg3 + Try <9 Step 3

€ {0,1}, i=1,...,4

t 0 2 3 5
g 0 5 7 12
() [ (0,0,) ] (L,o,,) [ (0,1,,) | (1,1,,)

Let’s consider 7 points:

0, 2, 3,5, 0+5, 245, 3+5. t 0 2 3 5 8
Point 5+5 > 9 is not considered g 0 5 7 12 13
z(t) 1(0,0,0,) | (1,0,0,) [ (0,1,0,) [ (L,1,0,) | (0,1,1)

glt) g(t)

12 _-

7 —

5 -

23 5 789, of 23 5 789




flz) = bz + Txg + 6x3 + 314

2ry + 319 + dxg3 + Try <9

;€ {0,1}, i

]-':"":;

4 gy
|
12 |
7 —
5 —
3
o 23 5 7aﬁ

r max
Step 4
tlgult) [ o(f) | ge(f) | o(f) [galt) [ 2{t) | oult) x(t)
07 0 [0.0] 0 [00)] 0 [0000] 0 ](00,0,0)
T 0 [0 0 [0.0)] 0 [(0.00.)] 0 ](00.00)
5T 5 (L) 5 (Lo 5 [(Loo) | 5 [(Lo.0.0)
315 (L) 7 [OL) [ 7 [0.10.)] 7 [(0.10,0)
T 5 (L) 7 (oL 7 [0.10)] 7 [(0.100)
51 5 (L) | 12 [(LL)] 12 [(LL0) | 12 [(LL0.0)
61 5 [(L.) L) 12 [(LLo) | 12 [(LL0.0)
T 5 (L) L) 12 [(LLo) | 12 [(LL0.0)
ST 5 (L. ML) 13 [(O.LL) [ 13 [(0.LL0)
91 5 (L] 12 [(LL) | 13 [(O.LL)] 13 [(0.1L0)
i 0 2 3 5 8
7 0 5 7 2 3
2(0) [0,0,0,0) | (1,0,0,0) | (0,1,0,0) | (L, L,0,0) | (0.1.L,0)
& o .
A e e




B = {100, 70,50,20} Step 1

—100 100
(100;) | (; 100}




B = {100,70,50,20} Step 2

* + ¢ d
* *
/ “' / +* ¢ O
- ’ . 0” ’ ”’
L4 .’ *, 0.
4, e | e
7 - DRl ™
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4 ra / &0’ + 1';’ >
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B = {100, 70,50,20} Step 2

=30 30
(100; 70) | (70; 100]




B = {100,70,50,20}

—20)

20

[100; 70, 50)

170, 50; 100)
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WW>h>b>...2b,. n=

1st column

2ndcolumn: total number of solved instances for given n (C,i’"’“"*”’l, where by,q, = 40);
average value of computational complexity of graphic algorithm;
average value of computational complexity of Balsub algorithm;
average value of computational complexity of dynamic programming algorithm;
maximal value of computational complexity of graphic algorithm;
maximal value of computational complexity of Balsub algorithm;
maximal value of computational complexity of dynamic programming algorithm;

amount of instances for which complexity of Balsub algorithm is less than the complexity of

31 column:
4t column:
5t column:
6t column:
7t column:
8t column:
oth column:

1 2 3 1 5 9

1 [FEEN] a9 EF 2

1] 1is 512 2 EXhlin
i X T 1 L 10 16
7 15 100 11 ] = 118
] Th 1512 ZV 3RS TI
9 15 | 814 | 1660 [ 576 ERE =
10y 168 | Qi | 2050 [ 500 [ 1172|4000 | 416 | 11 426 171

: dimensionality of the problem (n);

graphic algorithm;

10t column: amount of instances for which complexity of dynamic programming algorithm is less than

complexity of Balsub algorithm.

r I Knapsack problems. Springer, 2004,



Scheduling, line balancingand investments problems: Complexity and Algorithms

Project investment problem

n potential projects
A —an investment budget (for all A from interval [A,A”])
f{t) -- a profit function of project |

The goal is to define an amount t;in [0,A] (integer) for each project to maximize the
total profit.

St<=A




Scheduling, line balancingand investments problems: Complexity and Algorithms

Project investment problem

1 3
f, ¢
7 3
2 4
f
4
f2 4




Scheduling, line balancingand investments problems: Complexity and Algorithms

Graphical algorithm for the project investment problem

Dynamic programming algorithm O(nA?). Or O(3kA)
F(T) = _max {f,(t)-&-ﬂ 1(T=1)} T'=4A4-1,....1,

In Graphical Algorithm functions fi(t) and Bellman’s functions (value function)
F,(t) are saved in tabular form:

K 1 2 ... k;
. 13
nterval K | [th,45) | [15.¢3) | ... | [t jJﬁ A)
K 1 2 '
bj bj bj e bk
K 1 2 i
”j i.‘:",— ’H,j e ’HJ

Running time for the 15t version of Graphical Algorithm O(nk;,,,, A 109(KaxA))

Running time for the 2" version of Graphical Algorithm O(2kA)




Scheduling, line balancingand investments problems: Complexity and Algorithms

Graphical algorithm for Investments problem

1 3
f
1
: fy
2 4
f
4
HE
K 1 2 3 4

interval K | [0,3) | [3,10) | [10,13) | [13,25]
bF 0 0 7 8

T

3

uf 0 1




Scheduling, line balancingand investments problems: Complexity and Algorithms

~ @

1

3

~ o

rall

5
8
7
t
ty
0 13 18 *
B
8
7
ty
0 13 15 x*



Scheduling, line balancingand investments problems: Complexity and Algorithms

FPTAS for 6 scheduling problems

(a) (b)

by ] o be .
. F:{(t) =u (et ) + b
by Lo e
H > J— >
T T T N




Scheduling, line balancingand investments problems: Complexity and Algorithms

FPTAS for 6 scheduling problems

Problem Time complexity of the GrA Time complex- | Time
ity of the FP- | complex-
TAS ity of the
classical
DPA
> w;U; O(min{2", n - min{dy oz, Fope } 1) [5] - O(ndpmaz)
d; =d;+ A2 U; | Ow%) [3] (Grd) - On > pj)
1> GT; Omin{2", n - {dnee. nF*}}) OmZloglogn + | O(ndpmaz)
1> T; special | O@min{2", n - min{dy, 4, F*}}) (e)(u"/s) O(ndmaz)
case B—1
HIXT; special | O(min{n® - min{dq., F*}}) On?/z) O dpar)
case B — 1G
1d; =d[ > w,T; O(min{n” - min{d, F*}}) O(n’ ‘/C) O dyar)
1(no- Omin{2", n - min{dy, 0. nF=, 2 w;it}) | OmZloglogn + | Olndyy o)
idle)||max > w;T; | [5] ’Li)
1(no- Om”) [4] (GrA) - O(nd oz )
idle)|| max ) T




Graphical Approach to Solve Combinatorial Problems

Dynamic Programming Algorithms for the Problem
1[d=d|>wT,

Single machine

n jobs j=12,..,n
p; processing time d;,=d common due date
w; weight

Tardiness of job j in schedule 7t : T, (1) = max{0,C, (rt)-d}

Goal: Find a schedule rt* that minimizes Jw,T;

3/18 Evaeny Gafaggy, Alexander Lazarev, Frank Weroes



Graphical Approach to Solve Combinatorial Problems

Dynamic Programming Algorithms for the Problem
1[d=d|>wT,

Lemma 1: There exists an optimal schedule
= (G,xH), where
all jobs from set G are on-time and processed in non-increasing order

of the values p/w; ;

all jobs from set H are tardy and processed in non-decreasing order

of the values p/w; ;
the straddling job x starts before time d and is completed no earlier

than time d.

4/18



Graphical Approach to Solve Combinatorial Problems

First Dynamic Programming Algorithm for the
Problem 1/d=d[5w,T,

Let x=1 be the straddling job.

Instepl, I=1,2,...,n for each state t=[0, 3p;] or [0,d]
we choose one of two positions for job /:

\ I T4 (t+p)

‘ T 4(t) | / |

t
The running time is O(nd) for each straddling job x=1,2,...,n

5/18 Evge




Graphical Approach to Solve Combinatorial Problems

The Second Dynamic Programming Algorithm for the
Problem 1/d=d[5w,T,

Let x=1 be the straddling job.

n | n .
=p, 2P

tis the total processing time of the jobs scheduled at the beginning of a schedule.
In step /=n, two states are saved: (p,, F;) and (p,,F,)

n | n-1 n-1

t:pn+pn-1 ij

t=p,.; ij

4 states are saved in step /=n-1

6/18




Graphical Approach to Solve Combinatorial Problems

Comparison of Dynamic Programming Algorithms

In the first algorithm, all integer points (states) t = [0,d] are considered.
The running time is O(nd).

In the second algorithm, only possible points t = [0,d] are considered, which
are computed if the processing of the jobs starts at time 0.
The running time is O(nd) as well.

The second algorithm is faster (since it considers not all points t),
but the first algorithm finds an optimal solution for each integer starting
time from [0,d].

7/18 Evg



Graphical Approach to Solve Combinatorial Problems

8/18

Graphical Algorithm

Dynamic Programming (Bellman 1954)
Functional equations:
consider in each step j all states t € [0,A] N Z

Ly — o o i
fj(t)—min{ O (t) = aj(t) + fi—it —aj), 7=1,2,...

., T

Idea of the graphical algorithm:
Combine several states into a new state

Fort € [t;,t,,,), we have
fi(t) = @4, (t) and an optimal solution X (¢,)

]




Graphical Approach to Solve Combinatorial Problems

Graphical Algorithm
Computations in the first dynamic programming algorithm
t 0 1 2 y ... A
1 (t) valueg | valuey | values | ... | valuey | ... | valuea
optimal partial [ X(0) | X(1) | X(©2) |... | X(v) X(A4)
solution X (¢)
Computations in the graphical algorithm
t to, 21) | [t o) | oo | B tict) | oo | B, —1, )]
fi(t) o1(t) | pat) |- | o) |- O, (1)
optimal partial solution X (t) | X(¢0) | X(t1) | ... | X (&) X (tm;-1)

Fort € [tl: tz+1): we have
fi(t) = @41(t) and an optimal solution X (t,)

9/18




Graphical Approach to Solve Combinatorial Problems

Graphical Algorithm
(a) (b)

A A
fy fj
kel J !
B . i
f=ufti)+b;
b L7 atgo’.:l}‘ ............
T ) kel
L > —r —""—————‘——bj——— >
> 1 k2 1 (]
i 5 oyt Y 3 Pt
k 1 2 ... m; +1 m; +2
- ;o FT my T
interval k | (—oo,t] | (¢1.43] | ... | (£79,¢] 71+ 1 4o0)
v 2 m;+
b 0 b2 N +o0
k 2 ™
uj 0 uj u; } 0
71';“ Trjl. TFJQ 7r;n7+ (1,2,..., 7)

10/18




Graphical Approach to Solve Combinatorial Problems

Graphical Algorithm

k 1 2 ... m; +1 m; +2
- I T2 T T
interval k | (—occtd] | (¢1,83] | ... | (&7, ¢ 71 ] @7, 4o0)
bk 0 b2 b +oo
T T
u;c 0 u? U 711 0
TF;C 7TJ1. TI'JQ o (1,2,....9)
[ [ [ | |
T T 1 T [ 1
I N R
®l(t) P2 (t)

fi11 = min{®L, 02}

11/18




Graphical Approach to Solve Combinatorial Problems

Graphical Algorithm

k 1 2 o m; +1 m; +2
interval k | (—oc,t3] | (¢3.43] | ... | (879,87 H} (¢ - +o0)
bt 0 b2 D +00

u;‘ 0 u? 'LL;n7+l 0
Tr;" 7TJ1. TI'JQ W;.njH (L,2,..., 7)

In the table, 0<b<b?<... since function F(t) is monotonic with t being the starting time.
Function F/(t) can be defined for all t from (-eo,+oo).

Let UB be an upper bound on the optimal objective function value.
Then we have to save only the columns with b/<UB.

The running time of the Graphical Algorithm is O(n min{UB,d}) for each straddling job x.

12/18




Graphical Approach to Solve Combinatorial Problems

FPTAS based on the Graphical Algorithm

k 1 2 A m; + 1 m; +2
- g my T T
interval k | (—oo.t}] | (¢5,63] | ... | (¢]7.¢] J: ] @7, 4o0)
A B m;+
5 0 b2 v oo
k 2 ™
uj 0 uy u;’;1]‘+1 0
i T m " (L2,....j)

In the table, O<b/’<b?<... since function F(t) is monotonic with t being the starting time.

The running time of the Graphical Algorithm is O(n min{UB,d}) for each straddling job x.

To reduce the running time, we can round (approximate) the values b/<UB to get a
polynomial number of different values b/

let § = EUnB.

5 Round b} up or down to the nearest multiple of )

13/18




Graphical Approach to Solve Combinatorial Problems

FPTAS based on the Graphical Algorithm

-1y

& e

8-

t

no more than 4% columns

no more than U(S—B = 2?” different values blk

cumulative error will be no more than nd < eF(7*)

The running time of the FPTAS is O( ﬁ)
€

14/18



Graphical Approach to Solve Combinatorial Problems

Comparison of Dynamic Programming and Graphical
Algorithms

Note Classical DPA GrA Alternative DPA
Can it solve instances | no yes ves

with p; € Z and in-
stances with large values

Pj
states ¢ considered allte[0,dNZ only ¢, where the slope | ounly ¢ from the set
of the function Fi(t) is | &
changed
The running time for the | O(nmin{d, UB}) O(nmin{d, UB}) O(nmin{d, UB})
initial instance
- of the problem | O(ndmq.) O(nmin{dya., UB}) O(nmin{dy.., UB})

1| ©GT; is
- of the problem 1{no- | O(nmin{d,,.., UB}) O(nmin{d,,q., UB, > w;})| O(nmin{d,, ..., UB})
idle)|| max 3 w,T; is

O ={eyp +xap +- - Fxpple e,z € {0,1}}

15/18




Graphical Approach to Solve Combinatorial Problems

Comparison of Dynamic Programming and Graphical
Algorithms

Note Classical DPA GrA Alternative DPA
It finds all optimal sched- | O(nd) O(nd) -
ules for all starting times
t € [0,d] in time

If finds all optimal sched- | O(nUB) O(nUB) -
ules for all starting times
t € (—oo,tYVB] in time

It finds all optimal sched- | O(nF (7', d)) O(nF(x', d}) -
ules for all starting times
t € (—oo, +00) in time

The running time of the | O(%-log L)) O(n®fe)” O(n® fe)**
FPTAS is

. r . . .
n this time, for all ¢ — o0, t solutions can be found with an absolute error restricte

* In this time, for all ¢ € tUB] solutions can be found with bsolute error restricted

by eLB. For all t € [tLBtUB] LB < ( < tUB, solutions can be found with a relative error

restricted by £.

** An approximate solution is only found for the starting time ¢ = 0.

16/18




Graphical Approach to Solve Combinatorial Problems

Graphical Algorithms and the corresponding FPTAS

Problem Time complexity of GrA Time complex- | Time
ity of FPTAS complex-
ity of
classical
DPA
I > w,U; O(min{ 2" n - min{dmaz, Fope }}) 5] - Olndimax)
ld; =d;+A] 22U, | O(n?) [5] - O(n 2 pj)
1] > GT; O(min{ 2" n - {dnaz . nF"}}) O(n”loglogn + | O(ndyax)
i)
1 >°T; special | O(min{2™, n - min{dq., F7}}) O(n[e) O(ndmaz )
case 3 —1
1 Z'I'_,- special t’){min{-n.'-J ~min{dmaz, F7}}) f){-n.3 /) f){-uf"n‘.,,,_,u]
case B — 1G
Ld; =d[ > w,T; O(min{n® min{d, F"}}) O(n? [e) On*dmax)
1{no- O(min{ 2", n - min{dma., nF'", > wjt}) l."){-u.'-J loglogn + | O(ndmas)
idle)||max > w;T; | [5] ﬁ]
1(no- On7) [4] - O(ndmax)
idle)||max 3T

17/18
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Practical results
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Practical results

© Practical results
@ Education planning

@ Cosmonaut training scheduling problem
@ Cosmonaut training scheduling problem statement
@ Volume planning problem
@ Timetabling problem
@ Results

@ Railway operational and maintenance scheduling
@ Railway scheduling problems and existing methods
@ Laboratory projects in railway scheduling
@ Two-station single track railway scheduling problem
@ Dynamic programming approach
@ Results for STR2
@ Single track railway scheduling problem with a siding
@ Dynamic programming approach for STR2S
@ Results for STR2S
@ Freight car routing
@ Locomotive assignment scheduling problem
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Education planning
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Education planning

1C Software product

1C: ABTOMaTU3NpoBaHHOE COCTaBIIEHWEe pacnUCaHUA.
YuuBepcutet / Konnepx / LLikona

64 ©

CootseTcTane

Ha cospemenHoli TNerkasn LWnpokme !
e M poceHiickiM
nnatgopme 1C:8.3 B 0CBOGHMM HacTpoVKM
peanuam
Alexander Lazarev Metrics and approximations

May 21, 2019

08 / 188



Education planning

e Schedule construction in manual/automatic/mixed mode.
e 30 universities, 55 colleges, 160 schools

AL® 1 (50 yen.) K2 10 (30 yen.) K2 11 (56 uen.) |K2 23 (30 yen.) 914 K.K. (25 yen.)

80HAOHIO

15

winodLoen

14:00-15:35
15:45-17:20

BMHEOMUOE BUHBUEELI0D)

7:30-19:05
8:00-09:35 HeckonbKko saHaTit

WuaLeaetfouad] |

1quuAd)
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Education planning

The goal

e To construct a feasible schedule that fits in all constraints,

e or an optimal schedule that minimizes the number of

e windows (blank spaces) in a schedule;

e transitions between buildings during a day;
o unfulfilled staff wishes;

e used rooms;

Mathematical problem

e Timetabling (over 1600 papers on similar problems on
ScienceDirect.com).

e Problem is NP-hard.
e Fast metaheuristic ant-colony based solution approach was proposed.

Alexander Lazarev Metrics and approximations May 21, 2019 100 / 188



Cosmonaut training scheduling problem
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Cosmonaut training scheduling problem
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Cosmonaut training scheduling problem statement

Set of on-board systems.

Sets of cosmonauts and crews.

Set of resources (equipment, teachers, etc.).

Dates of starts.

It is necessary to prepare appropriate crews to dates of their starts.

Alexander Lazarev Metrics and approximations May 21, 2019 103 / 188



Our goals

to develop mathematical model

to find approaches to solve it

to implement Planner system

to reduce labor costs

e to form new and reschedule available timetable

Alexander Lazarev Metrics and approximations May 21, 2019 104 / 188



Cosmonauts Training Scheduling Problem

Mathematical formulation — (Resource-Constrained Project

Scheduling Problem).

e Resource constraints.

e Precedence constraints.

e More than 4000 publications are devoted to this problem at
scholar.google.ru.

e NP-hard in strong sense, there are no pseudo-polynomial algorithms.

v
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Methods for solving RCPSP

e Dynamic programming.

Methods of Integer Linear Programming.
e Methods of Constraint Programming.

e Heuristic algorithms.

Alexander Lazarev Metrics and approximations May 21, 2019 106 / 188



Volume planning problem

Problem statement

e set of on-board systems (near 140);

e required number of cosmonauts of different skills for each on-board
system.

Goal: to distribute training qualifications between cosmonauts, minimizing
the difference between the maximum and minimum total time of training of
cosmonauts.

v

e heuristic greedy algorithm;
e branch and bound method (CPLEX).

Alexander Lazarev Metrics and approximations May 21, 2019 107 / 188



Initial data

for volume planning problem

Tpebenioe KOTHUCCTBO ii Wachi Ha IOATOTOBKY
Kopatns KI Kopadian K2 i onsmiii
C o n c o n C o n C o n
Cpounoe NOKUAHHE B ABAPHITHLIX CHTYALMIX 0| 3 0| 0 3| 0| 23| 23 22 23 23 22
Cucrema yuera 0| 0| 3 0] 1 2 0] 17] 2| 0| 9] 0|
cuerema 2 0| 0| 1 0| 0 12] 12| 1 4 4 1
BopTOBas BHIMMCAHTENbHAA CHCTEMA 1 0| 2 1 0| 2] 15] 1l 5.5) 2) 2 2)
‘CHCTeNa yTIpaBTeHIIA GOPTOBEIM KOMTUTEKCON
‘Boprosoi annaparypoii 1 0| 2 1 0| 2| 28| 2| 95 2) 2 2)
CucTenma GopTossIX WIMepeHuil 1 0| 2 1 0| 2 15] 13) 2] 4 4 0|
Cpeactea paznocemait 1 1 1 0 P 35 28 123 4 4 2
TeneruznonKas cucTema 1 0| 2 1 0| 2 11 1 2] 4 4 0|
CiicTena obecneteHA AITHCACKTCAbHOCTI ! | | o ) 0| 512 2 1) 1 B
CHcTema JHeprocHabeHIA 1 0l 2| 1 0| 2| 20 18! 5 3| 6| 0|
CHCTCNA YIPABICHILA ABIACHICN 1t HABHTAWICH 1 | | 1 | 1 3| 175 5 8 3 1
Tienrarcasmse ycranonn o 0 [ 0 0 4 0 q 2 0 0
OnTiKo-BHIYATL HBIE CHCTEMBE 1 0| 0| 1 0| 0 0] 4 0) 0| 2 0|
Kype 1 o 0 1 0 0 7 7 q 2| 2 0
CreTeMa CTHIKOBKH 1 0| 2 1 0| 2 16 13) 4 4 4 2]
KOHCTpYKIWitA H KOMITOHOBKL 0| 2| 1 0 2| 1
(CucTenma ofecrieueniss TeI0BOTO pexuMa 1 1 1 1 0| 2 43 24 6,5] 8 8 2]
Qoroannaparypa 0| 1 2 0) 1 2| 0| 19] 0) 8 0]
0| 1 2 0) 1 2 0] 28] 0] 0| 12 0l
JIPC 1 0] 0| 1 0| 0| 22| 14] 5 1 8 5
O6opyaosaine aaa BK/L (ckagparap Opnan, uimososoit
orcex, uuclpvvmrru ans BKJL) 0| 2] 0| 0) 1 0 0) 60| 8] 0| 32 8|
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The experimental results

for volume planning problem

Ne Onuir agHbiin anroputm CPLEX ]
max [ min [ o max [ min [ o
3 Heon. 889.5 887.0 2.5 888.05 887.75 0.3
1 3 on. 570.5 569 1.5 570 569.5 0.5
1 on., 2 Heon. 721.7 694.5 27.2 697.25 695.25 2
2 on., 1 Heon. 669.7 598.0 71.7 616.5 612.75 3.75
3 Heon. 266.25 265 1.25 265.75 265.2 0.55
5 3 on. 234.2 233 1.2 233.75 233.25 0.5
1 on., 2 Heon. 245.5 244.0 1.5 244.45 244 0.45
2 on., 1 Heon. 235.0 233.25 1.75 233.75 233.25 0.5
3 Heon. 660.2 659.5 0.7 659.85 659.75 0.1
3 3 on. 353.5 353.05 0.45 3535 353 0.5
1 on.,2 Heon. 497.95 493.5 4.45 484.05 481.75 2.3
2 on., 1 Heon. 398.05 394.0 4.05 393.5 3925 1
3 Heon. 925.75 924.2 1.55 925 924.8 0.2
a 3 on. 587 586.5 0.5 587 586.5 0.5
1 on., 2 Heon. 774.5 694.5 80.0 731.5 730.75 0.75
2 Heon., 1 on. 649.2 648.5 0.7 628.75 628 0.75

Measure of unsolvability
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Timetabling problem

Planing horizon is about 3 years.

Each cosmonaut has an individual learning plan.
10 crews are studying simultaneously.

There are main and backup crews.
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Review of other space agencies systems

KAREN AU, SAMUEL SANTIAGO, RICHARD PAPASIN, MAY WINDERM, TRISTAN LE. Streamlining Space
Training Mission Operations with Web Technologies. An Approach to Developing Integral Business Applications for

Large Organizations // |EEE 4th International Conference on. Space Mission Challenges for Information Technology

(SMC-IT), 2011, pp.159-166.
v
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EKA

SPAGNULO, M., FLEETER, R., BALDUCCINI, M., NASINI, F. Space Program Management : Methods and Tools

// Spagnulo, M., Fleeter, R., Balduccini, M., Nasini, F., Springer-Verlag New York - 2013. - 352 c.
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Problem statement

e K — a number of cosmonauts;

Ji — each cosmonaut k has his own set of training tasks;

e p; — execution time of task j € J;

R — set of resources.

The goal is

to form a training schedule for each cosmonaut
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Time intervals

e |/ — set of planning weeks, where |W/| = 156 weeks (3 years);

e D, ={1,2,3,45} — set of work days per week, w € W;

e Hy,y = {1, ..., 18} — set of half-hour intervals of day d € D,, of week
weWw.

Y = {(w,d, h)|w € W,d € Dy, h € Hyg}, |Y|~ 14040

t(w, d, h) — considering time moment.
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Variables

1, iff task j is started

Xjwdh = from interval h of day d of week w;
0, else.
Week

! 1 5
n

1
t

2 l
]
rl

17
v

18
a
| 12345

Day
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Precedence relations between the tasks (academic plan)

Z 1:'(W7 d, h)(ijwdh - lewdh) 2 Pji; (13)
(w,d,h)eY

V(j1,42) € Tk.

The resource limits (teachers, simulators, trainers)

Z rcjr Z Xjwdh' < I3rwdh, (14)

jed K >0,
h—pj+1<h <h

VreR, ¥(w,d,h) €Y. |Y|~ 14040, |R| ~ 100.
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No more than ... (frequency of classes)

SN Y N <2, Ywe w. (15)

jEJF dED, hEHyq

Each cosmonaut may have no more than 2 physical trainings per week.

Excluding some time intervals
§ E Xjwdh = 0,
JE€Jihyihy) P1—pPj+1<h<h

Ywe W, Vd € D,,;

[h1; ha] — time period when performing task j is forbidden.

It is forbidden to practice in the hyperbaric chamber after lunch.
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Comparison of two approaches to solving

the scheduling problem for 1 crew

N CPLEX MIP CPLEX CP

Time, ¢ | Var. Constr. Iter. Time, ¢ | Var. | Constr. | Branch.
1 | 09.06 26820 | 37620 21922 0.250 291 | 2170 1272
2 | 30.75 52680 | 60066 54234 0.329 363 | 2788 1512
3 | 559.84 | 73500 | 87846 5019412 | 0.438 492 | 3548 2008
4 | 375.834 | 108720 | 121578 | 2032790 | 0.703 606 | 4263 2784
5 | 374.63 | 115200 | 125466 | 2022320 | 0.610 642 | 4348 2912
7 | 346.30 | 144480 | 157920 820534 0.640 654 | 4374 2648
10 | 6657.98 | 204000 | 210646 | 16 917 014 | 1.317 852 | 5738 3 448

N is a number of on-board systems.
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Results

e Schedule for 1 crew for 1 year 3 moths

e Schedule for 2 crew for 2 year
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Railway operational and maintenance scheduling
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Railway scheduling pioneers

Frank, O., Two-Way Traffic on a Single Line of Railway, Oper. Res., 1966,
vol. 14, no. 5, pp. 801-811. J

Szpigel, B., Optimal Train Scheduling on a Single Line Railway, Oper. Res.,
1973, pp. 344-351. J

Relation between railway planning problems and classical scheduling

problems

e track segments = «machines»

e trains = «jobs»
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Existing approaches and solution methods

1. Considering in terms of job-shop.

Szpigel B. Optimal train scheduling on a single line railway. Oper Res, 344 - 351,
1973.

Sotskov Y. Shifting bottleneck algorithm for train scheduling in a single-track
railway. Proccedings of the 14th IFAC Symposium on Information Control
Problems. Part 1. Bucharest/Romania. 87 - 92. 2012.

Gafarov E.R., Dolgui A., Lazarev A.A. Two-Station Single-Track Railway
Scheduling Problem With Trains of Equal Speed. Computers and Industrial
Engineering. 85:260 - 267. 2015.

Harbering J., Ranade A., Schmidt M. Single Track Train Scheduling. Institute of
Numerical and Applied Mathematics. preprint. 18. 2015.
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Existing approaches and solution methods

2. Integer linear programming

Brannlund U., Lindberg P.O, Nou A. and Nilsson J.E.
Railway Timetabling Using Lagrangian Relaxation.
Transportation Science 32(4):358 - 369. 1998.

Lazarev, A.A. and Musatova, E.G.
Integer Formulations of the Problem of Railway Train Formation and Timetabling,
Upravlen. Bol'shimi Sist., 2012, no. 38, pp. 161-169.

v
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Exicting approaches and solution methods

3. Heuristics

Sotskov Y.

Shifting bottleneck algorithm for train scheduling in a single-track railway.
Proccedings of the 14th IFAC Symposium on Information Control Problems. Part
1. Bucharest/Romania. 87 - 92. 2012.

Mu S., Maged D.
Scheduling freight trains traveling on complex networks.
Transportation Research Part B: Methodological. 45(7):1103 - 1123. 2011.

Carey M., and Lockwood D.
A model, algorithms and strategy for train pathing.
The Journal of Operational Research Society. 8(46):988 - 1005. 1995.
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Exicting approaches and solution methods

Allocation of polynomially solvable cases of railway scheduling problems

Gafarov E.R., Dolgui A., Lazarev A.A.

Two-Station Single-Track Railway Scheduling Problem With Trains of Equal
Speed.

Computers and Industrial Engineering. 85:260 - 267. 2015.

Harbering J., Ranade A., Schmidt M.
Single Track Train Scheduling.
Institute of Numerical and Applied Mathematics. preprint. 18. 2015.

Disser Y., Klimm M., Lubbecke E.
Scheduling Bidirectional Traffic on a Path.

In Proceedings of the 42nd International Colloquium on Automata, Languages,
and Programming (ICALP). 406 - 418. 2015.

Alexander Lazarev Metrics and approximations May 21, 2019 125 / 188



Laboratory projects in railway scheduling

Small-scale problems

e Scheduling problem on single railway tracks.

e Goal — the development of exact polynomially solvable algorithms with
small computational complexity.

e Solution approach — dynamical programming.

Large-scale problems

e The freight car routing problem.
e Goal — the construction of operational plan with feasible solution time.

e Solution approach — integer linear programming, LP-relaxation,
column generation.
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Two-station single track railway scheduling problem

Initial data
o [Ni|=n, |No|=n', N=NyUNp, [N|=n+n'.
e All trains have equal speed, track traversing time — p.

Minimal time between the departure of two trains from one station — 3.

The transportation starts at time t = 0.

Denote the problem as STR2 (Single Track Railway Scheduling Problem). J
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Problem formulation

Schedule

In schedule o, for each train /i € NV

e Si(0) — it's departure time;

e Ci(o) — arrival time, Ci(o) = Si(o) + p.

Objective function

e Family of objective functions.

e The approach will be demonstrated on the maximum lateness objective
function L. (o),

Limd@) = max Ly = rPEaJ{C;(a) —di}.
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Dynamic programming approach

We will consider schedule schedule o which possess the following property: for
any point in time t such that 0 < ¢t < C,,.«(0) there exists at least one train
i € N satisfying the condition S;(0) < t < Ci(0).

Station 2

Station 1
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Dynamic programming approach

Train departure order is specified.

Maximum lateness L.,

For objective function L.x(0) = ma&({ Ci(o) — d;} there exists an optimal
1S

schedule o in which trains depart from each station in a nondecreasing
order of due dates d.

Numbering of trains

On each station trains are numbered in the decreasing order of their
departure times, / > j implies that, in any schedule o, Si(0) < Sj(o).
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Dynamic programming approach

Subproblem P(k, kz,@)

set of unsent trains

on station 1,

k, €{0,1,2,...,n} € N; additional condition:
first train depart from
station s€ {1,2}

set of unsent trains on station 2,

k, €{0,1,2,...,n'} €N,

Optimal value of the objective function for P(kq, k3, s)

f(kla kéas) - F(U*)7

where o* is an optimal schedule for P (k. k}, s).
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Solution algorithm

Station 2

Siding

f(ky, k), 1) 1

Station 1

Station 2

T
|
Siding 1
|
|
|
|

Station 1 L
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Solution algorithm

Station 2

f(klﬂ é;]-)‘{‘P 3

max{f(kl, ké, ].) + p, p - dk§_|_1}

Station 1 t
Station 2 w
Bl , 1
\ f(kl,k2,2)—|—6 \
a 2 max{f(ki, k3,2) + 3, p — digs1}
Station 1 [ | k L

|
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Dynamic programming approach

p— dk§+1;
f(ki, k) +1,2) = max ) Flke, K, 1) + p;
min
f(k17k£72)+ﬁv

for each ky € {1',....n" — 1"}, kg #0.
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Dynamic programming approach

£(1,0,1) =p—dy
£(0,1,2) = p — dy

Bellman equation

P — diy41;
flky+1,K5,1) = maxq {f(kl, kb 1) + B; ky € {1,...,n—1}, kb £ 0’
fky, kb,2) + p.
pP— dkg+1;
fki kg +1,2) =maxq {f(kl,ké,l) + p; Kye{1,...n' —1'}, kg #£0
fky, kb, 2) + B.

v
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Dynamic programming approach

Optimal objective function value of the original problem

min{f(n,n’,1), f(n,n’,2)}

Computational complexity

O((n+ n')?)
Value of f(ki, kb, s) is computed for:
e each pair of ki, k1 € {1,...,n}), and kb, ko € {1,....n'}.
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Dynamic programming approach

Other objective functions

This solution procedure can applied to a set of objective functions, for

example for
Z W,'C,'(U) = Z W,'C,'(U)
ieN

e "Shifted" schedule o; of schedule o, Ci(0) — Ci(o:) =t for all i € N.
e There exists G(k1, k), s) so that F(o:) = F(o) + G(ki, kj, t).

o for Lmax: G(ki, kb, t) =t;

o for Y wiCi(0): Glki, kb, t) = YK, wit + Y2, wit.
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Dynamic programming approach

General form of objective functions
O ¢i(Ci(o)),

ieN

where
e ¢;(-) — nondecreasing function, defined for each train / € IV,
e (O — some commutative and associative operation such,

e for any numbers a1, as, b1, by, @ satisfy a1 < a> and by < by,

a1 ®© b1 < ax © by.
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Dynamic programming approach

STR2|| () ¢i(Ci(0))

ieN

e Specified train departure order on each station.
e Polynomial set of possible departure times T, |T| = O((n + n')?).
e Subproblem: P(ki, kb, s, t), f(ki, kb, s, t) is calculated for

e each pair of ki, ki € {1,...,n};

e each pair of kb, ko € {1,....n'};

e allteT.

Computational complexity — O((n + n')%).
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Dynamic programming approach

Minimization of maximum cost functions

Fmax(0) = rineal\>l< @i(Ci(a))

e No specified order of train departure on each station.

Iterative optimization procedure

dynamic programming algorithm for STR2||L .«

general optimisation scheme, presented by Zinder and Shkurba'

1Zinder, Y. and Shkurba, V. Effective iterative algorithms in scheduling
theory. Cybernetics, 21(1), 86-90. 1985.
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Dynamic programming approach

Iterative optimisation procedure

Algorithm 1 Solution method for the train scheduling
problem ST R2||F,,0.

L Vi= Lax wi(p) (lower bound)

2 fori:=1ton+n'do Due date setting
if vi(7) < V then
d; :==71,
else
choose 73 so that ; (1) <V < ¢i(Trt1)
Lfi =Tk
end if
: end for
. construct schedule o by solving ST R2||Lmaz
i L= Lyge(a)
: if L > 0 then
V= s jGNr.n(%; . @;(d; + L) (lower bound)
14: goto?2
15: else
16: return o is an optimal value
17_end if

Computational complexity

/ /
O((n+ n')?log(n+ n
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Results for STR2

Dynamic programming procedure for a set of objective functions

Computational complexity is O((n + n’)*),
can be reduced for a subset of objective functions — O((n + n’)?).

Iterative optimisation procedure for maximum cost functions

Fmax(0) = maxp;(Ci(0))

ieN

Computational complexity is O((n + n")® log(n + n')).
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Results for STR2

Solution algorithm complexity

Problem Complexity
STR2 Lo o(n?)
STR2| Y. w6, o(n?)
STR2[| max;(C(0)) O(n® log n)
J
STR2|p(j), A | Lmax o(n*)
STR2|p(j), A| 3 /G 0(n)
STR2|p(j), A 3_ Uj(o) O(n*)
STR2|p(j), A | @ #(G) O(n™+an?)
J
STR2|p(j), A, V| max 0i(Ci(0)) | O(q?log gn>*+2e+1pX og n)
JE
A — the number of subsets with possible fixed departure order p(j) — different

train traversing times V/ — feasible intervals of movement
v
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Single track railway scheduling problem with a siding

What is the siding?

Main track

o

/

Additional track
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Single track railway scheduling problem with a siding

N> Siding

Initial data

e One siding, capacity is one train.

[Ny| = ny, |Na| = no, all trains have equal speed.
e Traversing times: p1, p2, p1 > po.

e For each train  from station s, i € N, s € {1,2}, due date d! and cost
coefficient w! are given;

e Release times: r/ =0, i € Ns, s € {1,2}.

Denote the problem as STR2S (STR2 with a siding). )
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Single track railway scheduling problem with a siding

We need to construct optimal schedule o, i.e. to set for each train number /
moving from station s, i € N, s € {1,2}, it's departure time S.(o), stop time in
the siding 7.(o) and arrival time C/(0).

Objective function

Minimizing maximum lateness

[—m X — Li )
: iGNerg){(lg}{ o)

where ' ' '
l=ci-d

and weighted sum of arrival moments

dowG= > wC

i€Ns, se{1,2}

v
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Schedule properties for presented model

Express is the train / moving from station s, i € Ns, s € {1,2}, if it doesn't
stop in the siding, i.e. 7. = 0.

Station 2

Siding

Station 1
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Schedule properties for presented model
Station 2 /Féayﬂj/sj(edule
Siding

Station 1 :
Station 2 Left-shifted schedule
Siding

Station 1 :
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Schedule properties for presented model

Station 2 Left-shifted schedule
Siding
Station 1 :
Station 2 g‘/ Regular schedule
Siding

i =mp
Station 1 E
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Station 2

Siding

Station 1

1) Batch moving from station 1 with empty siding.
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Station 2

Siding

Station 1

2) Batch moving from station 2 with empty siding.
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Station 2

Siding

Station 1

3) Batch moving from station 1 with occupied siding.
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Station 2

Siding

Station 1

4) Batch moving from station 2 with occupied siding.
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Express state (S, b)

express departure station,
s € {1,2}
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Express state (S, b)

/

express departure station,
s € {1,2}

«O»

Station 2 \
Siding

Station 1
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Express state (S, b)

express departure station,
s € {1,2}

«0O» «1»

Station 2

Siding

\ /
NAV/AN
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States

Express state (S, b)

express departure station,
s € {1,2}

«0O» «1In...«1»

Station 2

Siding

A\ i
AV
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States

Express state (S, b)

express departure station,
s € {1,2}

«0O» «I»...«I»«2»

i

\
NAV/A
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Regular schedule and expresses states sequences

For each regular schedule there exists one and only one sequence of
expresses states.

Station 2

Siding

Station 1

(2,1) (2,1) (2,2) (1,1) (1,1) (1,1) (1,2) (2,0)
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(1,0) (1,0) (1,0) (1,0)
(2,0) (2,0) (2,0) (2,0)
(1,1) (1,1) (1,1) (1,1)
(1,0) (2.1) (2,0) (2.1) (1,2) (2,1) (2,2) (2.1)
(1,2) (1,2) (1,2) (1,2)
(2,2) (2, 2) (2,2) (2,2)

(2,1)
1< o) D o< o)

—+
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Station 2

Siding

Station 1

(2,2) (1,0) (2,0)
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Solution algorithm

Subproblem P(kq, ks, b)

—

number of unsent trains
onstation1, k; € {0,1,2,...,n4}

additional condition:
state of the first express,
se {1,2}, b € {0,1,2}

number of unsent trains on
station 2, k, € {0,1,2, ...,n,}

Number of different subproblems — O(n?)
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Solution algorithm

(2,0,1,0)
(nlanlllo) <‘< €= (1111210)
€ mmmm y4, 4,
(n N ,2,0) é (2,1,2,2)
v — (1,1,1,0)
(nlanIl[l) / (0’2,2,0) (011'2;0)
S s—— e (1,2,1,2)
/ (11212;2)
(ny,n,,2,1) ‘< (2,1,1,0);
/ (1;2:2l0) (111;112)
(ny,n,1,2) << e (2,1,1,)
(2,1,1,0)
/ €=-=—=——=—== (1121210) (1’1’2’2)
(n11n21212) D t
— (1,2,2,1)
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Solution algorithm

Initial values

F(laoalvo)):pl“‘pZ_dlly
F(0717270))2p1+p2_d211

2p; — di:
F(1,1,1,2) = max{ 7T %20
p2 + p1 — dj;
2p, — di:
F(1,1,2,2) = max{ 27
P2+ p1 — d2-

Exclusion of impossible subtasks
e F(0, ko,1,0) = o0;
o F(k1,0,2,0) = oo;
o F(ki,ko,s,b) =00 if k1 =0 or ko =0, where (s, b) ¢ {(1,0),(2,0)}.)
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Solution algorithm

Bellman equation

Optimal objective function value in the subproblem P(ki, k2, s, b)

H(kl7 k2757 b),

F(ki, ko, s,b) = min max
(ko k2, s, b) (K{ K./ B)E T (ki ka,s,b) {F(k{,kﬁ,s’,b’)+g((s, b), (s, H)

Objective function value of express in state (s, b) and skipping train

max{py + p2 — d¥;2p; — di¥}, if b =2,
p1+ p2 — dsks otherwise.

H(kl, kg, S, b) = {
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Results for STR2S

Results for STR2S

e Exact solution algorithm based on the dynamical programming
method was proposed for the described problem.

e Presented algorithm allows to construct set of optimal schedules in
O(n?) operations.

Algorithm for Y w;C;

For objective function ) w;C; algorithm is the same, some operations and
variables changes.
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The freight car routing problem: overview

o o i ™
[E—
== b 9
initial car distribution transportation demands
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Specificity of freight rail transportation in Russia

The state company

- N Independent freight car
e Freight car management companies
blocking Transp. costs matrix (M) ¢ Assignment of
e Freight train  [Transp. times matrix (D) transportation
schedulin g :
.g ) demands to freight
e Locomotives car movements cars
management . .
& e Freight car routing
e Personnel g
management

Distances are large, and average freight train speed is low (=~ 300 km/day):
discretization in periods of 1 day is reasonable
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The freight car routing problem: input and output

nput
e Railroad network (stations)
e Initial locations of cars (sources)
e Transportation demands and associated profits

e Costs: transfer costs and standing (waiting) daily rates;

e A set of accepted demands and their execution dates

e Empty and loaded cars movements to meet the demands (car routing)

v

Objective

Maximize the total net profit

Alexander Lazarev Metrics and approximations May 21, 2019 169 / 188



Similar works in the literature

[Fukasawa, Poggi, Porto, Uchoa, ATMOSO02]

e Train schedule is known
e Cars should be assigned to trains to be transported

e Discretization by the moments of arrival and departure of trains.
Smaller time horizon (7 days)

[Holmberg, Joborn, Lundren, TS98]

[Lobel, MS98]

[Campetella, Lulli, Pietropaoli, Ricciardi, ATMOS06]
[Caprara, Malaguti, Toth, TS11]
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Data: overview

e T — planning horizon (set of time periods);
e | — set of stations;

e C — set of car types;

e K — set of product types;

e  — set of demands;

e S — set of sources (initial car locations);

e M — empty transfer cost function;

e D — empty transfer duration function;
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Demands data

For each order g € @

e origin and destination stations;

e product type
e set of car types, which can be used for this demand — C, C C

e maximum (minimum) number of cars, needed to fulfill (partially) the

demand — n'>(nT")

e time window for starting the transportation

profit vector (for delivery of one car with the product), depends on the
period on which the transportation is started

e transportation time of the demand

daily standing rates charged for one car waiting before loading (after
unloading) the product at origin (destination) station

Alexander Lazarev Metrics and approximations May 21, 2019 172 / 188



Sources and car types data

For each source s € S

station where cars are located
e type of cars
e period, starting from which cars can be used
e daily standing rate charged for cars
e type of the latest delivered product

e number of cars in the source — i, € N

For each car type c € C

e (. — set of demands, which a car of type ¢ can fulfill

e S. — set of sources for car type ¢
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Commodity graph

Commodity ¢ € C represents the flow (movements) of cars of type c.

Graph G, = (V,, A.) for commodity ¢ € C:

satien 2 Q,d,d,d,d,o, a0a o » waiting arc
NSN0% 0% N % - -» empty transfer arc

Y
a0 a0 — loaded transfer arc

station 2

station 1

time

Each vertex v € V, represent location of cars of type ¢ on a certain station
at a certain time standing at a certain rate

g, — cost of arc a € A,

4
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Multi-commodity flow formulation

Variables
e x, € 7, — flow size along arc a € A., c € C

e y,€{0,1} —demand g € Q is accepted or not

min Z Z ZaXa

ceC acAc

Y <y,

ceCqacAgy

D2 =g

ceCq a€Acg
E Xa — 5 Xa = My

X3 €Z+
Yq € {07 1}

We concentrate on solving its LP-relaxation
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Multi-commodity flow formulation

Variables

e x, € 7, — flow size along arc a € A., c € C

e y,€{0,1} —demand g € Q is accepted or not

min Z Z ZaXa

ceC acAc

Y <y,

ceCqacAgy

D2 =g

ceCq a€Acg

E Xa — 5 Xa = My

OSqul

We concentrate on solving its LP-relaxation
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Path reformulation

e P, — set of paths (car routes) from source s € S

Variables

e \. € 7Z, — flow size along path p e P, s € S

min Z Z Z ggath)\p

ceC seS. pePs

DD X<y, Vae@

ceCq s€Sc pEPs: qGanth

22 2 hazmve Y9EQ

c€Cq sESe pep,: qGanth
Z)\p:ﬁs Vee C,se S,
pEPs

Ap € Ly Vee C,se S.,p€ Ps
v €{0,1} VqgeQ@
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Column generation for path reformulation

e Pricing problem decomposes to shortest path problems, one for each
source
e slow: number of sources are thousands
e To accelerate, for each commodity ¢ € C, we search for a shortest
path in-tree to the terminal vertex from all sources in S
e drawback: some demands are severely “overcovered”, bad
convergence
e We developed iterative procedure which removes covered demands and
cars assigned to them, and the repeats search for a shortest path
in-tree
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Flow enumeration reformulation

e [, — set of fixed flows for commodity ¢ € C

VEEL]ES
e wr € {0,1} — commodity c is routed accordity to flow f € F. or not

min 3° 3 8/

ceC feFs

YD) fwr <nf®y, VgeQ

CECq fch aeAcq

DD fwr =gy, VYqeQ

ceCq feEF: acAcg

wa:l Vce C

feF,
wp € {0,1} VceC,feF.
qu{O,].} quQ
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Approach CGEF

e Pricing problem decomposes to minimum cost flow problems, one for
each commodity
e slow: very bad convergence
e “Column generation for extended formulations” (CGEF) approach: we
disaggregate the pricing problem solution to arc flow variables, which
are added to the master.
e The master then becomes the multi-commodity flow formulation with

restricter number of arc flow variables, i.e. “improving” variables are
generated dynamically

Proposition

If an arc flow variable x has a negative reduced cost, there exists a negative
reduced cost pricing problem solution in which x > 0.
(consequence of the theorem by S. and Vanderbeck)
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Tested approaches

e DIRECT: solution of the multi-commodity flow formulation by the Clp LP
solver
e Problem specific solver source code modifications
e Problem specific preprocessing is applied (not public)
e Tested inside the company

e COLGEN: solution of the path reformulation by column generation
(BaPCod library and Cplex LP solver)
e Initialization of the master by “doing nothing” routes
e Stabilization by dual prices smoothing
e Restricted master clean-up

e COLGENEF": “dynamic” solution of multi-commodity flow formulation by
the CGEF approach (BaPCod library, Lemon min-cost flow solver and Cplex
LP solver)
e Initialization of the master by all waiting arcs
e Only trivial preprocessing is applied
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First test set of real-life instances

Instance name x3 x3double 5k0711q
Number of stations 371 371 1'900
Number of demands 1'684 3'368 7'424
Number of car types 17 17 1
Number of cars 1'013 1'013 15’008
Number of sources 791 791 11'215
Time horizon, days 37 74 35
Number of vertices, thousands 62 152 22
Number of arcs, thousands 794 2'846 1'843
Solution time for DIRECT 20s 1h34m 55s
Solution time for COLGEN 22s 7mb3s 8m59s
Solution time for COLGENEF  3mb55s >2h 43s
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Real-life instances with larger planning horizon

1'025 stations, up to 6'800 demands, 11 car types, 12'651 cars, and 8'232
sources.
Up to ~ 300 thousands nodes and 10 millions arcs.

w w w Horizon Direct CoLGENEF

sol _ ggiéﬁ; | 80 5m24s 1mb2s

3 — CoLGENEF 90 7m05s 1mA4T7s
2 100 9m42s 2m19s
‘E 60 h 110 13m38s 3mlls
g 120 17m19s 3m57s
T a0 . 130 25mb52s 5m03s
% 140 35m08s 5m25s
Q 20l i 150 44mb8s 7m02s
160 57mlls 8m19s

. __// 170 1h13m58s 10m53s

80 100 12 140 160 180 180 1h26m46s 12m16s

planning horizon length, days
Convergence of COLGENEF in less than 15 iterations.
About 3% of arc flow variables at the last iteration.

Alexander Lazarev Metrics and approximations May 21, 2019 182 / 188



Conclusions

e Three approaches tested for a freight car routing problem on real-life
instances

e Approach COLGEN is the best for instances with small number of
sources

e Problem-specific preprocessing is important: good results for DIRECT

e Approach COLGENEF is the best for large instances

e Combination of COLGENEF and problem-specific preprocessing

would allow to increase discretization and improve solutions quality
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Problems of the marshalling yard

Three problems of the marshalling yard:
e trains must be disbanded and new ones formed,;
e |locomotives must undergo maintenance in the PML;

e each train must be assigned by a locomotive.

Scale
the problem of forming Assignment problem

T
"

T TR
i

E T

PML

scheduling problem
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PML problem

You must specify the order of maintenance of locomotives, specifying the

start times of service for each locomotive and a service position where the
locomotive will be served.

n = 5 = = o
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Done work

The considered objective functions:
e total idle time;
e total waiting time;
e maximum waiting time;
e makespan.
Obtained results:
e for dynamic programming O((3_ns)™n" ... nT"*1) of states must
S

be checked:

e CP model for IBM ILOG CPLEX optimizer is developed. Finding of an
approximate solution takes more than 4 hours;

e a heuristic algorithm is developed that gives a solution with the value
of the objective function 20% more than that of the IBM ILOG
CPLEX optimizer;

e the algorithm of local search is applied to the schedule received by

heuristic algorithm. The value of the objective function decreased by
1%.
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