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Nuclear Fusion

Nuclear fusion is a nuclear reaction where two light nuclei
(e.g. hydrogen and its hysotopes) fuse into a heavier nucleus
with a subsequent energy release.
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Nuclear Fusion powers the stars

DEIM




D-T reactions

DEIM

The easiest fusion reactions to have in a fusion reactor are

those involving hydrogen and its isotopes:
D+T >4He +n Deuterium
D +D —>3He +n 2 % O
"T+T- 4He +2n \ / Tritium
Deuterium is widely spread on A g

Earth (water) but tritium is not;
it can be produced in situ by

' ' 3.5 Mev
chemical reactl'on.s between L / \ o
electrons and lithium. (He-4) Neutron
SLi +n — *He + 3T ng
Li+n—> 3He+ 3T +n

Deuterium-Tritium Fusion Reaction



The plasma

Fusion reagents need to interact at very close distance (sub-atomic

distance) in order to let fusion take place.

Fusion reagents need to be energized in order to overcome the

Coulomb barrier and let high speed collisions take place.
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Plasmas are everywhere...
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How to produce such a hot plasma?

Where can we confine such a hot plasma?



Magnetic Confinement

=» When a magnetic field is applied, charged particles are not

free to move anymore but they move on a spiral along the

magnetic field line.
=> In this way, it is possible to confine the plasma and avoid it

from touching the sorrounding structures.




Magnetic Confinement of the plasma

DEIM

Inner Poloidal field coils
(Primary transformer circuit)

Poloidal magnetic field Outer Poloidal field coils
(for plasma positioning and shaping)

Resulting Helical Magnetic field Toroidal field coils

Plasma electric current Toroidal magnetic field
(secondary transformer circuit)




The Tokamak
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Andrei Sakharov in HuxHwii Hosropog (&l &3

HuxHun Hosropog

The physicist and Nobel
laureate Andrei Sakharov

was exiled there during
1980-1986 to limit his

contacts with foreigners.
https://en.wikipedia.org/wiki/Nizhny_Novgorod

DEIM

The Tokamak was invented in the 5o, by the russian

1es

physicist Andrei Sakharov (Nobel prize for peace in 1975)
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The Tokamak

(visualization courtesy of Jamison Daniel, Oak Ridge Leadership Computing Facility)
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Why a Plasma Boundary Identification

The plasma geometrical parameters (e.q.
plasma-wall gaps) are not directly measurable.
It is only possible to recover the information
waa  regarding the magnetic field distribution inside

//Je»  the vacuum vessel, provided by the magnetic
measurements.

A Plasma Identification is essential

: X- point
Divertor == Strike Points

13



Why a 3D Plasma Boundary Identification

3D symmetry-breaking effects are present in all toroidal fusion
configurations because of:

General Tokamak Engineering

®Finite number of TF coils, ferrous steel structures (blankets,
beams, etc.), error fields from fabrication tolerances

®Particle/energy sources not symmetrically distributed
(pellets,beams, RF)

® Coils further from plasma, but ports/non-uniformity like in
surrounding ferritic steel structures

Plasma control
® Coils to control ELMs, RWMs, ...

Advances in 3D simulation
tools and diagnostics are
mandatory

14




Inverse Problems in Nuclear Fusion —1/2

Starting from the measurements, a B field

map inside the chamber is reconstructed
Measurements

Magnetic
Modeling

Inverse
Problem Solutionj

N

Plasma Boundary

Information on the Plasma Boundary can be obtained
from the knowledge of the B field map (e.g: gaps)

15



Inverse Problems in Nuclear Fusion —2/2

2D axisymmetric B field Full 3D B field

Exploitability of analytical Analytical expression of
surface invariants invariants are not known a-
(e.g. poloidal flux) priori but in few simple cases

(e.g. Clebsch Potentials)

3D magnetic sources (Toroidal
Axisymmetric active currents Field Coils, Error Field
(simple to be simulated) Correction Coils, that need a
high computational burden)

Axisymmetric plasma current 3D plasma current

16



Two approaches have been proposed:

Basis functions to Basis functions to
expand equivalent expand the 3D field
sources




How to approach to 3D Magnetic Field Identificatio £,

Two approaches have been proposed:

P
Basis functions to

expand equivalent
9 sources

>

/

Basis functions to
expand the 3D field




: 3D Magnetic Field Identification 1/4

The magnetic measurements are known justin a
discrete set of points, corresponding to the field
Sensors

3

Y ". Ay |I\||m||mu‘_n‘|‘\‘~.\r‘~‘ll
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Triaxial Pick-up Coil for magnetic flux density field
measurement (Courtesy of EFDA-JET)

3-D Plasma Identification
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Kwnowledge of the sensors measurements

Definition of a set of basis functions,
by defining a set of equivalent magnetic sources:

Ngip
»(r, 2) =$Zzn‘/: (1——)K(k ) — E(k2 )]
n=1

0
B=VyxV¢ 47T|1‘|3( 7|2

Determination of the geometry and the magnitude of each source




: 3D Magnetic Field Identification 3/4

Problem:

The relation between flux density and geometry of sources is non
linear.

Solution:

Fix source geometry (axisymmetric filaments) with axisymmetric
currents and sinusoidal distribution of magnetic moments




: 3D Magnetic Field Identification 4/4 IS

DEIM
-my1 [Y911 0 Ging | [A; ]
M) |Gnga t Gngng| | ANg
Measures Green Unknown
Vector Matrix Source
Magnitude

g is the value of the measure carried out by the i-th sensor when the
only j-th source is active with a unit magnitude.

4=pinv(6)-m Nsv:%




Test Case Definition

Reference:
Axisymmetric equilibrium

#* *
% *
_2 L #* ** 4 0 .1
* * .
* *
#¥

z [m]
o

4 6 8 10 12 14
r[m]

Non-axisymmetric perturbation of

the filamentary currents: _' >\/10
e 5cmdisplacement along the x axis ° 0

I : -10 -10
 0,5deg rotation around the x axis yim} x [m]

a0
[an JEEN

DOFs (7 . Nfﬂ)l
Ng axisymmetric filamentary currents

Ng; amplitudes & N phases for the m, distribution
Ny amplitudes & Ng phases for the m, distribution
Ng amplitudes & Ng phases for the m, distribution




ABr%

AB¢%

Radial Field Identification

- Identified b_

I I
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Toroidal Field Identification
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Radial Field Identification

Radial Field Identification

1 T
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0.5 L
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Two approaches have been proposed:

Basis functions to Basis functions to
expand equivalent expand the 3D field
sources




I: Magnetic Modeling —VIW & VEW

B = B, + Bext + Bsource

L Rw e B, solution of a differential problem where the
| b.c. are given on the VIW. B, . is generated by
the plasma

B,,: solution of a differential problem where the
b.c. are given on the VEW. B_,, is generated by
all the unknown sources located outside the
plasma (e.qg. eddy currents in the Vacuum Vessel)
e B . flux density field generated by the

source*
known external sources (e.qg. PFCs, TFCs, ...)

field
sensors

VIW: Virtual Internal Wall
VEW: Virtual External Wall

Sensors’ :[Bint + Bext]
measurements

Calculated

Information to
be identified

27



I: Magnetic Modeling — Mathematical Formulati

DEIM

B =V x Vol +\foVo|— VO

Axisymmetric Axisymmetric 3D B field
B field Toroidal Field perturbation

(2 ( 1 alpim(r,z))_ a ( 1 alpint(T,Z)): 0 (0 (1 0Pere(r2)\ 0 [ 1 0ere(r,2)\ _ 0
or \ ot 0z 0z \ por ar or \ Uor 0z 0z \ or or a
) Yint — =;(r, 2) \ Yot o =0 Y=Yin+y
Lwint|VEW =0 klpext VEW = Pe(r,2)
fo = const.

28



Magnetic Modeling — Basis Functions AR

DEIM

MV/
2 i P ‘ i . ‘/’k(r’z):ZCka(r’Z)
k=1

Mo
Q (re.z2)=>.> (am,cosnp+b,, sinnp)-Q,, (r,2)

m=1neS
S={s}

are numerical solution of VX Vi, X Ve =0

w when expanding the boundary conditions for

k Y in Fourier series on the virtual axisymmetric
walls

are numerical solution of V- V(Q,,,, = 0 when
an expanding the boundary conditions for () in
Fourier series on the virtual axisymmetric walls

29



Inverse Problem

I A, || Rectangular set

of equations, to
: be solved (for
ANf instance) in the

fmyq 911 91Ny

m e e e
L Ns Y Ins1 gNSNf/ L )
Y least squares
easurements Influence Unknown
Vector Matrix vector >ENse

g; is the value of the measurement carried out by the i-th sensor when

the only j-th source is active with an unitary magnitude. The unknown
vector is defined by the amplitudes ay, by, ¢, of the terms in the /()
series expansion.

30



Axisymmetric single null equilibrium - 1

gfit —_ 0,08%
EtESt —_ 0,08%

DEIM

| Axisymmetric single null equilibrium in a tokamak

The magnetic sources to be identified are:
e Currentin the Central Solenoid Coils

e Currentin the Poloidal Field Coils

e Plasma Current

mlpi = m¢e = 40

mq, =mg, =40,n=1

WMWW m

31



Axisymmetric single null equilibrium - 2

Non'—axJ;ymxmetric'
modes NOT e




Kinked Filamentary Current - 1. FAES

DEIM

Axisymmetric current affected by a tilt
and shift (kink)

e 2 mm shift along x-axis

T 0,5 deg tilt around x-axis

T I I [ I

mlpi = mlpe =40
mq, =mg, =40,n =1

X

Efit —_ 0,08%

Etest — 0,09%

o

33



Kinked Filamentary Current - 2

DEIM

Axisymmetric modes
| are super imposed to .
| non-axisymmetric n=1
modes

34



Sinusoidal magnetic charge distribution on a ring =4

Analyticaln =1
solution is
AVAILABLE!

gfit — 005%

gtest —_ 03%

o

Axisymmetric «fictitious magnetic»
charge distibution.
The amplitude of each charge is
moduled by a sine wave of a given
spatial frequency along the toroidal
direction

mwi — mlpe = 40

mq, = mqo, =40,n =1

X
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Sinusoidal magnetic charge distribution on a ring

DEIM

Axisymmetric modes
not excited!

| NO information regarding

| the symmetry of the field

idistribution are provided!!!

Q

36



Field Lines Tracing

Plasma particles trajectories
Plasma-wall gaps

Plasma behaviour in terms
of closed OR ergodic lines
Connection Lengths

Heat loads on the divertor
and other structure
sorrounding the structure

37





Geometric Integrators

A numerical integrator is called Geometric Integrator if some qualitative
geometrical properties of the dynamic system to be integrated is exactly
preserved, such as the Hamiltonian structure of the ODEs (Symplectic

Integrators).

Magnetic Flux Density
Field Lines tracing

) /- B =(

Volume
Preserving
Integrators

38



Volume Preserving Integrators

A geometric integrator is a Volume Preserving Integrator if it preserves
the divergence-free structure of ODEs:

A chosen unit volume overall the integration of the source-free field is
exactly kept constant (like in incompressible fluids, where Lagrangian
trajectories coincide with the velocity field lines in stationary conditions).

Xk+1 = Cb(xk;xkﬂ;tk;fk+1;Bk;Bk+1:h)

(0Xp+1  OXgg1  OXggq]

axk ayk aZk
0Vik+1 OVik+1 OVt
Jo =10 oy oz det(J,) =1

0Zg+1 0Zgg1 0Zgiq

N R R
|l
UUEUUHUU

N

39
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The Implicit Mid-Point Rule (MR)

DEIM

Xk+1 T xk)
2

In two dimensions, MR discretization is exactly area preserving:

xk+1=xk+h-B(

=I+h-—B = Z]

0X}, 0x (%) Xp41+X) (2 0xp, " 2
2
]—(1 hF)1(1+hF) Ry =2t
2 2 o 0x;
2 2
1+ %T)@ + 2 det(F) 1+ det(F)
det(J) = = =1

h h? h?



Splitting with Vector Potential 1/2

Problem:

In three dimensions MR discretization is not exactly volume preserving, because

the Jacobian determinant is not exactly 1, but approaches to 1 by the cube of the
integration step.

Solution:

Generating Function Approach: Splitting of the original divergence-free fiel

using a vector potential to generate three vector fields, who
gives the original field, all of them being 2-

B, =VA, X1I, #1231
B=VxA={B,=VA, X1, X, =B,
B,=VA, x1i, X3 = B

B=B1 +Bz+Bg

41



DEIM

94, _
axx (Oix (d A AX' AV 8(AZ'
0Ay 04y, > = — Hamiltonian
VAx: p Blz<azy <d’[ Z _ fh
Y 4. |42_ _04: Functions of the
94 _ 9. =
5 oy 2 At 2-D ODE sets
L 07 A
By
94y
9x 9y (e oa
0A 0z e (22 %y
VA, =|=>| B, ={0 dt oz
Y 2 y .
aaz/ 04y dZ_ 04y 2’D Qd: set
—2 ——1, \dt Ody
_az_ k ax +
04,1 Hamiltonian set
(04, Hamiltonian set
0% Sk [dx_ o4, )
vA; =15, | Bs= dt  dy ) .
A, K 2o )
A7 Ul




MR Procedure — Cascaded Scheme

h Vi + Vi+1 2k +Zk+1
<y1k+1=yk+f'31y(xk’ > :

1 }’k+J’k+1 Zk+Zk+1

h
Z k+1=Z"+§'BlZ(xk' ’

\

( 2 3 2 3
b B [ Skt + Xi41 YVir1 T Vs
xk+1 xk+1 + 3x 2 ’ 2
2 3 2 3
Xi+1 F Xk41 YVi+1 T Vi+1
J’k+1 Yk+1 +h- B?y( 5 ) >

3 _ .2
\Zk+1 = Zk+1

( _ 4
Xk+1 = Xg+1

2

Jzk+1)
Jzk+1)

2

(

\

. h
Z§+1:Z!§+1 +E'BZZ( >

h

A
Vi+1 = Yk+1 T

\

2

Zy+1 = Zgsq + 5 3 - By, (x k+1)

4
' Bly (x k+1»

4

2

’

2

4 5 4 5
Yi+1 T Vi1 Zk+1t Zk+1)

’

4 5 4 5
Yis1 T Vis1 Zgs1 t Zk+1)

2

2

h

5

2 _ .1 n
Xig41 = X1 T
2 _ .1
Y Vie+1 = YVie+1
2 _ .1 n
Zik41 = Zg4r T
\
(
4 _ .3
X1 = X1 T
4  _ .3
Y Vi+1 = Vi+1

h
2
h
2

BZX(
1 2
Xig+1 T Xjc41
'BZZ(

3
"

{Q

DEIM

1 2
Xigg1 T Xiey1 4

1 2
Ziy1 1 Zyq
2 ’

Vic+1 2
Y

1 2
1 Zk+1 T Zkgs1
2 'Y k+1 2

4 3 4
Xigg1 T Xpp1 3 Zpg1 T Zgyq
- 2 ' Vi+1 2

4 3
Xpg1 T X414

4 3
Zpg1 t Zjyq
' Vi+1 2

Consistent with:
)'C — Xl + 5(2 + .563
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z[m]

Z[m]

4

Field lines - 3-D view

-10

DEIM

Projections on poloidal cross section, phi=0




MR vs RK: Performances comparison ]%3[
1,.

Relative Flux Accuracy 10
10 4 X 10
o RK-l ' ' | —RK-IV

2 \»\\ Rk
P \’t\

10"

10
108 \
h

10—10

Jacobian accuracy

/

AY/Y

35 17.5 8.74 4.36 2.18 -4 ! ' : 1
Integration Step [mm/T] 0 200 400 600 800 1000

Field Line Length [m]
]h(T)

](_T) 2 ]h (T)
J(0) ]h(O) ~ Ja(0)

+ O[h?]
[IJ] = 1]gg—y = 3,302 - 10712
[lJ] — 1]yr = 0,460 - 10712 g


Выступающий
Заметки для презентации
Cambiare colori


Clebsch Decomposition for a divergence-free field

Helmholtz Theorem: Let F be any continuous vector field with continuous first
partial derivatives. Then F can be expressed in terms of the negative gradient of a
scalar potential and the curl of a vector potential.

F=-TVTb+V XA

If Fis divergence-free, so as the magnetic flux density field:

F=VXA

U andV are called

Choosing: A = UVV, we get: Clebsch Potentials and are
| ‘ . analytical invariants!

F=VXxUVV)=VUXVV|F.py=vyuxvv vU=0
F-VV=VUXVV-VV =0

46



Clebsch  Potentials:  Axisymmetric  field with elliptic @

Cross section ~ DEIM
U= (2R (22
0 a b ’
V=9 —q0 + 1}
Poloidal section U = const. & V = const. Clebsch surfaces

j N\
A

! 1

S~

l
. \\ -
N,
6 8 10 12
r[m] Y[m] '10 -10 X[m]
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Q

DEIM

T_RO + Z_Z[)
a + & cos(ng) b + & cos(ng)
V=0 —q0+V,

U= + U,

-

Global Perturbation Global Perturbation
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Clebsch Potentials: Non-Axisymmetric field with Local

Perturbation

DEIM
o . 2 o 2
a b
a y a 1

.

Az 2 57 2 E 2 2 .
SU = 5r.e™ VA -@mn" gt ae'-(a-0) u(r-R,) inQ, and 0 elsewhere

v=0-2iv,
q

Local Perturbation

! N

|
MR

z [m]
=)

z[m]
Lo

| S
8 85 9 95 10 105
r [m]
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s

Clebsch Potentials: Stellarator Plasma

(U (7T cos(ng) + zsin(ng) — R, 2 . 2 cos(ne) — r sin(
a + & cos(ng) b + & cos(n

Stellarator Plasma

Stellarator Plasma

DEIM
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MR vs RK for 3-D vector fields

|U-U_|/U, V-V |V, dP [m]
GP LP GP LP GP LP
MR  4.4e-1 3e-3 2.3e-1 2.0e-2 1.5e-2 8.oe-4

RK-Il 2.1e-3 8.0e-4 2.0e-4 4.0e-4 1.0e-4 4.6e-5
RK-IV 4.3e-8 1.0e-7 2.0e-9 5.3e-9 4.0e-9 5.5e-9

ZA

vy ,dP
GP: [[Ul B 1]RK—IV =0,3190- 10_11 et (U,+8U,V,+8V)
| []J| — 1]y = 0,4918 - 10~ 11
dP calculated via
g[l]l — 1]RK w = 0 1268 - 1011 UarVo) pseudoinversion
LP: - ’

[IJ| = 1]yr = 0,1027 - 10711 >Y

X

Standard fixed step integrators are well
suited for flux density field line tracing in
Tokamaks
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Plasma boundary and plasma-wall gaps 1/2

Plasma confined in the region where the
field lines do not touch the first wall

Separatrix easily calculable in 2-D
axisymmetric cases, both in limited and
diverted configurations

In 2-D axisymmetric cases, the plasma-
wall gap is the distance between the
intersection of the normal unit vector
and the level flux line with ¥ =¥,

In 3-D configurations it is not possible to
refer to the poloidal flux: by definition, it
IS an axisymmetric quantity

82211_withoutnoise_d_CNL.cfg

~ -

Ip=15.104 MA
Ppo = 0,082
1,=1.075
R=6014m
a=1966m
R;=601m
Z,=0695m
k=159
5,=0335
8 =0.209
Rla =3.058

Rfa =3.083

d¥ = Bz Znr dr
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In 3-D configurations it is not possible to
refer to the poloidal flux that is an

axisymmetric quantity: we can exploit the
3D field lines tracing!

No intersections:
Inside the Plasma

An high precision is necessary to state if
a field line intersects the wall or it does
not: the field line does not intersect the
wall if it is closed or when it returns close

to the start point at a very low distance

gap

Intersections

with the wall:
Outside the
Plasma

53



Plasma Boundary Reconstruction 1/5 TS

DEIM
Field lines - 3-D view Poloidal cross section, phi=0
4 F T T T T
2 L
E°
N
=2
-4t
ylml 10 -10 % [m] 4 14
r[m]
Plasma Boundary Reconstruction _ _ )
4F— : , , — Connection Length vs Radial coordinate
s |
2r : _ ;
£ ]
£
—_— L i o
E° g
N 5
-2} 1 S .3
g 10 —
o
-4l ] O
4 6 8 10 12 14 ' '

11.2 11.25 11.3 11.35 54

r[mj i



Plasma Boundary Reconstruction 2/5

DEIM

Plasma boundary at ¢ = 0 deg

.""""I.- i
- -

.'I et

Z [m]

r[m]

Effect of the plasma kink: p,, = 10 cm,9,, = 5 deg
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Plasma Boundary Reconstruction 3/5

3-D Plasma Boundary

3-D Plasma Boundary
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Plasma Boundary Reconstruction 4/5 S

DEIM
Plasma boundary at ¢ = 0 deg
a4t
3 B
2t |
: |
1r ‘ |
£ of | |
|
1t .
|
-2 i Ii
Al
-4 3 |
2 4 6 8 10 12
r[m]

Effect of a (HUGE) Toroidal Field Coils Ripple
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Plasma Boundary Reconstruction 5/5 : 1%1?1

3-D Plasma Boundary

3-D Plasma Boundary
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Conclusions

Nuclear fusion energy has been introduced, depicting the physics and its engineering

features.

Two techniques for three-dimensional flux density field identification has been.

The first technique is based on the superposition of an equivalent set of axisymmetric
filamentary currents and magnetic dipoles.

The second technique is based on the decomposition of the identification problem
into the axisymmetric and non-axisymmetric sub-problems:

- The axi-symmetric part in the poloidal plane is solved with a basis function
decomposition whose b.c. are given by a Fourier expansion along the VIW and
VEW

- The toroidal non axi-symmetric component is expanded with a Fourier
representation along ¢-direction, whose coefficients are functions of the poloidal
coordinates and are calculated as before

Preliminary analyses demonstrated how such schemes are able to deal with a
significant class of 3D perturbations, thanks to its flexibility.
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Conclusions

» Several test cases have been identified with a precision every time better than one
percent

* New classes of basis functions and the exploitation of information of other sensors
(e.g. full flux loops, saddle loops, ...) are under evaluation at present.

e The problem of 3D field line tracing has been discussed. Comparing standard
integrators and volume preserving integrators, we can say that Fixed-Step Fourth

Order Runge-Kutta Integrator:
— iswell suited for field line tracing in fusion tokamaks;
— ismore accurate w.r.t. Mid-Point Rule;

— preserves the solenoidal structure of the ODE set as well as the Volume-

Preserving Mid-Point Rule, showing to be well suited for long integration.

e A new fast and accurate way to calculate the plasma-wall gap and to reconstruct the

shape in axisymmetric and non-axisymmetric plasmas has been presented.
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