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Deep Learning Appliance for Sensitive Data
Alexey Aleshin

EPAM Systems
https://www.epam.com/

GDPR rules apply a lot of restrictions on sharing data between
companies, this problem creates a lot of work to identify person-
ally identifiyng information (PII) and its anonymization. During
the presentation we will show on examples of the problems and
restrictions of natural language algorithm for PII detection and
variational autoencoder for data anonymization.
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Representing Systems of Dilations and Translations
of a Function in Symmetric Spaces

Astashkin S.V.

Samara National Research University
astash56@mail.ru

Let 1 6 𝑝 < ∞, 𝑓 ∈ 𝐿𝑝 = 𝐿𝑝[0, 1]. According to the result by
Filippov and Oswald proved in [1] the obvious necessary condition∫︀ 1

0
𝑓(𝑡) 𝑑𝑡 ̸= 0 assures that the sequence {𝑓𝑘,𝑖} of dyadic dilations

and translations of a function 𝑓 ∈ 𝐿𝑝 defined by

𝑓𝑘,𝑖(𝑡) =

{︃
𝑓(2𝑘𝑡− 𝑖), 𝑡 ∈ [ 𝑖

2𝑘
, 𝑖+1

2𝑘
],

0, 𝑒𝑙𝑠𝑒𝑤ℎ𝑒𝑟𝑒,

𝑖 = 0, . . . , 2𝑘 − 1, 𝑘 = 0, 1, . . . ,

is a representing system in the space 𝐿𝑝. This means that for
every function 𝑥 ∈ 𝐿𝑝 there is a sequence of coefficients {𝜉𝑘,𝑖}
such that 𝑥 =

∑︀∞
𝑘=0

∑︀2𝑘−1
𝑖=0 𝜉𝑘,𝑖𝑓𝑘,𝑖 with convergence in 𝐿𝑝.

Let 𝑋 be an arbitrary separable symmetric space on [0, 1].
Basing on a combination of the frame approach with the notion
and properties of the multiplicator space ℳ(𝑋) of 𝑋 with respect
to the tensor product, we will discuss the problem when the se-
quence of dyadic dilations and translations of a function 𝑓 ∈ 𝑋
is a representing system in the space 𝑋. The main result (see
[2]) reads that this holds whenever

∫︀ 1

0
𝑓(𝑡) 𝑑𝑡 ̸= 0 and 𝑓 ∈ ℳ(𝑋).

Moreover, the condition 𝑓 ∈ ℳ(𝑋) turns out to be sharp in a
certain sense. In particular, a decreasing nonnegative function 𝑓 ,
𝑓 ̸= 0, from a Lorentz space 𝛬𝜙 generates an absolutely represent-
ing system of dyadic dilations and translations in 𝛬𝜙 if and only
if 𝑓 ∈ ℳ(𝛬𝜙).
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Approximation and Cover Properties of Learning Networks
Andrew Barron

Department of Statistics and Data Science, Yale University, USA
andrew.barron@yale.edu

For functions of bounded variation 𝑉 with respect to a class
of activation functions, we recall how an m term approximation
achieves error bounded by 𝑉/𝑚1/2. Implications are given for the
metric entropy and the statistical risk of single hidden-layer neural
networks, and other ridge function expansions. This sets the stage
for discussion of related complexity properties for deep networks.
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Complexity and Risk Properties of Deep Nets
Andrew Barron

Department of Statistics and Data Science, Yale University, USA
andrew.barron@yale.edu

Suitable extension of the notion of variation is developed for
deep networks, based on the sum of the absolute values of the
products of weights along all paths through the network. The
Rademacher and Gaussian complexities of these networks are dis-
cussed and shown to be bounded by expressions of the order
𝑉
(︀
𝑛𝑙𝑜𝑔𝑑

)︀1/2 where 𝑉 is the variation, 𝑛 is the sample size, and 𝑑
is the input dimension. Also discussed is whether these complexi-
ties can be arranged to be independent of the number of layers of
the network. The associated statistical risk (mean squared gen-
eralization error) of the least squares estimator among the deep
nets is shown to be of order 𝑉

(︀ 𝑙𝑜𝑔(𝑑)
𝑛

)︀1/2. These results show that
favorable risk properties hold for extremely large numbers of in-
put variables as long as the sample size n is large compared to the
log of the number of variables.
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The Role of Information Theory in Deep Net Analysis
Andrew Barron

Department of Statistics and Data Science, Yale University, USA
andrew.barron@yale.edu

Information theory arises in learning network methodology
and analysis in three ways that we discuss. First in the formula-
tion of description-length methods (such as complexity penalized
least squares) for estimation of the network and its associated re-
solvability bound on statistical risk. Second in the determination
of optimal rates of function estimation for these classes of func-
tions. Third in the demonstration of the relationship between
Gaussian complexity and metric entropy.
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Greedy Algorithm with Respect to
Assymmetric Dictionary may Diverge

Borodin P.A.

Moscow State University
pborodin@inbox.ru

Let 𝐻 be a Hilbert space. A subset 𝐷 of the unit sphere
𝑆(𝐻) = {𝑠 ∈ 𝐻 : |𝑠| = 1} is called a dictionary if 𝐷 = 𝐻. For any
dictionary 𝐷 ⊂ 𝑆(𝐻) and any 𝑥0 ∈ 𝐻, the pure greedy algorithm
(PGA) generates a sequence 𝑥𝑛 defined inductively by

𝑥𝑛+1 = 𝑥𝑛 − ⟨𝑥𝑛, 𝑔𝑛+1⟩𝑔𝑛+1, 𝑛 = 0, 1, 2, . . . , (1)

where the element 𝑔𝑛+1 ∈ 𝐷 is such that

⟨𝑥𝑛, 𝑔𝑛+1⟩ = max{⟨𝑥𝑛, 𝑔⟩ : 𝑔 ∈ 𝐷}.

The existence of the above maximum is an additional condition
on 𝐷.

It is well known that PGA converges for any symmetric dictio-
nary [1]. In general case the condition necessary for convergence
is the positive totality of 𝐷: linear combinations of elements of 𝐷
with positive coefficients should be dense in 𝐻. Till recently it has
been unknown whether this condition is sufficient for convergence.
In [2], a special recursive greedy algorithm was invented, which
converges for any positively total dictionary and any starting el-
ement 𝑥0, though it does not provide an expansion of 𝑥0 into a
series of elements of 𝐷 with positive coefficients.

We present an example of positively total dictionary and a
starting element, for which PGA diverges.

References
[1] V.Temlyakov. Greedy Approximation, Cambridge, 2011.

[2] E.D. Livshits. On n-Term Approximation with Positive Co-
efficients // Math. Notes, 82:3 (2007), 332–340.
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Latent Convolutional Models for Image Restoration
Evgeny Burnaev

Center for Computational and Data-Intensive Science and Engineering,
Skoltech Moscow

E.Burnaev@skoltech.ru

Abstract: We present a new latent model of natural images
that can be learned on large-scale datasets. The learning pro-
cess provides a latent embedding for every image in the training
dataset, as well as a deep convolutional network that maps the
latent space to the image space. After training, the new model
provides a strong and universal image prior for a variety of image
restoration tasks such as large-hole inpainting, superresolution,
and colorization. To model high-resolution natural images, our
approach uses latent spaces of very high dimensionality (one to
two orders of magnitude higher than previous latent image mod-
els). To tackle this high dimensionality, we use latent spaces with
a special manifold structure (convolutional manifolds) parameter-
ized by a ConvNet of a certain architecture. In the experiments,
we compare the learned latent models with latent models learned
by autoencoders, advanced variants of generative adversarial net-
works, and a strong baseline system using simpler parameteriza-
tion of the latent space. Our model outperforms the competing
approaches over a range of restoration tasks. We illustrate how
these models can be used for perceptual depth superresolution.

8



About Multipoint Schur Criteria
Viktor Buslaev

Steklov Mathematical Institute, Moscow
buslaev@mi-ras.ru

The classical Schur criterion gives an answer to the question
whether the function 𝑓 , given by its power series in ponit 0, is
a Schur function, i.e. a function holomorphic in the unit circle
𝐷 = {|𝑧| < 1} and taking values in it modulo not exceeding
1. The answer is given in terms of determinants introduced by
Schur, constructed in a special way by coefficients 𝑓𝑘, 𝑘 = 0, 1, . . .
of power series of 𝑓 , and the proof relies on a Schur algorithm
allowing to represent the Schur function as a continuous fraction
of a special kind called a Schur continuous fraction. The report
will show that Schur determinants numerically coincide (up to
some Prime factor) with Hankel determinants constructed by co-
efficients 𝑓𝑘, 𝑘 = 0, 1, . . . of power series of 𝑓 and the coefficients
of the associated series with the center of the expansion at infinity.
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Sparse-grid Polynomial Interpolation Approximation and
Integration for Parametric and Stochastic Elliptic PDEs

with Lognormal Inputs
Dinh Dũng

Vietnam National University, Hanoi
dinhzung@gmail.com

One of basic problems in Uncertainty Quantification are ap-
proximation and numerical integration for parametric and stochas-
tic PDEs. Since the number of parametric variables may be very
large or even infinite, they are treated as high-dimensional or
infinite-dimensional approximation problems.

Let 𝐷 ⊂ R𝑑 be a bounded Lipschitz domain. Consider the
parametric diffusion elliptic equation

− div(𝑎(y)∇𝑢(y)) = 𝑓 in 𝐷, 𝑢(y)|𝜕𝐷 = 0, (1)

for a given fixed right-hand side 𝑓 ∈ 𝑉 ′ and spatially variable
scalar diffusion coefficient 𝑎(y) parametrized by y ∈ R∞, where
𝑉 := 𝐻1

0 (𝐷) is the energy space and 𝑉 ′ = 𝐻−1(𝐷) the conjungate
space of 𝑉 . We consider the so-called lognormal case when the
parametrized diffusion coefficient 𝑎(y) is of the form

𝑎(y) = exp(𝑏(y)), 𝑏(y) =

∞∑︁
𝑗=1

𝑦𝑗𝜓𝑗 , y = (𝑦𝑗)
∞
𝑗=1 ∈ R∞, (2)

where the 𝑦𝑗 are i.i.d. standard Gaussian random variables and
𝜓𝑗 ∈ 𝐿∞(𝐷).

By combining a certain approximation property in the spa-
tial domain 𝐷, and weighted ℓ2-summability of the Hermite poly-
nomial expansion coefficients in the parametric domain R∞, ob-
tained in [1] and [2], we investigate linear non-adaptive methods
of fully discrete polynomial interpolation approximation as well as
fully discrete weighted quadrature methods of integration for para-
metric and stochastic elliptic PDEs (1) with random lognormal
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inputs (2). We explicitly construct such methods and prove cor-
responding convergence rates of the approximations by them. The
linear non-adaptive methods of fully discrete polynomial interpo-
lation approximation are sparse-grid collocation methods which
are certain sums taken over finite nested Smolyak-type indices sets
𝐺(𝜉) parametrized by positive number 𝜉, of mixed tensor products
of dyadic scale successive differences of spatial approximations of
particular solvers, and of successive differences of their paramet-
ric Lagrange interpolating polynomials. Moreover, they generate
in a natural way fully discrete weighted quadrature formulas for
integration of the solution to parametric and stochastic elliptic
PDEs and its linear functionals, and the error of the corrspond-
ing integration can be estimated via the error in the Bochner
space 𝐿1(R∞, 𝑉, 𝛾) norm of the generating methods where 𝛾 is
the Gaussian probability measure on R∞. Our analysis leads to
auxiliary convergence rates in 𝜉 of these approximations when 𝜉
going to ∞. For a given 𝑛 ∈ N, we choose 𝜉𝑛 so that the car-
dinality of 𝐺(𝜉𝑛) which in some sense characterizes computation
complexity, does not exceed 𝑛, and hence obtain the convergence
rates in increasing 𝑛, of the fully discrete polynomial approxima-
tion and weighted integration. We also briefly consider problems
of non-fully discrete polynomial interpolation approximation and
integration. For details see [3].

References
[1] Bachmayr M., Cohen A., DeVore A. and Migliorati G. Sparse

polynomial approximation of parametric elliptic PDEs //
Part II: lognormal coefficients, ESAIM Math. Model. Numer.
Anal. 2017. V. 51. 341-363.

[2] Bachmayr M., Cohen A., Dũng D. and Schwab C. Fully
discrete approximation of parametric and stochastic elliptic
PDEs // SIAM J. Numer. Anal. 2017. V. 55. 2151-2186.
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Logan Type Uncertainty Principle for
Bandlimited Functions

Gorbachev D.V.

Tula State University
dvgmail@mail.ru

We study the uncertainty principles related to the generalized
Logan problem in R𝑑. Our main result provides the complete
solution of the following problem: for a fixed 𝑚 ∈ Z+, find

sup{|𝑥| : (−1)𝑚𝑓(𝑥) > 0} · sup{|𝑥| : 𝑥 ∈ supp ̂︀𝑓 } → inf,

where the infimum is taken over all nontrivial positive definite
bandlimited functions such that∫︁

R𝑑

|𝑥|2𝑘𝑓(𝑥) 𝑑𝑥 = 0 𝑓𝑜𝑟 𝑘 = 0, . . . ,𝑚− 1 𝑖𝑓 𝑚 > 1.

We also obtain the uncertainty principle for bandlimited functions
related to the recent result by Bourgain, Clozel, and Kahane.

This is a joint research with V. Ivanov (Tula State University,
Russia) and S. Tikhonov (CRM, ICREA, Barcelona).

The work of D. Gorbachev and V. Ivanov is supported by
the Russian Science Foundation under grant 18-11-00199 and per-
formed in Tula State University. S. Tikhonov was partially sup-
ported by MTM 2017-87409-P, 2017 SGR 358, and the CERCA
Programme of the Generalitat de Catalunya.

References
[1] Gorbachev D.V., Ivanov V.I., and Tikhonov S.Yu. Uncer-

tainty principles for eventually constant sign bandlimited
functions // arXiv:1904.11328.
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Predictive Maintenance
Denis Grachev

EPAM Systems
https://www.epam.com/

The research covers two common problems of predictive main-
tenance: lack markup data and forecast justification for clogging
of the evaporator. We have proposed a technique to set target
value and models accuracy by searching constant integral values
and a way to summarize the factor importance in dynamics.
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Projectors onto Spaces of Chebyshevian Splines
Karen Keryan

Yerevan State University,
American University of Armenia,

karenkeryan@ysu.am, kkeryan@aua.am

The talk is devoted to a generalization of Shadrin’s theorem.
We prove that the 𝐿∞-norm of the orthoprojector on Chebyshe-
vian splines are bounded by a constant, which is independent
of the mesh and depends on the underlying extended complete
Chebyshev system. It is also proved that the Chebyshevian B-
splines are perturbations of polynomial B-splines.

References
[1] A. Shadrin. The 𝐿∞-norm of the 𝐿2-spline projector is

bounded independently of the knot sequence: a proof of de
Boor’s conjecture. Acta Math., 187(1):59-137, 2001.
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Finite Sums of Ridge Functions on Convex Sets
Kuleshov A.A.

Lomonosov Moscow State University
kuleshov.a.a@yandex.ru

We assume that 𝑛 > 2 and 𝐸 ⊂ R𝑛 is a set. A closed con-
vex set 𝐸 with a non-empty interior is called a convex body. A
ridge function on 𝐸 is a function of the form 𝜙(a · x), where x =
(𝑥1, . . . , 𝑥𝑛) ∈ 𝐸, a = (𝑎1, . . . , 𝑎𝑛) ∈ R𝑛 ∖ {0}, a · x =

∑︀𝑛
𝑗=1 𝑎𝑗𝑥𝑗

and 𝜙 is a real-valued function defined on ∆(a) = {a ·x : x ∈ 𝐸}.
On a set 𝐸, consider a sum of ridge functions

𝑓(x) =

𝑚∑︁
𝑖=1

𝜙𝑖(a
𝑖 · x).

Let 𝐸 be a convex body. We study the smoothness properties of
the functions 𝜙𝑖 under certain assumptions on smoothness of 𝑓 .
We prove that the continuity of 𝑓 implies that every 𝜙𝑖 belongs
to the VMO space on every compact interval of its domain. Also,
we prove that for the existence of finite limits of the functions 𝜙𝑖

at the corresponding boundary points of their domains, it suffices
to assume the Dini condition on the modulus of continuity of 𝑓 at
some boundary point of 𝐸. Also we prove that the obtained (Dini)
condition is sharp. Then we extend some of the results on the
𝐶𝑘(𝐸) classes for 𝑘 > 1. We prove that for measurable functions
𝜙𝑖 the general implication 𝑓 ∈ 𝐶𝑘(𝐸) ⇒ 𝜙𝑖 ∈ 𝐶𝑘(∆(a𝑖)) (𝑖 =
1, . . . ,𝑚) holds iff the boundary of 𝐸 is smooth.

References
[1] S.V. Konyagin, A.A. Kuleshov. On the continuity of finite

sums of ridge functions // Math. Notes, 2015, v. 98, pp. 336-
338.
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Some Estimates of Submatrix Norms
Limonova I.V.

Moscow State University
limonova_irina@rambler.ru

Estimates of the operator norms of the submatrices of a given
matrix A find applications in various areas of mathematics, for
instance, in computational methods and discretization. One of the
first results of this topic was obtained in [1]. There the estimates
for the classical operator norm of submatrices are a concequence
of the corresponding estimates for (2, 1)-norms. The case of (2, 1)-
norm was studied in [2] in details. It contains the partial answer
to the Srivastava’s question arosen in his research blog.1 Now
we consider conditions on a matrix A with unit operator (𝑝, 𝑞)-
norm ensuring the existence of a partition of this matrix into two
submatrices with (𝑝, 𝑞)-norms close to 1/21/𝑞.

References
[1] B. S. Kashin. Some properties of matrices of bounded oper-

ators from the space 𝑙𝑛2 into 𝑙𝑚2 . Izv. Akad. Nauk. Armyan.
SSR Ser. Mat. 15(5), 379-394 (1980)

[2] B. S. Kashin, I. V. Limonova. Decomposing a Matrix into
two Submatrices with Extremally Small (2,1)-norm. Math.
Notes, 106:1 (2019), 63-70.

1https://math.berkeley.edu/ nikhil/courses/270/open.pdf
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Some Problems of Optimal Recovery of Linear Operators
Magaril-Il’yaev G.G.

Faculty of Mechanics and Mathematics, Moscow State University
magaril@mech.math.msu.su

Osipenko K.Yu.

Faculty of Mechanics and Mathematics, Moscow State University
kosipenko@yahoo.com

In the report we will talk about the optimal recovery of func-
tions from their inexactly given spectrum and recovery of solu-
tions of differential equations from inaccurate initial data. In the
first case, as an illustration, we consider the optimal recovery of
functions from inaccurate information about their Fourier coeffi-
cients. Next, for a special one-parameter semi-group of operators,
we consider the optimal recovery of the operator at a given value
of the parameter from inaccurate information about the values of
other parameters. We construct a family of optimal methods. As
a consequence we find a family of optimal methods in the problem
of optimal recovery for the solution of the heat equation on R𝑑

𝜕𝑢

𝜕𝑡
= ∆𝑢, 𝑢(0, ·) = 𝑓(·),

at the time instant 𝑡 from their approximate measurements at
time instants 𝑡1 < . . . < 𝑡𝑛. We also consider the problem of
optimal recovery of the solution for the Dirichlet problem in the
half-space

∆𝑤 (𝑥, 𝑦) = 0, (𝑥, 𝑦) ∈ R𝑑 × R, 𝑦 > 0, 𝑤(·, 0) = 𝑓(·),

which is to recover the solution on the hyperplane 𝑦 = 𝑌 from its
inaccurate measurements on the hyperplanes 𝑦 = 𝑦𝑖, 𝑖 = 1, . . . , 𝑛.
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Synthetic Data in Deep Learning
Sergey Nikolenko

Laboratory of Mathematical Logic of the
St.-Petersburg Department of the Steklov Mathematical Institute

sergey@logic.pdmi.ras.ru

Abstract: Many major problems of modern AI come down
to data: either lack of data or, also very often, lack of labeled
data. Synthetic data is an important approach to solving the
data problem by either producing artificial data from scratch or
using advanced augmentation techniques to produce novel and di-
verse training examples. In the talk, I will introduce the notion
of synthetic data and various approaches to making and using it.
In particular, we will discuss domain adaptation, a set of tech-
niques designed to make a model trained on one domain of data,
the source domain, work well on a different, target domain. This
is a natural fit for synthetic data: in almost all applications, we
would like to train the model in the source domain of synthetic
data but then apply the results in the target domain of real data.
We will survey DA approaches for synthetic-to-real adaptation,
concentrating on deep learning models. We will see the gaze esti-
mation story from Apple’s Refiner and beyond, DA techniques for
learning to drive, GAN-based DA for medical imaging, and much
more. Expect a lot of GANs and loss functions!
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Human Pose Estimation
Daniil Osokin

Internet of Things group, Intel A/O
https://intel.ru/

Human pose estimation task aims at predicting coordinates
of a person’s keypoints: shoulders, elbows, knees, ankles, etc. It
is useful in different domains, such as action recognition, sports,
augmented reality. We will discuss major approaches for human
pose estimation based on deep learning. Also it will be shown, how
specific pose estimation method can be adopted for the real-time
inference on CPU.
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Convergence of Stochastic Subspace
Correction Methods Fault Tolerance

Peter Oswald

Dresden / INS, Bonn University
agp.oswald@gmail.com

We present convergence results for the expectation E(‖𝑒(𝑚)‖2)
of the squared error in stochastic subspace correction schemes and
their accelerated versions to solve symmetric coercive variational
problems. As a motivating application we discuss their potential
for achieving fault tolerance in an unreliable compute network.
We employ an overlapping domain decomposition algorithm for
PDE discretizations to discuss the latter aspect.
This is joint work with Michael Griebel (INS, University Bonn).

References
[1] Griebel, M., Oswald, P. Stochastic subspace correction

methods and fault tolerance. Math. Comp. (in print);
arXiv:1807.11315; Univ. Bonn, INS Preprint No. 1809.
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Stochastic Gradient Descent
Peter Richtarik

King Abdullah University of Science and Technology
and University of Edinburgh
peter.richtarik@kaust.edu.sa

In this series of talks I will present a new unified analysis of
SGD for regularized smooth strongly convex optimization, and
through special cases shed light on notions such as importance
sampling, minibacthing, variance reduction and gradient compres-
sion.
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Measurement Matrices of Integers with Small Elements
K.S. Ryutin

Lomonosov Moscow State University,
High–dimensional approximation and applications laboratory

kriutin@yahoo.com

We plan to discuss some problems around the integer sparse
recovery problem raised in [1]. We consider the equation 𝑦 =
𝐴𝑥, with 𝐴 — some integer–valued 𝑚 × 𝑑- matrix (we call it the
measurement matrix) and 𝑥 an unknown 𝑠–sparse integer vector
(the cardinality of its support is 𝑠).

The main questions are: is it possible to construct the mea-
surement 𝑚× 𝑑–matrix 𝐴 such that any 𝑠–sparse vector 𝑥 can be
recovered if one knows 𝐴𝑥? How small can be the elements of such
a matrix? What about the complexity of the recovery algorithm?

Very interesting results on the first 2 questions were obtained
in [1],[2],[4]. The algorithm for the recovery was given in [3] with
estimates for its complexity. This algorithm works (and is spe-
cially designed) for the explicit measurement matrix from [4]. Let
us mention one of the results from the recent paper [5]

Proposition. For large 𝑁 and any 𝑠 6 𝑐1𝑁/ log𝑁 there
exists a boolean (𝑐2𝑠 log𝑁) × 𝑁 measurement matrix such that
any 𝑠–sparse vector from Z𝑁 can be recovered.

The matrix is explicitly given and the recovery algorithm is of
a polynomial complexity.

This work was supported be the Russian Federation Govern-
ment grant 14.W03.31.0031.
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Fashion AI: One-Shot Clothing Detection
Alexey Sidnev

Huawei Research Center, Nizhny Novgorod, Russia,
and Lobachevsky State University of Nizhny Novgorod

https://www.huawei.com/ru/

Fashion analysis is quite a complex task. Clothing detection is
the first technological challenge to be solved for almost any fashion
analysis task. Recently presented one-shot approach CenterNet
outperforms most of the current detectors and demonstrates out-
standing speed-accuracy trade-off. We consider CenterNet archi-
tecture in details along with a brief review of deep learning based
object detection methods. Also we present our results on Deep-
Fashion2 Challenge and show that CenterNet is able to achieve
the state-of-the-art accuracy for bounding box detection and land-
mark detection tasks.
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Approximation by Quasi-Projection Operators
and Fourier Multipliers

Skopina M.
Saint Petersburg, Russia
skopina@MS1167.spb.edu

(joint results with Yu. Kolomoitsev and A. Krivoshein)

Quasi-projection operators with a matrix dilation 𝑀 are de-
fined by

𝑄𝑗(𝑓, 𝜙, ̃︀𝜙) =
∑︁
𝑘∈Z𝑑

⟨𝑓, ̃︀𝜙𝑗𝑘⟩𝜙𝑗𝑘,

where 𝜙 is a function, ̃︀𝜙 is a tempered distribution,

𝜓𝑗𝑘(𝑥) := |det𝑀 |𝑗/2𝜓(𝑀 𝑗𝑥+ 𝑘), 𝑗 ∈ Z, 𝑘 ∈ Z𝑑,

and ⟨𝑓, ̃︀𝜙𝑗𝑘⟩ has meaning in some sense. If 𝑑 = 1, ̃︀𝜙 is the Dirac
delta-function and 𝜙 = sinc, then 𝑄𝑗(𝑓, 𝜙, ̃︀𝜙) is the classical sam-
pling operator. We consider different classes of such operators and
study their approximation properties.

Error estimates in 𝐿𝑝-norm, 2 6 𝑝 6 ∞, are provided for a
large class of functions 𝜙 ∈ 𝐿𝑝(R𝑑) and for ̃︀𝜙 ∈ 𝒮 ′

𝑁 , where 𝒮 ′
𝑁

is the set of tempered distribution whose Fourier transform ̂︀̃︀𝜙 is
a function on R𝑑 such that |̂︀̃︀𝜙(𝜉)| 6 𝐶̃︀𝜙(1 + |𝜉|)𝑁 . Under the
Strang-Fix conditions of order 𝑠 for 𝜙, so-called weak compati-
bility condition of order 𝑠 for 𝜙 and ̃︀𝜙, and enough decay of ̂︀𝜙,
the estimates are given in terms of the Fourier transform of 𝑓 .
Approximation order depends on the smoothness of 𝑓 and on 𝑠.
Under additional assumption on ̃︀𝜙, these results are improved in
several directions for two classes of functions 𝜙. Namely, the es-
timates are obtained for all 𝑝 > 1, for a wider class of functions
𝑓 , and given in terms of the moduli of smoothness and best ap-
proximations of 𝑓 . The first class consists of functions 𝜙 decaying
faster than |𝑥|−𝑑−𝜖, 𝜖 > 0. The second class consists of band-
limited functions 𝜙 such that the function ̂︀𝜙 and the derivatives
of order 𝑠 of the functions ̂︀𝜙̂︀̃︀𝜙, ̂︀𝜙(·+ 𝑙), 𝑙 ∈ R𝑑, 𝑙 ̸= 0, restricted to
a set [−𝛿, 𝛿]𝑑, 𝛿 ∈ (0, 1/2], are the Fourier multipliers in 𝐿𝑝(R𝑑).
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Uniform Recovery Guarantees for
Least Squares Approximation

Ullrich T.

Technical University of Chemnitz, Germany
tino.ullrich@mathematik.tu-chemnitz.de

We consider the problem of learning multivariate functions be-
longing to a certain reproducing kernel Hilbert space from 𝑛 given
samples. Our focus will be on uniform recovery. In fact, we pro-
pose a least squares algorithm for which we manage to control
the worst-case recovery error for the whole class. This algorithm
uses 𝑛 function samples at randomly drawn nodes as input and
projects onto a subspace spanned by an orthonormal system. Ex-
amples could be the multivariate Fourier system or (bi-)orthogonal
wavelets. The random nodes are drawn once for the whole class
(comparable to the draw of an RIP matrix which works well for all
sparse signals). Our recovery guarantees involve explicit constants
and preasymptotics and are valid with high probability. The same
algorithm may be used for scattered data approximation. We will
also comment on the practical potential of the method by showing
some numerical experiments. This is joint work with L. Kämmerer
and T. Volkmer (TU Chemnitz).
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Chebyshev Polynomials
and Best Rank-one Approximation Ratio

Andr´e Uschmajew
MPI MiS Leipzig

We establish a new extremal property of the classical Cheby-
shev polynomials in the context of the theory of rank-one approx-
imations of tensors. We also give some necessary conditions for
a tensor to be a minimizer of the ratio of spectral and Frobenius
norms. This is joint work with Andrei Agrachev and Khazhgali
Kozhasov.
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Machine Learning in Electrocardiogram Diagnosis
Nikolai Zolotykh

Laboratory of advanced for high-dimensional data analysis,
Nizhny Novgorod Lobachevski State University

nikolai.zolotykh@gmail.com

The talk will focus on different approaches to electrocardio-
gram (ECG) analysis: from rule-based methods to deep learning.
In particular, we will consider two approaches to the ECG seg-
mentation - one of them exploits wavelet transforms (rule-based
method) and another uses UNET-like neural networks - and dif-
ferent architectures of neural networks for ECG classification. We
will discuss the advantages and disadvantages of different ap-
proaches and see which method is best used depending on the
size of the training set and on other characteristics.
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