

Scene Recognition in User Preference Prediction Based on Classification of Deep Embeddings and Object Detection

Andrey Savchenko, Dr. of Science, Prof., Leading Researcher
Alexandr Rassadin, intern
Laboratory of Algorithms and Technologies for Network Analysis

National Research University Higher School of Economics (HSE), Nizhny Novgorod

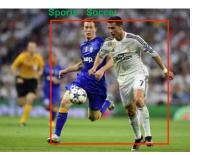
Email: avsavchenko@hse.ru

We introduce the outline of our talk

- User preference prediction
- 2 Proposed approach
- 3 Experimental results
- 4 Concluding comments

Development of Preference Prediction Engine using Visual Data

- Deep understanding of user characteristics by analyzing user images and videos in a mobile device.
- Categorizing user's characteristics (taxonomy, demographics, hobbies, occupation, lifestyle, etc.) → Generate user profile



Hobbies	Food code	Pets
Restaurant	Junk food	Dog
Beach	Health - salad and etc.	Cat
Tracks	Sandwich	Fish
Bar	Meat	Horse
L		
U		
Sports	Household Income	Vacation
		Vacation Ski
Sports Fishing Golf	Household Income Age Gender	
Fishing	Age	Ski
Fishing Golf	Age Gender	Ski Museum
Fishing Golf Diving	Age Gender Car types	Ski Museum Tracks
Fishing Golf Diving	Age Gender Car types	Ski Museum Tracks
Fishing Golf Diving	Age Gender Car types	Ski Museum Tracks

User Images: Categorized characteristics

User Profile

Conclusion

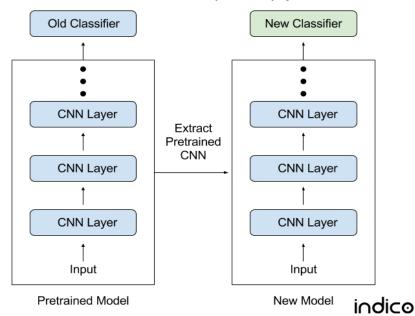
Image recognition

Problem formulation

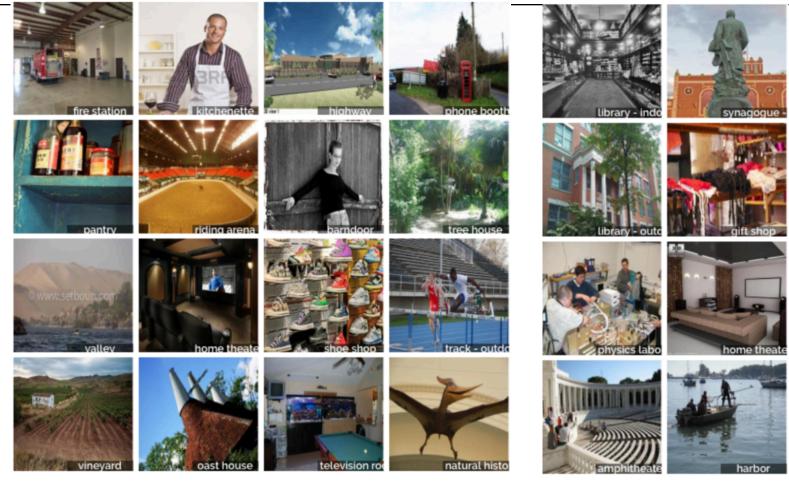
It is required to assign a new image X to one of C classes. Training set contains N reference images $\{X_n\}$, $n \in \{1, ..., N\}$, with known class label $c_n \in \{1, ..., C\}$

Conventional solution

Fine-tune convolutional neural network (CNN) pre-trained on ImageNet-1000



Scene recognition



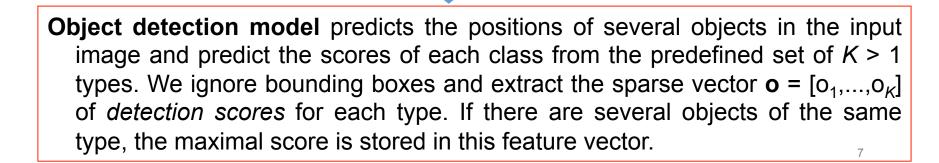
Places2 scenes dataset, http://places2.csail.mit.edu

Event recognition

"An event captures the complex behavior of a group of people, interacting with multiple objects, and taking place in a specific environment. Images from the same event category may vary even more in visual appearance and structure" (Wang et al, IJCV 2018)

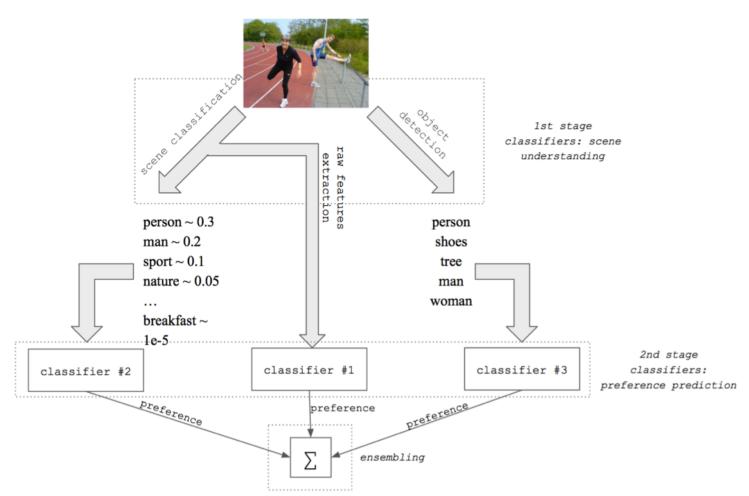
Ensemble of three feature vectors

- Scores of fine-tuned model: C-dimensional feature vector $\mathbf{p} = [p_1, ..., p_C]$ $\sum_{c=1}^{C} p_c = 1$ Training set is associated with scores $\{\mathbf{p}_n\}$, $\mathbf{p}_n = [p_{n,1}, ..., p_{n:C}]$.
- Embeddings (features) from either pre-trained or fine-tuned CNN: *D*-dimensional feature vector $\mathbf{x} = [x_1, ..., x_D]$ Training set is associated with embeddings $\{\mathbf{x}_n\}$, $\mathbf{x}_n = [x_{n-1}, ..., x_{n-D}]$.
- The scene is composed of parts and some of those parts can be named and correspond to objects

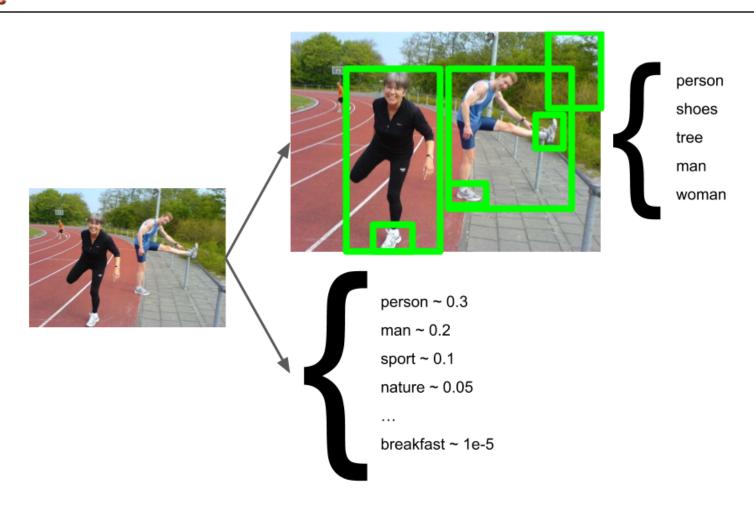


Proposed pipeline

Outline



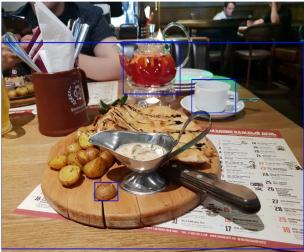
Example



Android demo application

NEXT

BACK



NEXT

NEXT

photo 67 out of 1196 Public photo Scenes:60 ms Москва, Россия

PREV

bus (0,92) car (0,52) scenes:street (0,38); parking garage (0,12); No faces found text: photo 360 out of 1196 Public photo Scenes:62 ms

latitude=0,000 longitude=0,000

PREV

coffee cup (0,80) food (0,48) drink (0,36) dining table (0,34) scenes:restaurant (0,37); No faces found BACK

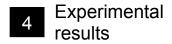
photo 377 out of 1196 Public photo Scenes:68 ms latitude=0,000 longitude=0,000

PREV

equipment (0,44) equipment (0,33) scenes:football (0,70); athletic field (0,29); No faces found text:

10

BACK



Tennis

Experiment 1. Subset of ImageNet dataset.

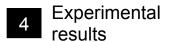
Dataset size: 45K Number of classes C: 40 +1 distractor class from Caltech-101/256 datasets

sport scenes, drugstore, gas station, beauty shop/salon, spa, department store, bookstore, grocery store, amusement park, gallery, art gallery, picture gallery, music hall, opera, cinema, alehouse, cabaret, nightclub, night club, club, nightspot, news magazine, comic book

Experiment 1. Accuracy (%) of scene recognition models

	MobileNet v1	MobileNet v2 (α=1)	MobileNet v2 (α=1.4)	Inception v3
Fine-tuned CNN	76.84	78.66	80.02	82.22
Pre-trained features, FM (Factorization machine)	18.5	21.34	22.76	24.27
Pre-trained features, SVM	78.25	83.6	85.12	86.38
Fine-tuned scores, FM	24.11	27.8	28.92	29.0
Fine-tuned scores, SVM	72.76	76.25	77.9	77.91
Proposed ensemble, FM	48.35	50.8	52.56	53.0
Proposed ensemble, SVM	80.15	85.14	86.39	87.52

Factorization machines cannot improve the accuracy when compared to simple CNN-based scene recognition



Outline

User preference prediction

Proposed approach

Results

Experiment 1. Out-of-class detection.

True negative

True positive

False positive (soccer scene is detected as out-of-class sample)

Dataset size:

Experiment 2. Event recognition

PEC (Photo Event Collection) dataset

61K

Number of classes (birthday, wedding, graduation) C:

WIDER dataset

Dataset size: 50K

Number of event classes (parade, dancing, meeting, press conference,...) C:

Features

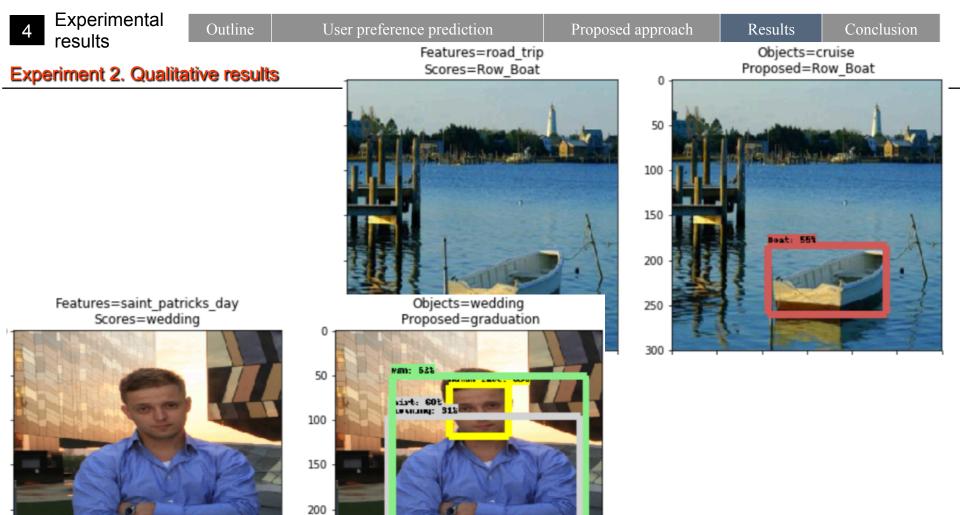
Classifier

Accuracy, %

Experiment 2. Accuracy (%) for PEC dataset

		0,	
MobileNet v2 ($\alpha = 1.4$), scores	Random Forest	56.20	_
	Linear SVM	51.95	
	Fine-tuned	61.11	
MobileNet v2 ($\alpha = 1.4$), features	Random Forest	57.09	_
	Linear SVM	58.32	
	Fine-tuned	62.13	
SSD+MobileNet	Random Forest	36.82	_
	Linear SVM	42.18	
	Fine-tuned (new FC layer)	40.16	We improved the
Our ensemble (client-side classifiers)	Random Forest	57.45	previous state-of-the-art
	Linear SVM	60.84	•
	Fine-tuned	63.34	for PEC from 62.2%
Inception v3, scores	Random Forest	57.45	[Wang et al, IJCV 2018]
	Linear SVM	52.55	even for client-side mod
	Fine-tuned	61.81	
Inception v3, features	Random Forest	58.31	⁻ (63.34%).
	Linear SVM	61.82	•
	Fine-tuned	63.68	
Faster R-CNN+InceptionResnet	Random Forest	44.59	Our server-side model is
	Linear SVM	48.83	better (accuracy 64.98%
	Fine-tuned (new FC layer)	47.45	, ,
Our ensemble (server-side classifiers)	Fine-tuned	64.98	_ 15

Experimental Outline results	User preference prediction	Proposed	approach Results Conclusion						
Experiment 2. Accuracy (%) for WIDER dataset									
Features	Classifier	Accuracy, %							
MobileNet v2 ($\alpha = 1.4$), scores	Random Forest Linear SVM Fine-tuned	40.53 35.25 40.49	We have not still reached the state-of-the-art accuracy 53% [Wang et al, IJCV 2018]. However, our accuracy is 7.4-9.3% higher when compared to the best						
MobileNet v2 ($\alpha = 1.4$), features	Random Forest Linear SVM Fine-tuned	42.08 45.22 49.48							
SSD+MobileNet	Random Forest Linear SVM Fine-tuned	15.91 19.91 12.91							
Our ensemble (client-side classifiers) Inception v3, scores	Fine-tuned Random Forest Linear SVM Fine-tuned	49.80 41.61 34.91 41.66							
Inception v3, features	Random Forest Linear SVM Fine-tuned	42.69 50.47 50.96							
Faster R-CNN+InceptionResnet Our ensemble (server-side classifiers)	Random Forest Linear SVM Fine-tuned (new FC layer) Fine-tuned	27.39 28.66 21.27 51.76	results (42.4%) from original paper (Xiong et al, CVPR 2015)						



And summarizing our results we have the following conclusions

Proposed pipeline using fusion of classifiers has a list of advantages

- It usually leads to the most accurate solution. We achieved state-of-the-art results for event recognition from Photo Event Collection dataset
- 2 Our approach was implemented in a special mobile application

And disadvantage

- Slow processing especially if object detection is not needed. Simple MobileNet v2 with α = 1.4 is the best choice for offline mobile applications with strict constraints to the running time
- 2 Still cannot obtain state-of-the-art accuracy for WIDER event collection

Future Works

- Extend our solution for predicting the user preferences from a *set* of photos rather than process each photo independently
- Improve the speed by using fast object detectors, approximate NN search, structural pruning of CNNs, etc.

Thank you for your attention

Any Questions?