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Gantt chart and assembly line

Alexander Lazarev Metrics and approximations May 21, 2019 5 / 188



Gantt chart

Henry Laurence Gantt (1861-1919), American me-
chanical engineer and management consultant who
is best known for his work in the development of sci-
entific management. In the 1903 he introduced a
graphical method of project schedule representation
known as the Gantt chart (Gantt diagram).

"A graphical daily balance in manufacture" (1903)
"Organizing for Work" (1919)
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Gantt chart

An example of Gantt chart
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Gantt chart

Modern Gantt chart for production lines
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The history of assembly line - The Ford Company

Henry Ford (July 30, 1863 – April 7, 1947) – a
business magnate, the founder of the Ford Motor
Company, and the sponsor of the development of the
assembly line technique of mass production.

Alexander Lazarev Metrics and approximations May 21, 2019 9 / 188



Ford assembly line

Ford magneto assembly line, 1913 Ford Model T assembly line
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Scheduling theory term and pioneers
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Scheduling theory term

Richard Ernest Bellman (1920–1984), American ap-
plied mathematician, famous for his work on dynamic
programming and numerous important contributions
in other fields of mathematics. In the 1954 he intro-
duced the term ”scheduling theory”.

"Mathematical Aspects of Scheduling Theory" (1955)
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Pioneers of scheduling theory. First results

J. R. Jackson. Scheduling a production to minimize maximum tardiness.
Research Report 43, Management Science Research Project, University of
California at Los Angeles, 1955

W. E. Smith. Various optimizers for single-stage production. Naval
Research Logistic Quarterly, 3:59-66, 1956

S. M. Johnson. Optimal two-and-three-stage production schedules with
set-up times included. Naval Research Logistics Quarterly, 1:61-68, 1954

First monograph on Scheduling Theory
R. W. Conway, W. L. Maxwell, L. W. Miller. Theory of Scheduling, 1967
(Russian edition in 1975)
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Pioneers of scheduling theory in USSR

Tanaev, V.S. and Shkurba, V.V.
Vvedenie v teoriyu raspisanii (Introduction to
Scheduling Theory), Moscow: Nauka, 1975
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Computational complexity in Scheduling Theory
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Computational complexity

• If computational complexity of the algorithm that solves the problem
is O(nk ) operations, where k is some constant number independent
from n, then this problem is called solvable in polynomial time.
Algorithms for the problems mentioned before (Jackson’s, Smith’s,
Johnson’s problems ) are polynomial. O( nlogn)
• All problems that are solvable within polynomial time formulate a class

of problems denoted as P . Algorithms with corresponding
computational complexity are called polynomial .
• If complexity of the algorithm depends on the values of numerical

parameters of an example, for example, O(nA), then this algorithm is
called pseudo-polynomial .
• If complexity of the algorithm has the form of O(nxyn), where x and

y are some constants, then this algorithm is called exponential .
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Class NP

• Suppose that we have a computer that includes a special ”guessing”
component (oracle).
• The oracle, given correct input data (i.e. a solution to the given

instance exists), provides some (possibly correct) output data.
• The output data provided by oracle needs to be verified, i. e. we

should construct an algorithm that checks if the output data contains
a correct solution that is in accordance with provided input data. The
problem of verifying data provided by oracle could also be formulated
as an instance of recognition problem.
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Class NP

• Class NP includes all the problems to which the solution (if such
exists) can be guessed by an oracle, and:
• The amount of data in solution provided by oracle is polynomially

bounded;
• The solution provided by oracle can be verified in polynomial time.
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Reduction of one problem to another

It is said that problem A can be reduced to problem B in polynomial
time (A ∝ B), if a modification algorithm exists, such that:

• The algorithm transforms any given instance IA of problem A into a
corresponding instance IB of problem B in polynomial time
• The answer to received instance IB of problem B is ”YES”
if and only if the answer to the corresponding instance IA of
problem A is ”YES” , too. (Or, less strictly, the solutions of
corresponding instances IA, IB of problems A, B always match)
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NP-complete and NP-hard problems

Problem B is called NP-hard, if any other problem A ∈ NP can be
reduced to problem B in polynomial time.

Problem B is called NP-complete, if:
• B is NP-hard;
• B belongs to class NP .
If any NP-complete problem is solvable in polynomial time, then all of
the NP-complete are solvable in polynomial time (P = NP).

NP-hard problem B is called NP-hard in the strong sense if there is no
pseudo-polynomial algorithm of solving this problem (supposed that
P 6= NP).
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Classification of problems in Machine scheduling

Each problem is denoted as α|β|γ, where
• α describes characteristics of the problem that are related to
machines
• β describes constraints and conditions of processing of requests.
• γ describes objective function.
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Classification of problems in Machine scheduling

α describes characteristics of the problem related to machines. Possible
values of α:
• 1 — single machine
• Pm — parallel machines
• Qm — parallel machines (non-equivalent)
• Fm — Flow-shop problem
• Om — Open-shop problem
• Jm — Job-shop problem
• . . .
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Classification of problems in Machine scheduling

β describes constraints and conditions of processing of requests. Possible
contents of field β:
• rj — release dates are specified
• dj — due dates are specified
• Dj — deadlines are specified
• prec — precedence relations are specified
• pmnt — preemption is allowed
• batch — batching problem: groups of requests (batches) can be
processed simultaneously.
• Other conditions: pj = p, . . .

γ describes objective function (e.g., Cmax).
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Denotations in Scheduling Theory

Objective functions:
• Cj — completion time
• Lj = Cj − dj — lateness
• Tj = max{0, Cj − dj} — tardiness
• Ej = max{0, dj − Cj} — earliness
• Uj — unit penalty: equals 1 if job j is late (Cj > dj) and 0 in the
opposite case

If request weights wj are provided, all of the previous objective functions
are called weighed, and are multiplied by the value of request weight (ex.,
weighed tardiness wjTj is calculated as wj max{0, Cj − dj})

Alexander Lazarev Metrics and approximations May 21, 2019 24 / 188



Denotations in Scheduling Theory

Optimization criteria:
1. Min-max criteria

• Cmax → min — minimizing maximum completion time
(makespan), Cmax = max

j∈N
Cj . These problems are also called

performance problems.
• Lmax → min — minimizing maximum lateness Lmax = max

j∈N
Lj

2. Summary criteria
•
∑
j∈N

Cj → min — minimizing total completion time

•
∑
j∈N

Tj → min — minimizing total tardiness

•
∑
j∈N

Uj → min — minimizing total number of late jobs

Also, problems of maximizing these objective functions are considered (ex.,∑
j∈N

Tj → max).
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Problem complexity classification

NP-hardness in strong sense is a qualitative property!

Satisfability problem (SAT)
Boolean formula f (x1, x2, ..., xn), operations: AND, OR, NOT, (, )

∃xi = {FALSE ,TRUE}, i ∈ {1, ..., n} : f (x1, x2, ..., xn) = TRUE?

Cook, S. (1971). The complexity of theorem proving procedures.
Proceedings of the Third Annual ACM Symposium on Theory of
Computing. pp. 151–158. doi:10.1145/800157.805047.

Garey, M. R.; Johnson, D. S. (1979). Victor Klee (ed.). Computers and
Intractability: A Guide to the Theory of NP-Completeness. A Series of
Books in the Mathematical Sciences. San Francisco, Calif.: W. H. Freeman
and Co. pp. x+338. ISBN 0-7167-1045-5. MR 0519066.
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Classification of problems in Machine scheduling

Thus, record F2|rj |Cmax denotes problem of minimizing makespan in
Flow-shop system with two machines in case of non-simultaneous
admission of requests. Other examples: 1|pj = p, rj |

∑
wjTj ,

Pm|rj , pmtn|
∑

Cj , . . .

Some of previously considered problems in terms of machine
scheduling:

• 1|rj |Lmax (Jackson’s problem with non-zero release times)
is NP-hard in the strong sense
• 1|rj |

∑
Cj (Smith’s problem with non-zero release times)

is NP-hard
• F3||Cmax (Johnson’s problem with more than 2 machines)
is NP-hard in the strong sense
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Challenges in Scheduling Theory
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Complexity challenges in Scheduling Theory

• The majority of formulations are NP-hard in the strong sense.
• In this case for real-life scaled problems it is impossible to find proven

optimal solution (if P 6= NP).
• It leads to the demand for fast algorithms with «good» solutions?
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Complexity challenges in Scheduling Theory

A set of «inspired by nature» heuristic methods
• Tabu search
• Simulated Annealing
• Ant Colony Optimization
• Particle Swarm Optimization

+ speed and simple structure
– no estimations of accuracy (optimization criteria value delta)

Polynomial-Time Approximation Scheme (PTAS)
+ guaranteed polynomial and accuracy estimations
– accuracy forms the complexity, e.g. O(nε)
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Complexity challenges in Scheduling Theory

Proposed alternative solution method

Metric approach
• Guaranteed accuracy provided by error upper bound estimations.
• Polynomial complexity does not depend on the accuracy.
• Method gives quantitative complexity estimations for the problem in

addition to the qualitative property of NP-hardness.

Method is based on:
• a metric function for problem input data instance space;
• metric-based estimations of accuracy;
• polynomially-solvable subclasses of problem input data instances.
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Practical challenges in Scheduling Theory

• In industrial cases objective functions are often unknown or are not clearly
defined (e.g. RZD schedules, Gagarin Cosmonaut Training Center plans).

• Plans and schedules do not significantly change their structure for years.

• New solutions are formed based on a set of previous schedule structure.

A new proposition for these cases

Objective function approximation

• There exists a set of previous problem input data instances and solutions.

• Objective function is unknown but linear to the completion time of the job.

• The first goal: to find the form and coefficients of the objective function;

• The second goal: to provide the solution for the next instance.
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Section 2

Theoretical results in Scheduling
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Theoretical results in Scheduling

2 Theoretical results in Scheduling
Metrics approach in scheduling theory

The problem 1|rj |Lmax

1|rj |Lmax solvable cases
Pareto-optimal cases
Instance metric
The closest solvable instance construction LP-problem
Metrics for 1|rj |

∑
Tj

Measure of polynomial unsolvability
Example: Metrics for the railway scheduling problem

Objective function approximation
Motivation and basic idea
The problem 1||

∑
ωjCj

Solvability
Approximation problem

Dual complexity reduction
Graphical approach
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Metrics approach in scheduling theory

Alexander Lazarev Metrics and approximations May 21, 2019 35 / 188



The problem 1|rj |Lmax - minimizing maximum lateness

1|rj |Lmax

Single machine, n jobs
rj – release time;
pj > 0 – processing time;
dj – due date.
j ∈ N = {1, 2, . . . , n}

Preemptions of a job are not allowed. The machine can process at most
one job at any time.

A schedule describes order of processing the jobs: a permutation(sequence)
π = (j1, j2, ..., jn).

Graham R.L., Lawler E.L., Lenstra J.K., Rinnooy Kan A.H.G. 1979
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0

π i

pi

Cidiri

j

pj

Cj djrj

F (π) = max
j∈N
{Cj − dj} → min

π

NP-hard in strong sense

Lenstra J.K., Rinnooy Kan A.H.G., Brucker, P. 1977
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1|rj |Lmax solvable cases

1) rj = 0, ∀ j ∈ N. O(n log n)
Jackson J.R. 1955

1’) dj = const, ∀ j ∈ N. O(n log n)

1”) pj = const, ∀ j ∈ N.
Simons B. 1983. O(n2 log n)

Alexander Lazarev Metrics and approximations May 21, 2019 38 / 188



1|rj |Lmax solvable cases

2) O(n3 log n){
d1 ≤ d2 ≤ · · · ≤ dn;
d1 − r1 − p1 ≥ d2 − r2 − p2 ≥ · · · ≥ dn − rn − pn.

(1)

2’) dj = rj + pj + const,∀ j ∈ N. O(n3 log n)

{1,P,Q,R}|rj |{Lmax,Cmax} O(n3 log n)

Lazarev A.A., Sadykov R.R., Sevastyanov S.V. 1988-2007

3) max
k∈N
{dk − rk − pk} ≤ dj − rj ,∀ j ∈ N. O(n2 log n)

Hoogeveen J. A. 1996
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1|rj |Lmax solvable cases

4) NP-hard in ordinary sense O(n2P + npmaxP)
d1 ≤ d2 ≤ · · · ≤ dn;
r1 ≥ r2 ≥ · · · ≥ rn;
rj , pj , dj ∈ Z+, ∀ j ∈ N.

(2)

Lazarev A.A., Schulgina O.N. 1998

P = rmax +
n∑

j=1
pj − rmin, rmax = max

j∈N
rj , rmin = min

j∈N
rj , pmax = max

j∈N
pj
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1|rj |Lmax solvable cases

5)


d1 ≤ d2 ≤ · · · ≤ dn;
d1 − αr1 − βp1 ≥ d2 − αr2 − βp2 ≥ · · · ≥ dn − αrn − βpn;
α ∈ [1,∞), β ∈ [0, 1].

(3)

5’)
dj = αrj + βpj + const, ∀ j ∈ N, α ∈ [1,∞), β ∈ [0, 1]. 2009

O(n3 log n)
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Pareto-optimal cases
1 | di ≤ dj , di − αri − βpi ≥ dj − αrj − βpj | Lmax,Cmax


d1 ≤ d2 ≤ · · · ≤ dn;
d1 − αr1 − βp1 ≥ d2 − αr2 − βp2 ≥ · · · ≥ dn − αrn − βpn;
α ∈ [1,∞), β ∈ [0, 1].

(4)

1 | di ≤ dj , di − αri − βpi ≥ dj − αrj − βpj | Lmax,Cmax

1 ≤|| Φ(N, t) ||≤ n

O(n3 log n)
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Pareto-optimal cases
1 | di ≤ dj , di − αri − βpi ≥ dj − αrj − βpj | Lmax,Cmax

1 ≤|| Φ(N, t) ||= m ≤ n

O(n3 log n)
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Instance metric

The approach
• Set of parameters Ω = {r1, ..., rn, p1, ..., pn, d1, ..., dn} characterizes an

instance.
• An instance can be considered as a vector in 3n-dimensional space of

parameters.

Definitions
• For a particular value of parameter ω ∈ Ω in the instance A we will

use upper index : ωA.
• The value of the objective function F in the instance A under the

schedule π will be denoted as FA(π).
• We denote the optimal schedule for the instance A as πA.
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Instance metric

Any instance is point in m = 3n-dimension space.

A – "hard" instance

0

polynomially (pseudo-polynomially) solvable cone

B
ρ(A,B) = FA(πB)− FA(πA)
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Instance metric

• An absolute error of the approximation scheme is bounded by the
metric function ρ(A,B).
• The problem 1|rj |Lmax is reduced to the minimization of the function
ρ(A,B) – from arbitrary instance A to the closest polynomially
solvable instance B .

1|rj |Lmax

0 ≤ ρ(A,B) = FA(πB) − FA(πA) ≤
(max{rA

j − rB
j } −min{rA

j − rB
j }) +

(
∑
|pA

j − pB
j |) +

(max{dA
j − dB

j } −min{dA
j − dB

j })
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Instance metric

Metric properties

ϕ(A) = max
j∈N

(rA
j )−min

j∈N
(rA

j ) + max
j∈N

(dA
j )−min

j∈N
(dA

j ) +
∑
j∈N

|pA
j | ≥ 0.


ϕ(A) = 0⇐⇒ A ≡ 0;
ϕ(αA) = αϕ(A);
ϕ(A + B) ≤ ϕ(A) + ϕ(B).

(5)

||A|| = ϕ(A) ρ(A,B) = ||A− B||.
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The closest solvable instance construction LP-problem

||A|| = ϕ(A) ρ(A,B) = ||A− B||

Polynomially (pseudo-polynomially) solvable case

AR + BP + CD ≤ H

A, B, C – matrixes, R,P,D,H – vectors.
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The closest solvable instance construction LP-problem

Projection of an instance A to a polynomially (pseudo-polynomially)
solvable case
The minimum absolute error among all instances from solvable area,–
instance B .

O(n log n)



ρ(A,B) = (xr − yr ) +
∑

(xp − yp) + (xd − yd )→ min

yr ≤ rA
j − rB

j ≤ xr , ∀ j ;

−x j
p ≤ pA

j − pB
j ≤ x j

p,∀ j , x j
p ≥ 0;

yd ≤ dA
j − dB

j ≤ xd ,∀ j ;

ARB + BPB + CDB ≤ H.
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The closest solvable instance construction LP-problem



ρ(A,B) = (xr − yr ) +
∑

j
(x j

p − y j
p) + (xd − yd )→ min

xr ,yr ,x
j
p ,xd ,yd ,

rB
j ,p

B
j ,d

B
j ,∀ j

yr ≤ rA
j − rB

j ≤ xr ,∀ j ;

−x j
p ≤ pA

j − pB
j ≤ x j

p,∀ j , x j
p ≥ 0;

yd ≤ dA
j − dB

j ≤ xd ,∀ j ;

dB
1 ≤ dB

2 ≤ · · · ≤ dB
n ;

dB
1 − αrB

1 − βpB
1 ≥ dB

2 − αrB
2 − βpB

2 ≥ · · · ≥ dB
n − αrB

n − βpB
n ;

α ∈ [1,∞), β ∈ [0, 1].

4 + 4n variables, 8n − 2 inequalities O(n log n)
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The closest solvable instance construction LP-problem

Example of ARB + BPB + CDB ≤ H:

Inequalities for the subclass 1|di ≤ dj , di − ri − pi ≥ dj − rj − pj |Lmax

Instance I = {(r I
j , p

I
j , d

I
j )|j ∈ N} belongs to this subclass, if there exists the

numbering {1, 2, ..., n}, which satisfies the following inequalities

d I
1 ≤ ... ≤ d I

n; ∆I
1 ≥ ... ≥ ∆I

n,

where ∆I
j = d I

j − r I
j − pI

j . For this subclass A(n−1)×n is

ARB +APB −ADB ≤ 0, ADB ≤ 0.

and A(n−1)×n =


1 −1 0 0 ... 0 0 0
0 1 −1 0 ... 0 0 0
0 0 1 −1 ... 0 0 0
... ... ... ... ... ... ... ...
0 0 0 0 ... 1 −1 0
0 0 0 0 ... 0 1 −1

 ;
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Metrics for 1|rj |Lmax and in general case

1|rj |Lmax

Lazarev A.A. Estimation of Absolute Error in Scheduling Problems of
Minimizing the Maximum Lateness, Dokl. Math., Vol. 76, 2007, P.
572–574.

General case

F (π) =
∑
j∈N

φj (π, r1, ..., rn, p1, ..., pn, dj )

ρ(A,B) =
∑
j∈N

∑
i∈N

(Rji |rA
j − rB

j |+ Pji |pA
j − pB

j |) +
∑
j∈N

Dj |dA
j − dB

j |,

where Rji ≥ |
∂φj

∂ri
|, Pji ≥ |

∂φj

∂pi
|, Dji ≥ |

∂φj

∂di
|.
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Metrics for 1|rj |
∑

Tj

Problem formulation
Set N = {1, 2, ..., n} of n independent jobs must be processed on a single
machine.
• The machine can handle only one job at a time.
• Preemptions are not allowed.
• The machine is ready to start processing at time 0.

For each job j , j ∈ N, a processing time pj ≥ 0, release date rj ≥ 0 and
due date dj are given.

In early schedule π: Sj1 = rj1 and Sjk = max{rjk ,Cjk−1} for k = 2, ..., n,
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Metrics for 1|rj |
∑

Tj

Objective function
• Tj (π) = max{0,Cj (π)− dj} is the tardiness of the job j in the

schedule π.
•
∑
j∈N

Tj (π) is the total tardiness in the schedule π.

The total tardiness minimization problem is denoted as 1|rj |
∑

Tj .

Du J., Leung J.Y.T. Minimizing total tardiness on one machine is NP-hard
Mathematics of Operations Research, Vol. 15. 1990, N. 3, P. 483 – 495.
Problem 1|rj |

∑
Tj is NP-hard in the ordinary sense.
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Metrics for 1|rj |
∑

Tj

Theorem
Function

ρ(A,B) = n ·max
j∈N
|rA

j − rB
j |+ n ·

∑
j∈N

|pA
j − pB

j |+
∑
j∈N

|dA
j − dB

j |

satisfies the axioms of metric function and is applicable as parameters
space metric.

Lemma
For any instances A, B and schedule π

|
∑
j∈N

TA
j (π)−

∑
j∈N

TB
j (π)| ≤ ρ(A,B)
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Metrics for 1|rj |
∑

Tj

Lemma
For any instances A, B and schedule π

|
∑
j∈N

TA
j (π)−

∑
j∈N

TB
j (π)| ≤ ρ(A,B)

Theorem
For any instances A and B∑

j∈N

TA
j (πB)−

∑
j∈N

TA
j (πA) ≤ 2ρ(A,B)

There πA and πB are optimal schedules for instances A and B , respectively.
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Metrics for 1|rj |
∑

Tj

LP approximation model

min f = n · (y r − x r ) + n ·
n∑

j=1

(yp
j − xp

j ) + ·
n∑

j=1

(yd
j − xd

j )

s.t.
x r ≤ rA

j − rB
j ≤ y r ,

xp
j ≤ pA

j − pB
j ≤ yp

j ,

xd
j ≤ dA

j − dB
j ≤ yd ,

rB
j ≥ 0, pB

j ≥ 0, j ∈ N,

A · RB + B · PB + C · DB ≤ H

Solvable case class constraints

LP with 7n+2 variables : rB
j , pB

j , d
B
j , xp

j , y
p
j , x

d
j , y

d
j , x

r , y r ,j = 1, ..., n.
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Metrics for 1|rj |
∑

Tj

Solvable classes
• {PR− case : pj = p, rj = r , j ∈ N};
• {PD − case : pj = p, dj = d , j ∈ N};
• {RD − case : rj = r , dj = d , j ∈ N};

Lemma
For each class the minimum of the function f (p, d , r) could be constructed
in O(n) operations. For example, for PR− case it has the minimum at the

point with p ∈ {pA
1 , ..., p

A
n } and r =

rA
max−rA

min
2 , where rA

max = max
j∈N

rA
j ,

rA
min = min

j∈N
rA
j .
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Metrics for 1|rj |
∑

Tj

Computational experiments
• n = 4, 5, ..., 10
• 10000 instances were generated for each value of n
• pj ∈ [1, 100]

• dj ∈ [−100, 100]

• rj ∈ [0, 100]

• Fa denotes an approximate objective value of an instance
• F ∗ denotes an optimal objective value of an instance
• δ = Fa − F ∗ is exeperimental error
• ∆ = Fa−F∗

2ρ(A,B) is the ratio of experimental error and it’s upper bound
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Metrics for 1|rj |
∑

Tj
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Metrics for 1|rj |
∑

Tj
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Measure of polynomial unsolvability

Problem 1|rj |Lmax polynomial solvable classes
R). rj = const (Jackson 1955);
D). dj = const (Lawler 1973);
P). pj = const (Simons 1978);
H). dj − pj − A ≤ rj ≤ dj − A,A = const (Hoogeveen 1991);

RD). r1 ≤ · · · ≤ rn, d1 ≤ · · · ≤ dn (Hoogeveen 1991);
L). d1 ≤ · · · ≤ dn, d1 − p1 − r1 ≥ · · · ≥ dn − pn − rn (Lazarev 2008);

LA). d1 ≤ · · · ≤ dn, d1 − αp1 − βr1 ≥ · · · ≥ dn − αpn − βrn,
α = const, β = const, α ∈ [0, 1], β ∈ [0,+∞] (Lazarev, Arkhipov 2010).
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Measure of insolvability

Measure of insolvability of the instance A relative to the area X :

ρX (A) = min
B∈X

ρ(A,B).

Complex measure

E (A) = min{ρL(A), ρH(A), ρP(A), ρRD(A)}.
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Scalable parameters

Problem A
r1, r2, . . . , rn; p1, p2, . . . , pn; d1, d2, . . . , dn.

L∗max (A) = LA.

Problem kA
kr1, kr2, . . . , krn; kp1, kp2, . . . , kpn; kd1, kd2, . . . , kdn.

L∗max (A) = LkA = kLA.

Problems kA & kB

ρ(kA, kB) = kρ(A,B).
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Normalization

Normalization factor

NF (A) =

√
n∑

j=1
rj +

n∑
j=1

pj +
n∑

j=1
dj

Normalized parameters

rA′
j =

rA
j

NF (A) ; p
A′
j =

pA
j

NF (A) ; d
A′
j =

dA
j

NF (A) .
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Upper bound estimation

Theorem
For each instance A′ which belongs to the 3n-dimensional unit sphere
following inequalities holds:

E (A′) < 1.

And if ∀j ∈ N parameters rj , pj , dj ≥ 0, then:

E (A′) <
1√
2

holds.
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Proof

NF (A′) =
n∑

j=1

rA′
j +

n∑
j=1

pA′
j +

n∑
j=1

dA′
j = 1,

ρRD(A′) = min
R,D≥0

{R + D}, ∀i , j ∈ N, which holds

(dA′
j − dA′

i )(rA′
j − rA′

i ) < 0: [
|rA′

i − rA′
j | ≤ R;

|dA′
i − dA′

j | ≤ D.
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Proof

Hence, ∃i1, j1, i2, j2 ∈ N : {
rA′
i1
− rA′

j1
≥ E (A′);

dA′
i2
− dA′

j2
≥ E (A′).

And, due to E (A′) ≤ ρP(A′), ∃j3:

pj3 > 0.

NF (A′) = 1 ≥ (rA′
i1 )2 + (rA′

j1 )2 + (dA′
i2 )2 + (dA′

j2 )2 + (pA′
j3 )2.
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Proof

(rA′
i1 )2 + (rA′

j1 )2 + (dA′
i2 )2 + (dA′

j2 )2 + (pA′
j3 )2 > E (A′)2,

and
(rA′

i1 )2 + (rA′
j1 )2 + (dA′

i2 )2 + (dA′
j2 )2 + (pA′

j3 )2 > 2E (A′)2

if rA′
i1
, rA′

j1
, dA′

i2
, dA′

j2
, rA′

j3
are non-negative. Hence,

E (A′) < 1,

and
E (A′) <

1√
2
,

if rA′
i1
, rA′

j1
, dA′

i2
, dA′

j2
, rA′

j3
are non-negative. QED.
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Strengthening theorem

Algorithm Shrage: for every instance A with non-negative parameters of
jobs it is possible to construct the solution in O(n log n) operations with
guaranteed accuracy eED = max

j∈N
pj

Strengthen theorem
For each instance A which belongs to the 3n-dimensional unit sphere
following inequalities holds that if ∀j ∈ N parameters rj , pj , dj ≥ 0, then

min{eED ,E (A)} < 1√
3
.

Schrage L. Obtaining Optimal Solutions to Resource Constrained Network
Scheduling Problems. Unpublished manuscript 1971.
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Metrics approach and Insolvability measure : conclusion

• Metrics allow to construct solutions with guaranteed accuracy in
polynomial time.

• Measure of polynomial insolvability forms the quantitative property in
addition to the NP-hardness qualitative property!
• Theoretically and practically significant result.
• Example: Metrics for the railway scheduling problem.
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Example: Metrics for the railway scheduling problem

N1→ ←N2

St. 1 St. 2p

Initial data
• |N1| = n, |N2| = n′, N = N1 ∪ N2, |N| = n + n′.
• All trains have equal speed, track traversing time – p.
• Minimal time between the departure of two trains from one station – β.

• The transportation starts at time t = 0.

Objective function

• We consider a family of objective functions. In schedule σ, for each train
i ∈ N Si (σ) – it’s departure time; Ci (σ) – arrival time, Ci (σ) = Si (σ) + p.

• The approach is demonstrated on the maximum lateness objective function
Lmax (σ), Lmax (σ) = max

i∈N
Li = max

i∈N
{Ci (σ)− di}.
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Example: Metrics for the railway scheduling problem

Instances

• Denote the problem as STR2 (Single Track Railway Scheduling Problem).

• The STR2|rj |Lmax (with release times rj) problem instance: 2n + 2
parameters, dj and rj for each train j ∈ N are given plus two general
parameters β and p.

• We consider the problem instances as points in the 2n-dimensional space of
parameters, denoted as Ω = {r1, ..., rn, d1, ..., dn}.

Metric function

ρ(A,B) = max
j∈N
|rA

j − rB
j |+ max

j∈N
|dA

j − dB
j |

satisfies the axioms of metric function. For any instances A, B and schedule π

|LA
max (π)− LB

max (π)| ≤ ρ(A,B)
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Example: Metrics for the railway scheduling problem

Optimal schedules πA and πB for instances A and B , respectively
For any instances A and B: LA

max (πB )− LA
max (πA) ≤ 2ρ(A,B).

LP approximation model (find solvable instance B for A)

min y + x

subject to
−y ≤ dA

j − dB
j ≤ y , ∀j ∈ N,

−x ≤ rA
j − rB

j ≤ x , ∀j ∈ N,

0 ≤ rB
j , ∀j ∈ N,

A · RB + B · DB ≤ H (solvable instance class constraints) ∗.

• rA
j and dA

j are given, and x , y , and rB
j , dB

j are unknown for all j ∈ N;

• 2n + 2 variables and 5n + m constraints, n = |N|, m – the number of
inequalities in ∗.
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Example: Metrics for the railway scheduling problem

Polynomially solvable cases

• For {PR : rj = r , ∀j ∈ N}, which is the problem STR2||Lmax , we have
ρ(A,B)PR = max

j∈N
|rA

j − r |.

• For {PD : dj = d , ∀j ∈ N}, which is the problem STR2|rj |Cmax that has the
same complexity as STR2||Lmax , we have ρ(A,B)PD = max

j∈N
|dA

j − d |.

• For {PDR : ri ≤ rj ⇒ di ≤ dj , ∀i , j ∈ N, i < j} when i and j are from the
same station, the case with agreeable due dates and arrival dates for each
station, we have ρ(A,B)PDR = max

j∈N
|rA

j − rB
j |+ max

j∈N
|dA

j − dB
j |.

Thus, for an arbitrary instance A, the nearest instance

• in class PR is {BPR : rB
j =

r A
max +r A

min

2 , dB
j = dA

j , ∀j ∈ N};

• in class PD is {BPD : dB
j =

dA
max +dA

min

2 , rB
j = rA

j , ∀j ∈ N};
• in class PDR the nearest instance B is constructed by solving the LP with

the special form of the inequality (∗).
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Objective function approximation
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Motivation

• Basically, a person (company, organization) often constructs schedules
and plans for a day, week, month, etc...
• What is your personal planning goal?

• To catch all the deadlines or due dates?
• Maximize the number of completed tasks or the income?
• For many cases the criterion is not clearly formalized.
• However, the schedule structure in general is the same from one

period to another.
• How can we use the previous schedules to construct the next one if we

have no clear objective function?
• And if we have the schedules: π−N , π−(N−1), ..., π0 and we must

construct the next schedule π1?
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The basic idea

• We consider the «inverted» scheduling problem.
• There is a set K of given pairs of instances Ik and schedules π0

k ,
|K | = N,
• Schedule π0

k is the optimal solution for the corresponding instance Ik .
• The problem is to find the form and coefficients of the objective

function.
• The objective function is linear to the completion time of the job.
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The problem 1||
∑
ωjCj

1||
∑
ωjCj

• Single machine, n jobs;
• pj > 0 – processing time;
• j ∈ N = {1, 2, . . . , n};
• no precedence relations between jobs.

Preemptions of a job are not allowed. The machine can process at most
one job at any time.

A schedule describes order of processing the jobs: a permutation(sequence)
π = (j1, j2, ..., jn).
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Solvability

1|rj |
∑
ωjCj is NP-hard in the strong sence

Лазарев А.А., Гафаров Е.Р. Теория расписаний. Задачи и алгоритмы
// Москва, МГУ, 2011, 222 С.

1||
∑
ωjCj is solvable – generalized Smith theorem

There exists an optimal schedule π∗ = (j1, ..., jn), such that

ωj1

pj1

≥
ωj2

pj2

≥ ... ≥
ωjn

pjn

.

Smith W.E. Various optimizers for single-stage production // Naval Res.
Logist. Quart. 1956. No. 3. P. 59–66.

Alexander Lazarev Metrics and approximations May 21, 2019 80 / 188



Approximation problem

• We consider the problem 1||
∑
ωjCj .

• N given pairs of instances Ik = {p1, ..., pn} and schedules π0
k .

• Schedule π0
k is the optimal solution for the corresponding instance Ik .

• The problem is to find the coefficients ωj of the objective function.

The property of an optimal schedule
n∑

j=1

C k
j (π)ωj ≥

n∑
j=1

C k
j (π0

k )ωj , ∀π 6= π0
k , k ∈ {1, ...,N}

• In general case ωj are defined by the set of N(n!− 1) inequalities.
• Is it possible to allocate the subset of M (polynomial number) of

independent inequalities, which forms the equal system?.
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Approximation problem

Basic system of inequalities for 1|rj |
∑
ωjCj

ωjk
1

pjk
1

≥
ωjk

2

pjk
2

≥ ... ≥
ωjk

n

pjk
n

, k ∈ {1, ...,N}.

Transformations
• Consider arbitrary pair of jobs ∀i , j ∈ {1, ..., n}, i 6= j .
• Separate the set K into two subsets Ki ,j and Kj ,i , depending on the

positions of i and j in π0
k .

Ki ,j = {k ∈ K : π0
k = (..., i , ..., j , ...)};

Kj ,i = {k ∈ K : π0
k = (..., j , ..., i , ...)}.

• From the basic system:
ω

jk

ω
ik
≤

p
jk

p
ik
, k ∈ Ki ,j and

ω
jk

ω
ik
≥

p
jk

p
ik
, k ∈ Kj ,i .
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Approximation problem

Effective system of inequalities

∀i , j ∈ {1, ..., n}, i 6= j ;

Ki,j = {k ∈ K : π0
k = (..., i , ..., j , ...)}, Kj,i = {k ∈ K : π0

k = (..., j , ..., i , ...)};

X (i , j) = max
k∈Kj,i

(
pk

j

pk
i

), Y (i , j) = min
k∈Ki,j

(
pk

j

pk
i

);

X (i , j) ≤ ωj

ωi
≤ Y (i , j).

Lemmas
• The basic and effective systems of inequalities are equal.

• The set of solutions of both systems is the convex polyhedral cone.
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Approximation problem

The strengthening of inequalities
Multiplication property of inequaltites forms the strengthening procedure:

X (i , j) := max{X (i , j), max
l={1,...,n}, l 6=i, l 6=j

{X (i , l)X (l , j)}}, i , j ∈ {1, ..., n}, i 6= j .

It can be repeated till some final X̃ and Ỹ .

If ω = {ω1, ..., ωn} is the solution of approximation problem 1||
∑
ωjCj , then

γω = {γω1, ..., γωn} is also the soltuion of this problem, i.e. it can be scaled.
Therefore, we can always assume that ωl = 1 for some arbitrary one index l .

Theorem
Vector ω = {ω1, ..., ωn} is the solution of the effective system, if

ωj =

{
1, if j = l ;

(X̃ (l , j) + Ỹ (l , j)/2, j 6= l .
(6)
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Computations

• Random sets with N instances Ik = {pk
1 , ..., p

k
n}, n jobs and ω0

j were
generated (distributed in [0, 1]).

• All the valued were rationed ωj :=
ωj

||ω|| , ω
0
j :=

ω0
j

||ω0|| .

• ε(N, n) = 1
n

n∑
j=1

|ωj−ω0
j |

ω0
j

, the error decreases (converges to 0) with growing N!
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Dual complexity reduction
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Duality for non-decreasing penalty functions

Initial problem

µ∗ = min
π∈Π(N)

max
k=1,n

ϕjk (Cjk (π)), (7)

Non-decreasing functions ϕj (Cj (π))

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π)). (8)

rj = 0, ∀ j ∈ N

Conway R.W., Maxwell W.L., Miller L.W. Theory of Scheduling //
Addison-Wesley, Reading, MA. 1967.
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Duality for non-decreasing penalty functions

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π))

νk = min
π∈Π(N)

ϕjk (Cjk (π)), k = 1, 2, . . . , n. (9)

ν∗ = max
k=1,n

νk . (10)
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Duality for non-decreasing penalty functions

Lemma

ϕj (t), j = 1, 2, . . . , n, any not decreasing functions 1 | rj | ϕmax,
∀ k = 1, 2, . . . , n, νn ≥ νk , ν∗ = νn.

Algorithm
πr = (i1, i2, . . . , in), ri1 ≤ ri2 ≤ · · · ≤ rin ;
πk = (πr \ ik , ik), k = 1, 2, . . . , n, ϕik (Cik (πk));
ν∗ = max

k=1,n
ϕik (Cik (πk )).

O(n2)
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Duality for non-decreasing penalty functions

Initial problem

µ∗ = min
π∈Π(N)

max
k=1,n

ϕjk (Cjk (π)), (11)

Non-decreasing function ϕj (Cj (π))

Dual problem

ν∗ = max
k=1,n

min
π∈Π(N)

ϕjk (Cjk (π)). (12)

Theorem

ϕj (t), j = 1, 2, . . . , n, any non-decreasing functions 1 | rj | ϕmax,
∀ k = 1, 2, . . . , n, µ∗ ≥ ν∗.

Branch and bound
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Duality for non-decreasing penalty functions

Initial problem is NP-hard in the strong sense!

Preceding, Dual problem
G : single machine O(n2)
G : many machines NP-hard in the ordinary sense

Non-decreasing penalty functions ϕj (Cj (π))
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Graphical approach
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Graphical approach

Partition problem
Consider a sorted set of n positive integer numbers B = {b1, b2, . . . , bn},
b1 ≥ b2 ≥ · · · ≥ bn. Divide the set B into two subsets B1, B2, so that

|
∑
i∈B1

bi −
∑
i∈B2

bi | → min

One-dimensional Knapsack problem
This problem can be viewed as an integer programming problem:

f (x) =
n∑

i=1
cixi → max

n∑
i=1

wixi ≤W

xi ∈ {0, 1}, i = 1, . . . , n
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Graphical approach

If ci = ai = bi , i = 1, . . . , n and W = 1
2

n∑
i=1

bi , then Partition problem and

One-dimensional Knapsack problem are equivalent.
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Step 1



Александр Лазарев, ИПУ РАН, 17 

декабря 2008 г.

Step 2

Let’s consider 4 points: 

0, 2, 0+3, 2+3



Step 3

Let’s consider 7 points: 

0, 2, 3, 5, 0+5, 2+5, 3+5.

Point 5+5 > 9 is not considered



Step 4



Step 1



6

Step 2



7

Step 2



8

Step 3



9

1st column: dimensionality of the problem (n);

2ndcolumn: total number of solved instances for given n (𝐶𝑛
𝑏𝑚𝑎𝑥+𝑛 −1, where 𝑏𝑚𝑎𝑥 = 40);

3rd column: average value of computational complexity of graphic algorithm;

4th column: average value of computational complexity of Balsub algorithm;

5th column: average value of computational complexity of dynamic programming algorithm;  

6th column: maximal value of computational complexity of graphic algorithm;

7th column: maximal value of computational complexity of Balsub algorithm;

8th column: maximal value of computational complexity of dynamic programming algorithm;

9th column: amount of instances for which complexity of Balsub algorithm is less than the complexity of 

graphic algorithm;

10th column: amount of instances for which complexity of dynamic programming algorithm is less than 

complexity of Balsub algorithm.



n potential projects

А – an investment budget (for all A  from interval [A’,A’’])

fj(t) -- a profit function of project j

The goal is to define an amount tj in [0,A]  (integer) for each project to maximize the 
total profit. 

∑ tj <= A 

Project investment problem



Project investment problem



Dynamic programming algorithm O(nA2). Or O(∑kjA)

In Graphical Algorithm functions fj(t) and Bellman’s functions (value function)
Fj(t) are saved in tabular form:

Running time for the 1st version of Graphical Algorithm O(nkmaxA log(kmaxA))

Graphical algorithm for the project investment problem

Running time for the 2nd version of Graphical Algorithm O(∑kjA)



Graphical algorithm for Investments problem





FPTAS for 6 scheduling problems



FPTAS for 6 scheduling problems



Single machine

n jobs j = 1,2,…,n
pj processing time          dj =d common due date         
wj weight

Tardiness of job j in schedule π : Tj (π) = max{0,Cj (π)-d}

Goal: Find a schedule π* that minimizes ∑wjTj

Dynamic Programming Algorithms for the Problem 
1|dj=d|∑wjTj

3/18



3

Lemma 1:  There exists an optimal schedule
π = (G,x,H),  where

all jobs from set G are on-time and processed in non-increasing order 
of the values pj/wj ;
all jobs from set H are tardy and processed in non-decreasing order 
of the values pj/wj ;
the straddling job x starts before time d and is completed no earlier 
than time d.

Dynamic Programming Algorithms for the Problem 
1|dj=d|∑wjTj

4/18



First Dynamic Programming Algorithm for the 
Problem 1|dj=d|∑wjTj

l

t

πl-1 (t+pl)

Let x=1 be the straddling job.

In step l, l = 1,2,…, n for each state t=[0, ∑pj] or [0,d]
we choose one of two positions for job l: 

l

t

πl -1(t)

The running time is O(nd) for each straddling job x=1,2,…,n

5/18



The Second Dynamic Programming Algorithm for the 
Problem 1|dj=d|∑wjTj

t=pn

Let x=1 be the straddling job.

4 states are saved in step l=n-1

n n

∑pj

t is the total processing time of the jobs scheduled at the beginning of a schedule.
In step l=n, two states are saved: (pn,F1) and (pn,F2)

n n-1

∑pjt=pn+pn-1

n-1

nn-1

∑pjt=pn-1

n-1

6/18



Comparison of Dynamic Programming Algorithms

In the first algorithm, all integer points (states) t = [0,d] are considered. 
The running time is O(nd).

In the second algorithm, only possible points t = [0,d] are considered, which 
are computed if the processing of the jobs starts at time 0. 
The running time is O(nd) as well.

The second algorithm is faster (since it considers not all points t), 
but  the first algorithm finds an optimal solution for each integer starting 
time from [0,d].

7/18



Graphical Algorithm

Dynamic Programming (Bellman 1954)

Idea of the graphical algorithm: 

Combine several states into a new state

8/18



Computations in the first dynamic programming algorithm

Computations in the graphical algorithm

Graphical Algorithm

9/18



Graphical Algorithm
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Graphical Algorithm

fj+1 = min{Ф1,Ф2}
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Graphical Algorithm

In the table, 0<bl
1<bl

2<… since function F(t) is monotonic with t being the starting time. 

Function Fl(t) can be defined for all t from (-∞,+∞).

Let UB be an upper bound on the optimal objective function value.
Then we have to save only the columns with bl

k<UB.

The running time of the Graphical Algorithm is O(n min{UB,d}) for each straddling job x.

12/18



FPTAS based on the Graphical Algorithm

In the table, 0<bl
1<bl

2<… since function F(t) is monotonic with t being the starting time. 

The running time of the Graphical Algorithm is O(n min{UB,d}) for each straddling job x.

Let                         .      Round bl
k up or down to the nearest multiple of 

To reduce the running time, we can round (approximate) the values bl
k<UB to get a 

polynomial number of different values bl
k

13/18



FPTAS based on the Graphical Algorithm

The running time of the FPTAS is

14/18



Comparison of Dynamic Programming and Graphical 
Algorithms
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Comparison of Dynamic Programming and Graphical 
Algorithms
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Graphical Algorithms and the corresponding FPTAS

17/18



Section 3

Practical results

Alexander Lazarev Metrics and approximations May 21, 2019 95 / 188



Practical results

3 Practical results
Education planning
Cosmonaut training scheduling problem

Cosmonaut training scheduling problem statement
Volume planning problem
Timetabling problem
Results

Railway operational and maintenance scheduling
Railway scheduling problems and existing methods
Laboratory projects in railway scheduling
Two-station single track railway scheduling problem
Dynamic programming approach
Results for STR2
Single track railway scheduling problem with a siding
Dynamic programming approach for STR2S
Results for STR2S
Freight car routing
Locomotive assignment scheduling problem
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Education planning
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Education planning

1C Software product

1С: Автоматизированное составление расписания. 
Университет / Колледж / Школа
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Education planning

• Schedule construction in manual/automatic/mixed mode.
• 30 universities, 55 colleges, 160 schools

 1

Alexander Lazarev Metrics and approximations May 21, 2019 99 / 188



Education planning

The goal
• To construct a feasible schedule that fits in all constraints,
• or an optimal schedule that minimizes the number of
• windows (blank spaces) in a schedule;
• transitions between buildings during a day;
• unfulfilled staff wishes;
• used rooms;

Mathematical problem
• Timetabling (over 1600 papers on similar problems on

ScienceDirect.com).
• Problem is NP-hard.
• Fast metaheuristic ant-colony based solution approach was proposed.
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Cosmonaut training scheduling problem
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Cosmonaut training scheduling problem

Alexander Lazarev Metrics and approximations May 21, 2019 102 / 188



Cosmonaut training scheduling problem statement

• Set of on-board systems.
• Sets of cosmonauts and crews.
• Set of resources (equipment, teachers, etc.).
• Dates of starts.

It is necessary to prepare appropriate crews to dates of their starts.

Alexander Lazarev Metrics and approximations May 21, 2019 103 / 188



Our goals

• to develop mathematical model
• to find approaches to solve it
• to implement Planner system
• to reduce labor costs
• to form new and reschedule available timetable
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Cosmonauts Training Scheduling Problem

Mathematical formulation — RCPSP (Resource-Constrained Project
Scheduling Problem).
• Resource constraints.
• Precedence constraints.
• More than 4000 publications are devoted to this problem at

scholar.google.ru.
• NP-hard in strong sense, there are no pseudo-polynomial algorithms.
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Methods for solving RCPSP

• Dynamic programming.
• Methods of Integer Linear Programming.
• Methods of Constraint Programming.
• Heuristic algorithms.
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Volume planning problem

Problem statement
• set of on-board systems (near 140);
• required number of cosmonauts of different skills for each on-board

system.

Goal: to distribute training qualifications between cosmonauts, minimizing
the difference between the maximum and minimum total time of training of
cosmonauts.

Results
• heuristic greedy algorithm;
• branch and bound method (CPLEX).
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Initial data
for volume planning problem
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The experimental results
for volume planning problem

Measure of unsolvability
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Timetabling problem

• Planing horizon is about 3 years.
• Each cosmonaut has an individual learning plan.
• 10 crews are studying simultaneously.
• There are main and backup crews.
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Review of other space agencies systems

NASA – TAMS, FOCAS, STAR

KAREN AU, SAMUEL SANTIAGO, RICHARD PAPASIN, MAY WINDERM, TRISTAN LE. Streamlining Space

Training Mission Operations with Web Technologies. An Approach to Developing Integral Business Applications for

Large Organizations // IEEE 4th International Conference on. Space Mission Challenges for Information Technology

(SMC-IT), 2011, pp.159-166.
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// Spagnulo, M., Fleeter, R., Balduccini, M., Nasini, F., Springer-Verlag New York - 2013. - 352 с.
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Problem statement

• K – a number of cosmonauts;
• Jk – each cosmonaut k has his own set of training tasks;
• pj – execution time of task j ∈ J;
• R – set of resources.

The goal is
to form a training schedule for each cosmonaut
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Time intervals

• W – set of planning weeks, where |W | = 156 weeks (3 years);
• Dw = {1,2,3,4,5} – set of work days per week, w ∈W ;
• Hwd = {1, ..., 18} – set of half-hour intervals of day d ∈ Dw of week
w ∈W .

Y = {(w , d , h)|w ∈W , d ∈ Dw , h ∈ Hwd}, |Y | ≈ 14040

t(w , d , h) – considering time moment.
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Variables

xjwdh =


1, iff task j is started

from interval h of day d of week w ;
0, else.

Alexander Lazarev Metrics and approximations May 21, 2019 115 / 188



Constraints

Precedence relations between the tasks (academic plan)∑
(w ,d ,h)∈Y

t(w , d , h)(xj2wdh − xj1wdh) ≥ pj1 , (13)

∀(j1, j2) ∈ Γk .

The resource limits (teachers, simulators, trainers)∑
j∈J

rc jr

∑
h′ > 0,

h − pj + 1 ≤ h′ ≤ h

xjwdh′ ≤ rarwdh, (14)

∀r ∈ R, ∀(w , d , h) ∈ Y . |Y | ≈ 14040, |R| ≈ 100.
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Constraints

No more than ... (frequency of classes)∑
j∈JF

∑
d∈Dw

∑
h∈Hwd

xjwdh ≤ 2, ∀w ∈W . (15)

Each cosmonaut may have no more than 2 physical trainings per week.

Excluding some time intervals∑
j∈J[h1;h2]

∑
h1−pj +1≤h≤h2

xjwdh = 0, (16)

∀w ∈W , ∀d ∈ Dw ;

[h1; h2] – time period when performing task j is forbidden.

It is forbidden to practice in the hyperbaric chamber after lunch.
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Comparison of two approaches to solving
the scheduling problem for 1 crew

N CPLEX MIP CPLEX CP
Time, с Var. Constr. Iter. Time, с Var. Constr. Branch.

1 09.06 26820 37620 21922 0.250 291 2170 1272
2 30.75 52680 60066 54234 0.329 363 2788 1512
3 559.84 73500 87846 5019412 0.438 492 3548 2008
4 375.834 108720 121578 2032790 0.703 606 4263 2784
5 374.63 115200 125466 2022320 0.610 642 4348 2912
7 346.30 144480 157920 820534 0.640 654 4374 2648
10 6657.98 204000 210646 16 917 014 1.317 852 5738 3 448

N is a number of on-board systems.
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Results

Results
• Schedule for 1 crew for 1 year 3 moths

Our plans
• Schedule for 2 crew for 2 year
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Railway operational and maintenance scheduling
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Railway scheduling pioneers

Frank, O., Two-Way Traffic on a Single Line of Railway, Oper. Res., 1966,
vol. 14, no. 5, pp. 801–811.

Szpigel, B., Optimal Train Scheduling on a Single Line Railway, Oper. Res.,
1973, pp. 344–351.

Relation between railway planning problems and classical scheduling
problems
• track segments = «machines»
• trains = «jobs»
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Existing approaches and solution methods

1. Considering in terms of job-shop.

Szpigel B. Optimal train scheduling on a single line railway. Oper Res, 344 - 351,
1973.

Sotskov Y. Shifting bottleneck algorithm for train scheduling in a single-track
railway. Proccedings of the 14th IFAC Symposium on Information Control
Problems. Part 1. Bucharest/Romania. 87 - 92. 2012.

Gafarov E.R., Dolgui A., Lazarev A.A. Two-Station Single-Track Railway
Scheduling Problem With Trains of Equal Speed. Computers and Industrial
Engineering. 85:260 - 267. 2015.

Harbering J., Ranade A., Schmidt M. Single Track Train Scheduling. Institute of
Numerical and Applied Mathematics. preprint. 18. 2015.

Alexander Lazarev Metrics and approximations May 21, 2019 122 / 188



Existing approaches and solution methods

2. Integer linear programming

Brannlund U., Lindberg P.O, Nou A. and Nilsson J.E.
Railway Timetabling Using Lagrangian Relaxation.
Transportation Science 32(4):358 - 369. 1998.

Lazarev, A.A. and Musatova, E.G.
Integer Formulations of the Problem of Railway Train Formation and Timetabling,
Upravlen. Bol’shimi Sist., 2012, no. 38, pp. 161–169.
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Exicting approaches and solution methods

3. Heuristics

Sotskov Y.
Shifting bottleneck algorithm for train scheduling in a single-track railway.
Proccedings of the 14th IFAC Symposium on Information Control Problems. Part
1. Bucharest/Romania. 87 - 92. 2012.

Mu S., Maged D.
Scheduling freight trains traveling on complex networks.
Transportation Research Part B: Methodological. 45(7):1103 - 1123. 2011.

Carey M., and Lockwood D.
A model, algorithms and strategy for train pathing.
The Journal of Operational Research Society. 8(46):988 - 1005. 1995.
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Exicting approaches and solution methods

Allocation of polynomially solvable cases of railway scheduling problems

Gafarov E.R., Dolgui A., Lazarev A.A.
Two-Station Single-Track Railway Scheduling Problem With Trains of Equal
Speed.
Computers and Industrial Engineering. 85:260 - 267. 2015.

Harbering J., Ranade A., Schmidt M.
Single Track Train Scheduling.
Institute of Numerical and Applied Mathematics. preprint. 18. 2015.

Disser Y., Klimm M., Lubbecke E.
Scheduling Bidirectional Traffic on a Path.
In Proceedings of the 42nd International Colloquium on Automata, Languages,
and Programming (ICALP). 406 - 418. 2015.
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Laboratory projects in railway scheduling

Small-scale problems
• Scheduling problem on single railway tracks.
• Goal – the development of exact polynomially solvable algorithms with

small computational complexity.
• Solution approach – dynamical programming.

Large-scale problems
• The freight car routing problem.
• Goal – the construction of operational plan with feasible solution time.
• Solution approach – integer linear programming, LP-relaxation,

column generation.
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Two-station single track railway scheduling problem

N1→ ←N2

St. 1 St. 2p

Initial data
• |N1| = n, |N2| = n′, N = N1 ∪ N2, |N| = n + n′.
• All trains have equal speed, track traversing time – p.
• Minimal time between the departure of two trains from one station – β.

• The transportation starts at time t = 0.

Denote the problem as STR2 (Single Track Railway Scheduling Problem).
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Problem formulation

Schedule
In schedule σ, for each train i ∈ N

• Si (σ) – it’s departure time;

• Ci (σ) – arrival time, Ci (σ) = Si (σ) + p.

Objective function

• Family of objective functions.

• The approach will be demonstrated on the maximum lateness objective
function Lmax (σ),

Lmax (σ) = max
i∈N

Li = max
i∈N
{Ci (σ)− di}.
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Dynamic programming approach

Assumption
We will consider schedule schedule σ which possess the following property: for
any point in time t such that 0 ≤ t ≤ Cmax (σ) there exists at least one train
i ∈ N satisfying the condition Si (σ) ≤ t ≤ Ci (σ).
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Dynamic programming approach

Assumption
Train departure order is specified.

Maximum lateness Lmax

For objective function Lmax (σ) = max
i∈N
{Ci (σ)− di} there exists an optimal

schedule σ in which trains depart from each station in a nondecreasing
order of due dates di .

Numbering of trains
On each station trains are numbered in the decreasing order of their
departure times, i > j implies that, in any schedule σ, Si (σ) < Sj (σ).
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Dynamic programming approach

Subproblem P(𝒌𝟏, 𝒌𝟐, 𝒔)

set of unsent trains 
on station 1, 

𝑘1 ∈ {0,1,2, … , 𝑛} ∈ 𝑁1

set of unsent trains on station 2, 

𝑘2 ∈ {0,1,2,… , 𝑛′} ∈ 𝑁2

additional condition: 
first train depart from 

station s∈ {1,2}

Number of different subproblems ‒ O((n+n’)2)Optimal value of the objective function for P(k1, k
′
2, s)

f (k1, k
′
2, s) = F (σ∗),

where σ∗ is an optimal schedule for P(k1, k
′
2, s).
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Solution algorithm

-tStation 1

Station 2

Siding
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2 + 1, 2) = ?
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Solution algorithm
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f (k1, k
′
2 + 1, 2) = max{f (k1, k ′2, 1) + p, p − dk ′2+1}
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Dynamic programming approach

f (k1, k
′
2 + 1, 2) = max


p − dk ′2+1;

min

{
f (k1, k

′
2, 1) + p;

f (k1, k
′
2, 2) + β;

for each k ′2 ∈ {1′, ..., n′ − 1′}, k1 6= 0.
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Dynamic programming approach

Setting

f (1, 0′, 1) = p − d1

f (0, 1′, 2) = p − d1′

Bellman equation

f (k1 + 1, k ′2, 1) = max


p − dk1+1;

min

{
f (k1, k

′
2, 1) + β;

f (k1, k
′
2, 2) + p.

k1 ∈ {1, ..., n − 1}, k ′2 6= 0′

f (k1, k
′
2 + 1, 2) = max


p − dk′

2+1;

min

{
f (k1, k

′
2, 1) + p;

f (k1, k
′
2, 2) + β.

k ′2 ∈ {1′, ..., n′ − 1′}, k1 6= 0
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Dynamic programming approach

Optimal objective function value of the original problem

min{f (n, n′, 1), f (n, n′, 2)}

Computational complexity

O((n + n′)2)

Value of f (k1, k
′
2, s) is computed for:

• each pair of k1, k1 ∈ {1, ..., n}), and k ′2, k2 ∈ {1, ..., n′}.
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Dynamic programming approach

Other objective functions
This solution procedure can applied to a set of objective functions, for
example for ∑

wiCi (σ) =
∑
i∈N

wiCi (σ)

Condition
• "Shifted" schedule σt of schedule σ, Ci (σ)− Ci (σt) = t for all i ∈ N.
• There exists G (k1, k

′
2, s) so that F (σt) = F (σ) + G (k1, k

′
2, t).

• for Lmax : G (k1, k
′
2, t) = t;

• for
∑

wiCi (σ): G (k1, k
′
2, t) =

∑k1
i=1 wi t +

∑k ′2
j=1′ wj t.
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Dynamic programming approach

General form of objective functions⊙
i∈N

ϕi (Ci (σ)),

where
• ϕi (·) – nondecreasing function, defined for each train i ∈ N,
• � – some commutative and associative operation such,
• for any numbers a1, a2, b1, b2, � satisfy a1 ≤ a2 and b1 ≤ b2,

a1 � b1 ≤ a2 � b2.
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Dynamic programming approach

Solution procedure

STR2||
⊙
i∈N

ϕi (Ci (σ))

• Specified train departure order on each station.
• Polynomial set of possible departure times T , |T | = O((n + n′)2).
• Subproblem: P(k1, k

′
2, s, t), f (k1, k

′
2, s, t) is calculated for

• each pair of k1, k1 ∈ {1, ..., n};
• each pair of k ′2, k2 ∈ {1, ..., n′};
• all t ∈ T .

Computational complexity – O((n + n′)4).
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Dynamic programming approach

Minimization of maximum cost functions

Fmax (σ) = max
i∈N

ϕi (Ci (σ))

• No specified order of train departure on each station.

Iterative optimization procedure
dynamic programming algorithm for STR2||Lmax

general optimisation scheme, presented by Zinder and Shkurba1

1Zinder, Y. and Shkurba, V. Effective iterative algorithms in scheduling
theory. Cybernetics, 21(1), 86–90. 1985.
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Dynamic programming approach

Iterative optimisation procedure

Computational complexity
O((n + n′)5 log(n + n′))
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Results for STR2

Dynamic programming procedure for a set of objective functions

F (σ) =
⊙
i∈N

ϕi (Ci (σ))

Computational complexity is O((n + n′)4),
can be reduced for a subset of objective functions – O((n + n′)2).

Iterative optimisation procedure for maximum cost functions

Fmax (σ) = max
i∈N

ϕi (Ci (σ))

Computational complexity is O((n + n′)5 log(n + n′)).
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Results for STR2

Solution algorithm complexity

Problem Complexity
STR2 | |Lmax O(n2)

STR2 | |
∑

wjCj O(n2)
STR2 | |max

j∈N
ϕj (Cj (σ)) O(n5 log n)

STR2 |p(j), λ |Lmax O(nλ)
STR2 |p(j), λ |

∑
wjCj O(nλ)

STR2 |p(j), λ |
∑

Uj (σ) O(n2λ)

STR2 |p(j), λ |
⊙

j

ϕ(Cj ) O(nα
2+αnλ)

STR2 |p(j), λ,V |max
j∈N

ϕj (Cj (σ)) O(q2 log qn2α2+2α+1nλ log n)

λ – the number of subsets with possible fixed departure order p(j) – different
train traversing times V – feasible intervals of movement
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Single track railway scheduling problem with a siding

What is the siding?

Additional track

Main track
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Single track railway scheduling problem with a siding

N1→ ←N2
Siding

St. 1 St. 2p1 p2

Initial data
• One siding, capacity is one train.
• |N1| = n1, |N2| = n2, all trains have equal speed.
• Traversing times: p1, p2, p1 ≥ p2.
• For each train i from station s, i ∈ Ns , s ∈ {1, 2}, due date d i

s and cost
coefficient w i

s are given;

• Release times: r i
s = 0, i ∈ Ns , s ∈ {1, 2}.

Denote the problem as STR2S (STR2 with a siding).
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Single track railway scheduling problem with a siding

Schedule
We need to construct optimal schedule σ, i.e. to set for each train number i
moving from station s, i ∈ Ns , s ∈ {1, 2}, it’s departure time S i

s(σ), stop time in
the siding τ i

s (σ) and arrival time C i
s (σ).

Objective function
Minimizing maximum lateness

Lmax = max
i∈Ns ,s∈{1,2}

{Li
s},

where
Li

s = C i
s − d i

s ,

and weighted sum of arrival moments∑
wjCj =

∑
i∈Ns , s∈{1,2}

w i
sC

i
s .
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Schedule properties for presented model

Express
Express is the train i moving from station s, i ∈ Ns , s ∈ {1, 2}, if it doesn’t
stop in the siding, i.e. τ i

s = 0.
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Schedule properties for presented model
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Left-shifted schedule
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Schedule properties for presented model
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Left-shifted schedule
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States

-
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1) Batch moving from station 1 with empty siding.
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2) Batch moving from station 2 with empty siding.
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3) Batch moving from station 1 with occupied siding.
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4) Batch moving from station 2 with occupied siding.
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States

Express state  (𝒔, 𝒃)

express departure station, 
𝑠 ∈ {1,2}
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States

Express state  (𝒔, 𝒃)

express departure station, 
𝑠 ∈ {1,2}

«0»
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States

Express state  (𝒔, 𝒃)

express departure station, 
𝑠 ∈ {1,2}

«0» «1»
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States

Express state  (𝒔, 𝒃)

express departure station, 
𝑠 ∈ {1,2}

«0» «1»«1»…
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States

Express state  (𝒔, 𝒃)

express departure station, 
𝑠 ∈ {1,2}

«0» «1»«1»… «2»
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Regular schedule and expresses states sequences

Theorem 1.
For each regular schedule there exists one and only one sequence of
expresses states.
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(2,1) (2,1) (2,2) (1,1) (1,1) (1,1) (1,2) (2,0)
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States

(1,0)

t

(1,0)
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(2,1)

(2,2)

Alexander Lazarev Metrics and approximations May 21, 2019 160 / 188



States

-
tStation 1

Station 2

Siding

�
�
�
�
�
�
�
�
�
�A

A
A
A
A
A
A
A
A
A �

�
�
�
�
�
�
�
�
� A

A
A
A
A
A
A
A
A
A

(2,2) (1,0) (2,0)
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Solution algorithm

Subproblem  P(𝒌𝟏, 𝒌𝟐, 𝒔, 𝒃)

number of unsent trains 

on station 1, 𝑘1 ∈ {0,1,2,… , 𝑛1}

number of unsent trains on 

station 2, 𝑘2 ∈ {0,1,2,… , 𝑛2}

additional condition:
state of the first express,

s∈ {1,2}, 𝑏 ∈ {0,1,2}

Number of different subproblems ‒ O(n2)
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Solution algorithm

(n1,n2,1,0)

(n1,n2,2,0)

(n1,n2,1,1) . . .

(1,0,1,0)

(2,0,1,0)
(1,1,2,0)

(2,1,1,2)

t

(n1,n2,2,1)

(n1,n2,1,2)

(n1,n2,2,2)

(2,1,2,2)

(0,1,2,0)

(1,1,1,0)

(0,2,2,0)
(1,2,1,2)

(1,2,2,2)

(1,1,1,2)
(2,1,1,0)
(1,2,2,0)
(2,1,1,1)

(1,1,2,2)
(2,1,1,0)
(1,2,2,0)
(1,2,2,1)
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Solution algorithm

Initial values

F (1, 0, 1, 0)) = p1 + p2 − d1
1 ;

F (0, 1, 2, 0)) = p1 + p2 − d1
2 ;

F (1, 1, 1, 2) = max

{
2p1 − d1

2 ;

p2 + p1 − d1
1 ;

F (1, 1, 2, 2) = max

{
2p2 − d1

1 ;

p2 + p1 − d1
2 .

Exclusion of impossible subtasks
• F (0, k2, 1, 0) =∞;
• F (k1, 0, 2, 0) =∞;
• F (k1, k2, s, b) =∞ if k1 = 0 or k2 = 0, where (s, b) /∈ {(1, 0), (2, 0)}.
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Solution algorithm

Bellman equation
Optimal objective function value in the subproblem P(k1, k2, s, b)

F (k1, k2, s, b) = min
(k ′1,k

′
2,s
′,b′)∈T (k1,k2,s,b)

max

{
H(k1, k2, s, b);

F (k ′1, k
′
2, s
′, b′) + g((s, b), (s ′, b′));

Objective function value of express in state (s, b) and skipping train

H(k1, k2, s, b) =

{
max{p1 + p2 − dks

s ; 2ps − dks̄
s̄ }, if b = 2,

p1 + p2 − dks
s otherwise.
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Results for STR2S

Results for STR2S
• Exact solution algorithm based on the dynamical programming

method was proposed for the described problem.
• Presented algorithm allows to construct set of optimal schedules in
O(n2) operations.

Algorithm for
∑

wjCj

For objective function
∑

wjCj algorithm is the same, some operations and
variables changes.
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The freight car routing problem: overview
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Specificity of freight rail transportation in Russia

• Freight car
blocking
• Freight train

scheduling
• Locomotives

management
• Personnel

management

The state company

• Assignment of
transportation
demands to freight
cars
• Freight car routing

Independent freight car
management companies

Transp. costs matrix (M)
Transp. times matrix (D)

car movements

Distances are large, and average freight train speed is low (≈ 300 km/day):
discretization in periods of 1 day is reasonable
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The freight car routing problem: input and output

Input
• Railroad network (stations)
• Initial locations of cars (sources)
• Transportation demands and associated profits
• Costs: transfer costs and standing (waiting) daily rates;

Output: operational plan
• A set of accepted demands and their execution dates
• Empty and loaded cars movements to meet the demands (car routing)

Objective
Maximize the total net profit
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Similar works in the literature

[Fukasawa, Poggi, Porto, Uchoa, ATMOS02]
• Train schedule is known
• Cars should be assigned to trains to be transported
• Discretization by the moments of arrival and departure of trains.
• Smaller time horizon (7 days)

Other works
• [Holmberg, Joborn, Lundren, TS98]
• [Löbel, MS98]
• [Campetella, Lulli, Pietropaoli, Ricciardi, ATMOS06]
• [Caprara, Malaguti, Toth, TS11]
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Data: overview

• T — planning horizon (set of time periods);
• I — set of stations;
• C — set of car types;
• K — set of product types;
• Q — set of demands;
• S — set of sources (initial car locations);
• M — empty transfer cost function;
• D — empty transfer duration function;
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Demands data

For each order q ∈ Q

• origin and destination stations;
• product type
• set of car types, which can be used for this demand — Cq ⊆ C

• maximum (minimum) number of cars, needed to fulfill (partially) the
demand — nmax

q (nmin
q )

• time window for starting the transportation
• profit vector (for delivery of one car with the product), depends on the

period on which the transportation is started
• transportation time of the demand
• daily standing rates charged for one car waiting before loading (after

unloading) the product at origin (destination) station
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Sources and car types data

For each source s ∈ S

• station where cars are located
• type of cars
• period, starting from which cars can be used
• daily standing rate charged for cars
• type of the latest delivered product
• number of cars in the source — ~ns ∈ N

For each car type c ∈ C

• Qc — set of demands, which a car of type c can fulfill
• Sc — set of sources for car type c
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Commodity graph

Commodity c ∈ C represents the flow (movements) of cars of type c .

Graph Gc = (Vc ,Ac) for commodity c ∈ C :

· · ·

· · ·

· · ·

station 1

station 2

station 3

· · · · · · · · · · · ·

· · · · · · · · · · · ·
waiting arc

empty transfer arc

loaded transfer arc

time

Each vertex v ∈ Vc represent location of cars of type c on a certain station
at a certain time standing at a certain rate
ga — cost of arc a ∈ Ac
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Multi-commodity flow formulation

Variables
• xa ∈ Z+ — flow size along arc a ∈ Ac , c ∈ C

• yq ∈ {0, 1} — demand q ∈ Q is accepted or not

min
∑
c∈C

∑
a∈Ac

gaxa∑
c∈Cq

∑
a∈Acq

xa ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
a∈Acq

xa ≥ nmin
q yq ∀q ∈ Q

∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = ~nv ∀c ∈ C , v ∈ Vc

xa ∈ Z+ ∀c ∈ C , a ∈ Vc

yq ∈ {0, 1} ∀q ∈ Q

We concentrate on solving its LP-relaxation
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Multi-commodity flow formulation

Variables
• xa ∈ Z+ — flow size along arc a ∈ Ac , c ∈ C

• yq ∈ {0, 1} — demand q ∈ Q is accepted or not

min
∑
c∈C

∑
a∈Ac

gaxa∑
c∈Cq

∑
a∈Acq

xa ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
a∈Acq

xa ≥ nmin
q yq ∀q ∈ Q

∑
a∈δ−(v)

xa −
∑

a∈δ+(v)

xa = ~nv ∀c ∈ C , v ∈ Vc

0 ≤ xa ∀c ∈ C , a ∈ Vc

0 ≤ yq ≤ 1 ∀q ∈ Q

We concentrate on solving its LP-relaxation
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Path reformulation

• Ps — set of paths (car routes) from source s ∈ S

Variables
• λs ∈ Z+ — flow size along path p ∈ Ps , s ∈ S

min
∑
c∈C

∑
s∈Sc

∑
p∈Ps

gpath
p λp∑

c∈Cq

∑
s∈Sc

∑
p∈Ps : q∈Qpath

p

λa ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
s∈Sc

∑
p∈Ps : q∈Qpath

p

λa ≥ nmin
q yq ∀q ∈ Q

∑
p∈Ps

λp = ~ns ∀c ∈ C , s ∈ Sc

λp ∈ Z+ ∀c ∈ C , s ∈ Sc , p ∈ Ps

yq ∈ {0, 1} ∀q ∈ Q
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Column generation for path reformulation

• Pricing problem decomposes to shortest path problems, one for each
source
• slow: number of sources are thousands

• To accelerate, for each commodity c ∈ C , we search for a shortest
path in-tree to the terminal vertex from all sources in Sc

• drawback: some demands are severely “overcovered”, bad
convergence

• We developed iterative procedure which removes covered demands and
cars assigned to them, and the repeats search for a shortest path
in-tree
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Flow enumeration reformulation

• Fc — set of fixed flows for commodity c ∈ C

Variables
• ωf ∈ {0, 1} — commodity c is routed accordity to flow f ∈ Fc or not

min
∑
c∈C

∑
f ∈Fs

gflow
f ωf∑

c∈Cq

∑
f ∈Fc

∑
a∈Acq

faωf ≤ nmax
q yq ∀q ∈ Q

∑
c∈Cq

∑
f ∈Fc

∑
a∈Acq

faωf ≥ nmin
q yq ∀q ∈ Q

∑
f ∈Fc

ωf = 1 ∀c ∈ C

ωp ∈ {0, 1} ∀c ∈ C , f ∈ Fc

yq ∈ {0, 1} ∀q ∈ Q
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Approach CGEF

• Pricing problem decomposes to minimum cost flow problems, one for
each commodity
• slow: very bad convergence

• “Column generation for extended formulations” (CGEF) approach: we
disaggregate the pricing problem solution to arc flow variables, which
are added to the master.
• The master then becomes the multi-commodity flow formulation with

restricter number of arc flow variables, i.e. “improving” variables are
generated dynamically

Proposition
If an arc flow variable x has a negative reduced cost, there exists a negative
reduced cost pricing problem solution in which x > 0.
(consequence of the theorem by S. and Vanderbeck)
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Tested approaches

• Direct: solution of the multi-commodity flow formulation by the Clp LP
solver
• Problem specific solver source code modifications
• Problem specific preprocessing is applied (not public)
• Tested inside the company

• ColGen: solution of the path reformulation by column generation
(BaPCod library and Cplex LP solver)
• Initialization of the master by “doing nothing” routes
• Stabilization by dual prices smoothing
• Restricted master clean-up

• ColGenEF: “dynamic” solution of multi-commodity flow formulation by
the CGEF approach (BaPCod library, Lemon min-cost flow solver and Cplex
LP solver)
• Initialization of the master by all waiting arcs
• Only trivial preprocessing is applied
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First test set of real-life instances

Instance name x3 x3double 5k0711q
Number of stations 371 371 1’900
Number of demands 1’684 3’368 7’424
Number of car types 17 17 1
Number of cars 1’013 1’013 15’008
Number of sources 791 791 11’215
Time horizon, days 37 74 35
Number of vertices, thousands 62 152 22
Number of arcs, thousands 794 2’846 1’843
Solution time for Direct 20s 1h34m 55s
Solution time for ColGen 22s 7m53s 8m59s
Solution time for ColGenEF 3m55s >2h 43s
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Real-life instances with larger planning horizon

1’025 stations, up to 6’800 demands, 11 car types, 12’651 cars, and 8’232
sources.
Up to ≈ 300 thousands nodes and 10 millions arcs.

80 100 120 140 160 180
0

20

40

60

80

planning horizon length, days

so
lu
tio

n
tim

e,
m
in
ut
es

Direct
ColGen

ColGenEF

Horizon Direct ColGenEF
80 5m24s 1m52s
90 7m05s 1m47s

100 9m42s 2m19s
110 13m38s 3m11s
120 17m19s 3m57s
130 25m52s 5m03s
140 35m08s 5m25s
150 44m58s 7m02s
160 57m11s 8m19s
170 1h13m58s 10m53s
180 1h26m46s 12m16s

Convergence of ColGenEF in less than 15 iterations.
About 3% of arc flow variables at the last iteration.
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Conclusions

• Three approaches tested for a freight car routing problem on real-life
instances
• Approach ColGen is the best for instances with small number of

sources
• Problem-specific preprocessing is important: good results for Direct

• Approach ColGenEF is the best for large instances
• Combination of ColGenEF and problem-specific preprocessing

would allow to increase discretization and improve solutions quality
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Problems of the marshalling yard

Three problems of the marshalling yard:
• trains must be disbanded and new ones formed;
• locomotives must undergo maintenance in the PML;
• each train must be assigned by a locomotive.
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PML problem

You must specify the order of maintenance of locomotives, specifying the
start times of service for each locomotive and a service position where the
locomotive will be served.
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Done work

The considered objective functions:
• total idle time;
• total waiting time;
• maximum waiting time;
• makespan.

Obtained results:
• for dynamic programming O((

∑
s
ns)mnm+1

1 . . . nm+1
s ) of states must

be checked;
• CP model for IBM ILOG CPLEX optimizer is developed. Finding of an

approximate solution takes more than 4 hours;
• a heuristic algorithm is developed that gives a solution with the value

of the objective function 20% more than that of the IBM ILOG
CPLEX optimizer;
• the algorithm of local search is applied to the schedule received by

heuristic algorithm. The value of the objective function decreased by
1%.
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