

Optimization and Data Sciences in Energy Networks

Panos M. Pardalos

http://www.ise.ufl.edu/pardalos/ https://nnov.hse.ru/en/latna/.

'activity, operation'

ἐνέργεια: energeia

"Air, earth, water and fire are ever existing elements beginning and end of the Universe."

Empedocles, pre - Socratic philosopher (c. 490 BC - 430 BC

UF FLORIDA Dynamics of global energy systems

- Changes in oil and gas production and trade flows (shale gas and oil, new fields in USA / Canada, oil production in Iraq, changes in global economy and geopolitical balance)
- Reconciling the goals of energy security and environmental protection is needed
- Renewable energy (solar, wind, biofuels etc.)
- Focus on energy efficiency / sustainable energy systems (climate changes)
- Issues with Fossil Fuel Subsidies
- Around 1.6 billion people have no access to electricity
- Energy/Water/Environmental issues
- Advances in Technology/Modeling/Optimization

UF FLORIDA Introduction

World CO₂ emissions by sector

Electricity and heat generation accounted for 41%

Transport produced 22%

US energy supply from resources

• CO₂ EMISSIONS FROM FUEL COMBUSTION 2012, IEA

JF FLORIDA Introduction

800,000 Years of CO₂ Concentrations

- NOAA Satellite and Information Service
- National Climatic Data Center
- http://www.ncdc.noaa.gov/indicators/

Introduction **Global Warming Climate Change**

World¹ CO_2 emissions from fuel combustion² from 1971 to 2015 by region (Mt of CO_2)

https://www.iea.org/publications/freepublications/publication/KeyWorld2017.pdf

UF FLORIDA For details see

Key world energy statistics

Also available on smartphones and tablets

2018

https://webstore.iea.org/key-world-energy-statistics-2018

UF FLORIDA Introduction

The Solutions for CO₂ Emission Reduction in Power Systems

- CO_2 emissions control policies
 - Carbon tax
 - Cap-and-Trade system
 - Renewable portfolio standards
- Integration of CO₂ mitigation in power system operations
 - Generation expansion planning
 - Stochastic unit commitment
 - CO₂ capture in power generation optimization
- \diamond CO₂ capture and storage
 - CO_2 capture
 - CO₂ transportation
 - CO₂ sequestration

CO₂ Emissions Control Policies

- Carbon tax
- Cap-and-Trade system
- Renewable portfolio standards

FIGRIDA CO₂ Emissions Control Policies Carbon Emissions Taxes

- ➤ A market-based policy instrument to achieve emissions reductions.
- Taxes set a fixed price on emissions and forces the quantities of emissions to adjust accordingly.
- Limited to the Scandinavian countries, HongKong and Australia

> Pros

- simplicity of taxes
- creates revenues for recycling and redistribution
- no price volatilities
- stability in revenue
- > Cons
- political resistance to taxes
- not easy to develop international trading programs
- inflexible in terms of ways to achieve reductions

UFIFICRIDA CO₂ Emissions Control Policies Cap-and-Trade

• Federal-Level Policies in the U.S.

Program	Clean Energy & Security Act (CESA)	Clean Energy Jobs & American Power			
Feature		Act (APA)			
Economy wide GHG reduction goals	2012 US GHG < 97% of 2005 GHGs	2012 US GHG < 97% of 2005 GHGs			
	2020 US GHG < 80% of 2005 GHGs	2020 US GHG < 80% of 2005 GHGs			
	2030 US GHG < 58% of 2005 GHGs	2030 US GHG < 58% of 2005 GHGs			
	2050 US GHG < 17% of 2005 GHGs	2050 US GHG < 17% of 2005 GHGs			
Banking	Unlimited	Unlimited			
Borrowing	no interest for immediate year, 15%	no interest for immediate year, 15%			
	interest for those allowances upto 5	interest for those allowances upto 5			
	years into the future	years into the future			
Strategic Reserve	EPA sets aside pool each year and	EPA sets aside pool each year and			
	conducts quarterly auctions	conducts quarterly auctions (pool much			
		larger)			
Auction of	Quarterly with reserve price of	Quarterly with reserve price of			
Allowances	\$10/allowance	\$11/allowance			
Non	excess emisisons multiplied	Penalty equals twice the fair market			
compliance	by twice the auction clearing price	price from registered exchanges			
penalty	of most recent auction.	price from registered exchanges			
Offsets	By 2050, 66% can be met with offsets	By 2050, 48% can be met with offsets,			
	half from domestic and half from	but 75% domestic and 25% international			
	international sources	sources			

CO₂ Emissions Control Policies Cap-and-Trade

• Regional Cap-and-Trade Policies

FIFICRIDA CO₂ Emissions Control Policies Cap-and-Trade

- > Pros
- flexibility it offers to achieve emissions reductions
- has a history of success from the acid rain program for SO_X
- can be linked easily with other international climate policy efforts
- generates auction revenue that can be recycled

> Cons

- potential for price volatility of allowances
- administrative burden in creating the trading and tracking platforms
- potential for speculation by traders

CO₂ Emissions Control Policies **Cap-and-Trade Policy Model** GENCO *f*'s profit maximization problem: Max $\sum_{i} [P_{i}^{0} - (P_{i}^{0}/Q_{i}^{0})(\sum_{q} s_{qi}) - w_{i}]s_{fi}$ $-\sum_{i,h} (C_{fih} - w_i) x_{fih} - \sum_{ih} I_{fih} \Delta x_{fih} + p^{CO_2} c_f$ s.t. $\sum_{ih} E_{fih} x_{fih} + c_f \le K_f (\delta_f)$ $x_{fih} \leq X_{fih} + \Delta x_{fih} (\rho_{fih}) \forall i, g, h$ $\sum_{i} s_{fi} = \sum_{i,h} x_{fih} (\theta_f)$ $s_{fi}, x_{fih}, \Delta x_{fih} \ge 0 \quad \forall f, i, j, h$ The emissions $\sum_{ih} E_{fih} x_{fih}$ and allowance sales c_f must not exceed the initial allowance K_f . Promoting new renewable generation capacity and reducing GHG emissions.

UF FLORIDACO2 Emissions Control PoliciesIndividual Market Participant Optimization Model

Consumers: $P_j^E = P_j^0 - \frac{P_j^0}{Q_j^0} (\sum_f s_{fj} + a_j), \forall j.$

Producers: Max $\sum_{j} (P_j^E - w_j) s_{fj} - \sum_{i,h} (C_{fih} - w_i) x_{fih}$ $-p^{CO_2} (\sum_{i,h \in H^{CO_2}(i,f)} E_{fih} x_{fih} - N_f)$

> s.t. $x_{fih} \leq X_{fih}$, (ρ_{fih}) $\sum_{j} s_{fj} = \sum_{i,h \in H (i,f)} x_{fih}$, (θ_f)

 $s_{fj}, x_{fih} \ge 0 \quad \forall f, i, j, h.$

Power Arbitrager: $\max_{a_i} \{ \sum_i (P_i^E - w_i) a_i \mid \sum_i a_i = 0 \}$.

Grid Operator/Independent System Operator: $Max_{y_i} \{\sum_i w_i y_i \mid \sum_i PTDF_{ki} y_i \leq T_k, (\lambda_k)\}$. Market Clearing and Consistency Conditions: $\sum_f s_{fi} + a_i - \sum_{f,h \in H} \sum_{(i,f)} x_{fih} = -y_i, \forall i$

$$0 \le p^{CO_2} \perp \sum_{f,i,h \in H^{CO_2}(i,f)} (E_{fih} x_{fih} - N_f) \le 0.$$

CO₂ Emissions Control Policies **Renewable Portfolio Standards**

• Regional Cap-and-Trade Policies

- States with RPS (blue) and RPS goals (yellow),
- Source: Environmental Protection Agency website on RPS

CO₂ Emissions Control Policies Renewable Portfolio Standards

- Regional Cap-and-Trade Policies
 - > Pros
 - direct impact on amount of renewable generation
 - provide some flexibility with RECs
 - > Cons
 - focus on technologies rather than emissions
 - lack of strong enforcement mechanisms may limit its potential

Integration of CO₂ Mitigation in Power System

- Generation expansion planning
- Stochastic unit commitment
- CO₂ Capture in System
 Optimization

UF FLORIDA CO₂ Mitigation in Power System

Generation Expansion Planning (GEP)

- The long-term development of power resources from planning to operation.
- Necessary for the company to obtain a best scheme for wellbalanced generation plannings.
- > Environmental constraints and emission limits considered.
- State of the Art in GEP methodologies:
 - Traditional Deterministic Models
 - Portfolio Theory Models
 - Handing Uncertainties
 - Modeling Emission Limits
 - Multiobjective Models
 - Methods based on artificial intelligence
 - Models based on fuzzy logic

UFIFICATIONCO2 Mitigation in Power SystemGeneration Expansion Planning

- Risk Management in Long Term Generation Planning
 - A Net Present Value maximization model for GEP
 - Considering the risks from energy market and fuel supplying
 - Formulated by MILP and solved by the Lagrangian Relaxation method
 - Constraints including the energy balance, the minimum generation from renewable resources and CO₂ emission limits.

UF FLORIDA CO₂ Mitigation in Power System

Generation Expansion Planning

The Formulations of Single GENCO Model

- $\begin{aligned} & Max \ \sum_{i=1}^{N_{y}} \sum_{k=1}^{N_{s}} \frac{1}{(1+r)^{i-1}} \left[\rho_{ik}^{e} E_{ik}^{sold} + \rho_{ik}^{gc} \left(G_{ik}^{sold} G_{ik}^{bou} \right) + \right. \\ & \rho_{ik}^{CO_{2}} \left(Q_{ik}^{sold} Q_{ik}^{bou} \right) \sum_{j \in N_{tot}^{new}} w_{jik} \left(C_{j} (E_{ik}^{new}) + I_{jik} \right) \sum_{j \in N_{tot}^{ex}} C_{j} E_{ik} \right] \\ & \text{s.t.} \ \sum_{j \in N_{tot}^{ex}} E_{ijk} + \sum_{j \in N_{tot}^{new}} w_{jik} E_{ijk}^{new} = E_{ik}^{sold}, \quad \forall i \in N_{y}, k \in N_{s} \\ & \sum_{k=1}^{N_{s}} \left[\sum_{j \in N_{ren}} \left(E_{jik} + w_{jik} E_{jik}^{new} \right) + G_{ik}^{bou} \right] = \\ & \sum_{k=1}^{N_{s}} \left[\sum_{j \in N_{therm}} \eta_{i} \left(E_{jik} + w_{jik} E_{jik}^{new} \right) + \left(Q_{ik}^{sold} Q_{ik}^{bou} \right) \right] = A_{i}^{CO_{2}}, \forall i \in N_{y} \end{aligned}$
- $Q_{ik}^{bou} \ge 0, Q_{ik}^{sold} \ge 0, \forall i \in N_y, k \in N_s.$
- $0 \le E_{jik} \le E_{jik}^{max}$, $\forall i \in N_y, k \in N_s, j \in N_{tot}^{ex}$
- $0 \le w_{jik} E_{jik}^{new} \le E_{jik}^{max}$, $\forall i \in N_y, k \in N_s, j \in N_{tot}^{ex}$
- $0 \le E_{jik} \le \psi_j V_{jik}^3$, $\forall i \in N_y, k \in N_s, j \in N_{eol}^{ex}$
- $0 \le w_{jik} E_{jik} \le w_{jik} (\psi_j V_{jik}^3), \quad \forall i \in N_y, k \in N_s, j \in N_{tot}^{ex}$

UFIGRIDA CO₂ Mitigation in Power System Stochastic Unit Commitment and Self-scheduling

- Short-Term Unit Commitment and Self-Scheduling Problems
 - Deciding when a unit is ON/OFF and the generation level when it's ON.
 - Planning horizon: 1 day to 1 week, with hourly time stages.
- Solution Methodologies
 - Priority list
 - Dynamic Programming
 - Lagrangian relaxation
 - MILP
 - Branch-and-bound
 - Heuristic and evolutionary methodologies

UF FLORIDA CO₂ Mitigation in Power System Stochastic Unit Commitment and Self-scheduling

- Short-Term Unit Commitment Model: Min Total operation cost of system
 - s.t. Operational constraints Emission constraints
- \triangleright The generation cost function is

$$C_{tot} = \sum_{i=1}^{N} \sum_{t=1}^{T} (C_{it} + C_{up,i} + C_{d,i}).$$

> The emission function (valid both for SO_2 and CO_2) is

$$E_{jit} = e_{fij}(k_{0i} + k_{1i}P_{it} + k_{2i}P_{it}^2).$$

The compromise objective function consists of a convex combination of unit costs and emissions.

$$f(x, u, p) = w \sum_{k \in K} \sum_{i \in I} C_{ik} + (1 - w)\lambda \sum_{k \in K} \sum_{i \in I} E_{ik}$$

where $C_{ik}(x_{ik}, u_{ik}, p_{ik}) = C_{ik}^{sc}(x_{ik}, u_{ik}) + C_{ik}^{fc}(u_{ik}, p_{ik})$, and
 $E_{ik}(u_{ik}, p_{ik}) = u_{ik}(a_i + b_i p_{ik} + c_i p_{ik}^2).$

CO₂ Mitigation in Power System Stochastic Unit Commitment and Self-scheduling

Emission constraints for the whole system emission over the total scheduling period.

$$\sum_{i=1}^{N} \sum_{t=1}^{T} E_{jit} + \sum_{i=1}^{N} [E_{up,j,i} + E_{d,j,i}] \le E_{j,tot}, \forall j \in J.$$

where

UF FLORIDA

$$E_{jit} = e_{fij} \left(k_{0i} + k_{1i} P_{it} + k_{2i} P_{it}^2 \right),$$

$$E_{up,j,i} = e_{0ji} + e_{1ji} \left(1 - e^{\frac{T_{di}}{\tau_i}} \right),$$

 $E_{j,tot}$ is the cap, total emission of pollutant *j* from electric power production (kg).

System constraints includes system load, spinning reserve requirements, generation limits, minimum up- and down- times, ramp rate limits, and prespecified commitment.

UFIFICRIDACO2 Mitigation in Power SystemStochastic Unit Commitment Modeling

- ➤ A general deterministic formulation:
- $\succ Min_{u,z} \sum_{i=1}^{N} \sum_{t=1}^{T} (g_i(z_t^i) + c_i u_t^i + h_i(u_{t-1}^i, u_t^i))$

s.t.
$$\begin{split} \sum_{i=1}^{N} z_{t}^{i} &\geq d_{t}, \forall t \in T \\ \sum_{i=1}^{N} Q_{i} u_{t}^{i} &\geq d_{t} + r_{t}, \forall t \in T \\ q_{i} u_{t}^{i} &\leq z_{t}^{i} \leq Q_{i} u_{t}^{i}, \forall i \in N, \ t \in T \\ u_{t}^{i} - u_{t-1}^{i} &\leq u_{\tau}^{i}, \ \tau = t+1, \dots, \min\{t+L_{i}-1,T\}, t \in T/\{1\} \\ u_{t-1}^{i} - u_{t}^{i} &\leq 1 - u_{\tau}^{i}, \ \tau = t+1, \dots, \min\{t+l_{i}-1,T\}, t \in T/\{1\} \end{split}$$

- > A general **stochastic** programming formulation:
- $Min_{u,z} \sum_{s=1}^{s} Prob^{s} (\sum_{i=1}^{N} \sum_{t=1}^{T} (g_{t}^{s,i}(z_{t}^{s,i}) + c_{t}^{s,i}u_{t}^{s,i} + h_{t}^{s,i}(u_{t-1}^{s,i}, u_{t}^{s,i}))$ s.t. $\sum_{t=1}^{N} Z_{t}^{s,i} \ge d_{t}^{s}$ $u \in U, z \in Z(u)$

where non-anticipativity constraints are included in sets U_i and $Z_i(u^i)$.

UFIFICRIDACO2 Mitigation in Power SystemCO2 Capture in System Optimization

- CO₂ capture is one of essential components of CCS.
- System Optimization for the integration of CO_2 capture
- Economic objectives: capital investment minimization, return of investment minimization, or CO₂ capture cost minimization.
- Energetic objectives: energy efficiency maximization or efficiency penalty minimization.

• Min
$$\frac{(COE)_{capture} - (COE)_{ref}}{(CO_2 kWh^{-1})_{ref} - (CO_2 kWh^{-1})_{capture}}$$

where

 $(COE)_{capture}$ is the cost of electricity in the capture system.

 $(COE)_{ref}$ is the cost of electricity in the reference system (without capture).

 $(CO_2 kWh^{-1})_{ref}$ are the CO₂ emissions per kWh produced in the reference system.

 $(CO_2 kWh^{-1})_{capture}$ are the CO₂ emissions per kWh produced in the capture system.

UFIGRIDA CO₂ Mitigation in Power System CO₂ Capture in System Optimization

- CO₂ capture constraints: Second Law of Thermodynamics
- Cost of electricity $\Box COE = ((F \times \sum CAPEX_i) + OPEX)/EP$
- Capital Costs
 CAPEX_i = f(layout, equipment, size)
- O&M Costs

 $\square \quad OPEX = Fixed \ cost + \sum (ER_i \times EC_i)$

Energy Requirements

 $\square ER_i = f(capture system, CO_2 Captured)$

• Electricity Production

 $\square EP = f(power plant, CO_2 Captured, ER_i)$

- Specific CO₂ emissions $\Box CO_2 kWh^{-1} = f(power plant, CO_2 Captured, EP)$
- CO₂ capture system process
 - $\square CO_2 Captured = f(capture system, operational variables)$

CO₂ Capture and Storage

- CO₂ capture
- CO₂ transportation
- CO₂ sequestration

UF FLORIDA Carbon Capture and Storage (CCS)

Our Goals

- ➤ To promote the employment of CCS in power expansion planning
- ➢ To fill the gap between technical and economic analysis of CCS
- > To build a connection from technique research to project planning

Methodology

- Apply the optimization approach in the areas of energy expansion planning, CO₂ network transportation or storage problems to achieve the comprehensive economic evaluations,
- Provide the insights of CCS resource integration and viable project management.

Y. Huang, S. Rebennack, and Q. P. Zheng *Techno-economic analysis and optimization models for carbon capture and storage: A survey.* Energy System, 2013, pp. 315-353.

UF FLORIDA Carbon Capture and Storage

- > To promote the employment of CCS in power expansion planning
- \succ To fill the gap between technical and economic analysis of CCS
- > To build a connection from technique research to project planning
- Apply the *optimization* approach in the areas of energy expansion planning, CO₂ network transportation or storage problems to achieve the comprehensive economic evaluations,
- Provide the insights of CCS resource integration and viable project management.

FLORIDA Carbon Capture and Storage Carbon Capture

- A process that separates the CO₂ from flue gas (e.g., resulting from fossil fuel combustion) and then captures it to abate CO₂ emissions
- Three main technologies:
 - I. post-combustion capture,
 - II. pre-combustion capture, and
 - III. oxy-combustion capture.
- > Three properties of a carbon capture system:
 - I. CO_2 concentration in the flue gas,
 - II. pressure and temperature of the flue gas, and
 - III. flue type (gas or solid).

UF FLORIDA Carbon Capture and Storage

Carbon Capture Processes

➢ post-combustion capture

UFIFICATIONCarbon Capture and StorageCarbon Capture

- optimal planning of electricity generation with CO₂ emission considerations
 - > adjusting the structure of energy supply (new generation mix)
- \succ fuel balancing, fuel switching, CO₂ capture, and renewable resources
- Objective functions of energy planning with CO₂ reductions: to minimize energy (expansion) planning costs, including

Component	Single-objective			Multiple-objective			
Paper	[36]	[37]	[38]	[39]	[40]	[41]	[42]
Fossil fuel generation	P, J	P, J	J, T	Р	Р, Т	Р, Т	Р, Т
Non-fossil fuel generation	Р	Р	Р, Т				
Retrofit	P, J	P, J	Р, Т				
Capital investment		Р	Р		Р	Р, Т	Р, Т
O&M		Р	Р, Т		Р, Т		
CO ₂ credits			Т				
CCS technology			Р				
CO ₂ emissions	P, J			Р	Р, Т	Р, Т	Р, Т
Other						Т	

Carbon Capture and Storage Carbon Capture

The typical objective function is formulated involving fuel cost functions (1a), O&M cost (1b) and pre-operational costs (1c).

Min
$$F_1^1(e) + F_2^1(x, y) + F_3^1(h, n, C^{Cre})$$

where

$$F_{1}^{1}(e) = \sum_{t \in T} \sum_{i \in F \cup W^{F}} \sum_{j \in J} Cost_{ijt}^{F} \left(e_{ijt}^{F} \right) + \sum_{t \in T} \sum_{i \in N \cup W^{N}} Cost_{it}^{N} \left(e_{it}^{N} \right) + \sum_{t \in T} \sum_{i \in F^{C} \cup W^{C}} \sum_{j \in J} \sum_{k \in K} Cost_{ijkt}^{C} \left(e_{ijkt}^{F}, e_{ikt}^{W} \right)$$
(1a)

$$F_2^1(x,y) = \sum_{t \in T} \sum_{i \in F} \sum_{j \in J} M_{ijt}^F x_{ij} + \sum_{t \in T} \sum_{i \in W^F} \sum_{j \in J} M_{ijt}^F y_{ij}$$
(1b)

$$F_{3}^{1}(h, n, C^{Cre}) = \sum_{t \in T} \sum_{i \in F} R_{it} h_{it} + \sum_{t \in T} \sum_{i \in W} S_{it} n_{it} + \sum_{t \in T} P_{t} C_{t}^{Cre}$$
(1c)

where *Cost* (*e*) is the fuel cost function with respect to fossil fuel plant, non-fossil fuel plant and the plant with CCS, respectively. M_{ijt} , R_{it} , S_{it} , P_t are defined as O&M cost, retrofit cost, capital cost and cost for purchasing CO₂ credits, respectively.

UFIFICRIDACarbon Capture and StorageCarbon Capture

- \succ Constraints of energy planning with CO_2 reductions
 - ✓ Electricity demand satisfaction
 - ✓ Plant capacity
 - ✓ Fuel selection and plant shut-down
 - ✓ Operational changes
 - ✓ Selection of CO₂ capture process
 - $\sum_{k \in K} z_{ik}^F \leq \sum_{j \in J} x_{ij}$, $\forall i \in F^c$
 - $\sum_{k \in K} z_{ik}^{w} \leq \sum_{j \in J} x_{ij}, \quad \forall i \in W^{c}$
 - ✓ CO₂ emission limits
 - $\sum_{k \in K} \sum_{i \in F^c} \left(\sum_{j \in J} G_{ij}^{CO_2, F} e_{ijt}^F \right) \varepsilon_{ij}^F z_{ik}^F +$ $\sum_{k \in K} \sum_{i \in W^c} \left(\sum_{j \in J} G_{ij}^{CO_2, W} e_{ijt}^W \right) \varepsilon_{ij}^W z_{ik}^W C_t^{Cre} \le C_t^{limit}, \quad \forall t \in T$
 - Capacity constraints on the capture process
 - $e_{ikt}^F \leq z_{ik}^F E_k^{max}$, $\forall i \in F^C$, $k \in K$, $t \in T$
 - $e_{ikt}^W \leq z_{ik}^W E_k^{max}, \ \forall \ i \in W^C, k \in K, t \in T$

UFFLORIDA Carbon Capture and Storage

Carbon Transportation

- Common transportation types:
 - pipelines, trucks and ships.

- Pipeline Network
 - Hydraulic design and techno-economic evaluations
 - Vary significantly depending on the scale of facilities and networks.
 - On the system-level infrastructure: an optimal CCS system with trunk and feeder pipelines
 - Similar to natural gas pipelines
- Trucks and Ships
 - Flexible means of CO₂ transportation
 - Less capital intensive, less construction time
 - complement the needs of short-term storage and unreachable storage sites through pipelines

Carbon Capture and Storage Carbon Transportation

The objective function for CO_2 transportation problems is to minimize the construction cost and operating cost regarding CO_2 sources (3a), transport processes (3b) and CO_2 sinks (3c).

Min
$$F_1(x, f) + F_2(y, f) + F_3(z, f)$$

where

$$F_1(\boldsymbol{x}, \boldsymbol{f}) = \sum_{i \in R} C_i^R x_i + \sum_{t \in T} \sum_{i \in R} \sum_{j \in N \setminus R} V_i^t f_{ij}^t$$
(3*a*)

$$F_2(\boldsymbol{y}, \boldsymbol{f}) = \sum_{(i,j\in A)} Cost_{ij}^P(f,l) \, y_{ij} + \sum_{t\in T} \sum_{(i,j)\in A} V_{ij}^t f_{ij}^t \tag{3b}$$

$$F_3(\mathbf{z}, \mathbf{f}) = \sum_{j \in S} C_j^S z_j + \sum_{t \in T} \sum_{i \in N \setminus S} \sum_{j \in S} V_j^t f_{ij}^t$$
(3c)

where *Cost* P(f, l) is the cost function for CO₂ pipeline network construction that depends on the flow over the pipe and its distance. C_j^R and C_j^S are defined as the costs to open CO₂ sources and sinks, respectively. V_t represents the operating cost at time t.

UF FLORIDACarbon Capture and StorageCarbon Transportation

- \succ Constraints of CO₂ transportation problems
 - ✓ Flow balance
 - $\sum_{j:(i,j)\in A} f_{ij}^t \sum_{j:(i,j)\in A} f_{ji}^t = 0, \quad \forall i \in N \setminus R \setminus S.$
 - ✓ Flow rate limit
 - $f_{ij}^t \leq Q_{ij}^P y_{ij}, \quad \forall (i,j) \in A, t \in T.$
 - ✓ CO₂ supply limit
 - $\sum_{j \in N \setminus R} f_{ij}^t \leq Q_i^{max} x_i, \ \forall i \in R, t \in T.$
 - ✓ CO₂ injection limit
 - $\sum_{j \in N \setminus S} f_{ij}^t \leq Q_j^{max} z_j, \forall i \in S, t \in T.$
 - ✓ CO₂ capture target
 - $\sum_{t \in T} \sum_{j \in N \setminus R} f_{ij}^t \ge D_i, \quad \forall i \in R.$
 - ✓ CO₂ storage capacity
 - $\sum_{t \in T} \sum_{j \in N \setminus S} f_{ij}^t \ge M_j, \quad \forall j \in S.$ $\checkmark \dots$

UFIFICRIDA Carbon Capture and Storage Carbon Storage

- > Three common reservoir types:
 - I. oil and gas reservoirs,
 - II. unmineable coal seams, and
 - III. saline formations.
- ➤ The storage *without* energy benefits:
 - sequestration in depleted gas or oil reservoirs, in saline aquifers and ocean storage.
- ➤ The storage with energy benefits:
 - oil or gas recovery and coal bed methane production,
 - offset CO₂ sequestration operational cost.

UF FLORIDA Carbon Capture and Storage Carbon Storage

- Storage without energy benefits: $CFBT^{credit} = Revenue^{CH_4} \text{Cost}^{CO_2} \text{Cost}^{O&M}$
- Storage with energy benefits : $CFBT^{credit} = Revenue^{CH_4} + Credit^{CO_2} - Cost^{CO_2} - Cost^{O&M}$

CFBT: cash flow before tax

UF FLORIDA Carbon Capture and Storage

Enhanced Coal Bed Methane Production with CO₂ Injection

CO₂-ECBM Recovery Process: single well CO₂ injection

✤ Y. Huang, Q. P. Zheng, N. Fan, and K. Aminian
 Optimal scheduling for enhanced coal bed methane production through CO₂ injection,
 Applied Energy, 113, 2014, pp. 1475-1483.

UNIVERSITY of Carbon Capture and Storage CO2-ECBM CO2-ECBM

Carbon Capture and Storage CO₂-ECBM

Optimization for CO₂-ECBM recovery process

- Considering the project economy, environmental policies, technical operation requirements, physical reaction and geological features.
- The objective is to maximize the profit of CO₂-ECBM production over a planning horizon.
 - Coal bed methane production revenue, $\sum_{t=0}^{T} P_1^t v_1^t$
 - CO₂ credits trading revenue, $\sum_{t=0}^{T} P_2^t v_2^t$
 - Mixed gas production cost, $\sum_{t=0}^{T} C_1^t (v_1^t + v_{2,r}^t)$
 - CO₂ operation cost, $\sum_{t=0}^{T} C_2^t v_2^t$
 - CO₂ removal cost, $\sum_{t=0}^{T} C_{2,r}^{t} v_{2,r}^{t}$
 - $f(\boldsymbol{v}_1, \boldsymbol{v}_2, \boldsymbol{v}_{2,r}) = \sum_{t=0}^T P_1^t v_1^t + \sum_{t=0}^T P_2^t v_2^t$ $-\sum_{t=0}^T C_1^t (v_1^t + v_{2,r}^t) - \sum_{t=0}^T C_2^t v_2^t - \sum_{t=0}^T C_{2,r}^t v_{2,r}^t$

UF FLORIDA Carbon Capture and Storage

CO₂-ECBM

Constraints for CO₂-ECBM Production

CO₂ Supply: ٠

$$\label{eq:started_st$$

CH₄ Supply: ٠

$$\Box \sum_{t=0}^{T} Q^t \delta y_1^t \le GIP$$

Composition of sorbed phase: ٠

$$\begin{array}{l} \square \ x_2^t = 1 - x_1^t, \ \forall \ t \in T \\ \square \ x_1^t = \frac{w_1^{t-1}}{w_1^{t-1} + w_2^{t-1}}, \ \forall \ t \in T \end{array}$$

Composition of gas phase:

Variations of gas contents:

$$\begin{array}{l} \square \quad M_c w_1^t = M_c w_1^{t-1} - Q^t \delta y_1^t, \quad \forall t \in T \\ \square \quad M_c w_2^t = M_c w_2^{t-1} + v_2^t - Q^t \delta y_2^t, \quad \forall t \in T \end{array}$$

CH₄ extraction:

$$\begin{array}{ll} \Box & v_1^t \leq \sum_{i=0}^t Q^i \delta y_1^i - \sum_{i=0}^{t-1} v_1^t, \quad \forall t \in T \\ \Box & y_1^t \geq \gamma, \quad \forall t \in T \end{array}$$

CO₂ extraction:

$$v_{2,r}^t = \frac{v_1^t y_2^t}{y_1^t}, \quad \forall t \in T$$
Paros M. Pardalos

Parios IVI. Parualos

UFIFICRIDA Carbon Capture and Storage CO₂-ECBM

- \succ The uncertainties of CH₄ prices and CO₂ trading prices
- Multistage stochastic programming model

$$Max \ \sum_{k=1}^{K} prob^{k} f(\boldsymbol{v}_{1}^{k}, \boldsymbol{v}_{2}^{k}, \boldsymbol{v}_{2,r}^{k})$$

s.t. $\{\boldsymbol{v}_{1}^{k}, \boldsymbol{v}_{2}^{k}, \boldsymbol{v}_{2,r}^{k}, \boldsymbol{x}_{1}^{k}, \boldsymbol{x}_{2}^{k}, \boldsymbol{y}_{1}^{k}, \boldsymbol{y}_{2}^{k}, \boldsymbol{w}_{1}^{k}, \boldsymbol{w}_{2}^{k}\} \in \Psi_{k}$
 $\boldsymbol{v}^{t,k} = \boldsymbol{v}^{t,l}, (k,l) \in S_{t}^{n}, n \in N$

- Challenges and Future Work
 - Multistage stochastic nonlinear program
 - Large-sized multistage stochastic program
 - Optimization for the integration with carbon capture facilities and carbon transportation

- Y. Huang, Q. P. Zheng, N. Fan, and K. Aminian. *Optimal* scheduling for enhanced coal bed methane production through CO₂ injection. Applied Energy, Volume 113, January 2014, pp. 1475-1483.
- Y. Huang, S. Rebennack, and Q. P. Zheng. *Techno-economic analysis and optimization models for carbon capture and storage: A survey.* Energy System 2013, pp. 315-353.

- F. Jaehn and P. Letmathe. *The emissions trading paradox.* European Journal of Operational Research, Volume 202, Issue 1, 2010, pp. 248-254.
- S Rebennack, P.M. Pardalos, and M.V. Pereira. *Stochastic Hydro-Thermal Scheduling under CO2 Emissions Constraints*. IEEE Transactions on Power Systems, VOL. 27, NO. 1 (2012), pp. 58-68.

- M. Rahmani, G. Vinasco, M.J. Rider, R. Romero, and P.M. Pardalos. *Multistage Transmission Expansion Planning Considering Fixed Series Compensation Allocation*. IEEE Transactions on Power Systems, Vol. 28, No. 4 (Nov 2013), pp. 3795-3805.
- L. Wang, R. Yang, P.M. Pardalos, L. Qian, M. Fei. An Adaptive Fuzzy Controller based on Harmony Search and Its Application to Power Plant Control. International Journal of Electrical Power & Energy Systems, Volume 53 (2013), pp. 272-278.

- M. Resener, S. Hanera, L.A. Pereira, and P.M. Pardalos. *Mixed-Integer LP Model for Volt/Var Control and Energy Losses Minimization in Distribution Systems*. Electric Power Systems Research, Volume 140, November 2016, pp. 895-905.
- G. Vlontzos, S. Niavis, and P.M. Pardalos. *Testing for Environmental Kuznets Curve in EU Agricultural Sector through an Eco-(in)efficiency index.* Energies, 10, 1992 (2017).

- K.G. Boroojeni, M. Hadi Amini, S.S. Iyengar, M. Rahmani, P.M. Pardalos. An Economic Dispatch Algorithm for Congestion Management of Smart Power Networks An Oblivious Routing Approach. Energy Systems, Vol 8, No 3 (August 2017), pp. 643-667.
- G. Vlontzos and P.M. Pardalos. Assess and prognosticate green house gas emissions from agricultural production of EU countries, by implementing DEA Window analysis and artificial neural networks. Renewable & Sustainable Energy Reviews, Vol. 76, pp. 155-162,

Activities

Publications - Books

2 miles

Handbook of CO₂ in Power System

Q. P. Zheng, S. Rebennack, P. M. Pardalos, N. Iliadis, M. V. F. Pereira (eds.) Springer 2012

Activities

Publications – Books

Cities for Smart Environmental and Energy Futures

Rassia, Stamatina Th., Pardalos, Panos M. Springer 2014

Handbook of Wind Power System

Pardalos, P., Rebennack, S., Pereira, M.V.F., Iliadis, N.A., Pappu, V. Springer 2013

Optimization and Security Challenges in Smart Power Grids

Pappu, Vijay, Carvalho, Marco, Pardalos, Panos Springer 2013

Modern Optimization Techniques with Application in Electric Power Systems

Soliman, Soliman Abdel-Hady, Mantawy, Abdel-Aal Hassan Springer 2012

Publications - Books

Handbook of Networks in Power System I

Sorokin, A., Rebennack, S., Pardalos, P., Iliadis, N.A., Pereira, M.V.F. Springer 2012

Handbook of Networks in Power System II

Sorokin, A., Rebennack, S., Pardalos, P., Iliadis, N.A., Pereira, M.V.F. Springer 2012

Energy Pricing

Conkling, Roger L. Springer 2011

Optimization in the Energy Industry

Kallrath, J., Pardalos, P., Rebennack, S., Scheidt, M. Springer 2009

Publications - Books

Handbook of Power System I

Rebennack, S., Pardalos, P., Pereira, M.V.F., Iliadis, N.A. Springer 2010

Handbook of Power System II

Rebennack, S., Pardalos, P., Pereira, M.V.F., Iliadis, N.A. Springer 2010

Energy, Natural Resources and Environmental Economics

Bjørndal, E., Bjørndal, M., Pardalos, P., Rönnqvist, M. Springer 2010

Energy Systems Journal

Activities

Publications - Books

Sandra D. Eksioglu Steffen Rebennack Panos M. Pardalos *Editors*

Handbook of Bioenergy

Bioenergy Supply Chain - Models and Applications

D Springer

Activities

Publications - Books

Studies in Systems, Decision and Control 145

M. Hadi Amini · Kianoosh G. Boroojeni S. S. Iyengar · Panos M. Pardalos Frede Blaabjerg · Asad M. Madni *Editors*

Sustainable Interdependent Networks

From Theory to Application

Deringer

Publications - Books

Sustainable Interdependent Networks II

From Smart Power Grids to Intelligent Transportation Networks

D Springer

UFINITERSITY of
DENING Challenges and Opportunities for
Building a Sustainable Energy Future

- Energy efficiency, conservation, decarbonization of our energy sources
- Clean electricity (and affordable) generation
- Solar, wind, nuclear (technological or political challenges?)
- Energy storage
- Water and Cooling
- Security issues and the smart grid
- New tools (in optimization, sensors, IoT, data sciences, blockchain, etc.)
- Energy education

"If we don't change direction soon, we'll end up where we're heading" IEA's World Energy Outlook https://www.nature.com/articles/nature11475

UF FLORIDA Blockchain & Energy Systems Conference (BEST2019)

- January 18-20, 2019, Orlando, FL, USA
- Organizing Committee: Panos M. Pardalos, Qipeng (Phil) Zheng

http://caopt.com/BEST2019/

UPIVERSITY of **FLORIDA** The Foundation for The Gator Nation