

OFFLINE FACIAL IMAGE ANALYSIS AND RECOGNITION ON MOBILE DEVICES

Andrey V. Savchenko

Dr. of Sci., Prof., Lead Researcher in LATNA, National Research University HSE, N. Novgorod

Email: avsavchenko@hse.ru

URL: www.hse.ru/en/staff/avsavchenko

October 17-19, 2019

• Memory!?

64-256 Gb on Huawei Mate 20 Pro, Samsung S10 and Iphone 11

Computational complexity!?

MobileNet inference time:

- 50-60 ms on S9+
- 20 ms on MacBook Pro 2016
- Power consumption!
- Another platform (Android, iOS). Where is Python?

- 1. Face identification task
- 2. Sequential analysis of high-dimensional features
- 3. PNN with complex exponential activation functions
- 4. Maximum likelihood of distances
- 5. Facial attributes recognition
- 6. Organizing photo and video albums on mobile device

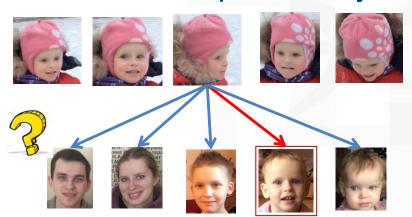
Face identification: main task in this presentation

1. Still photo recognition

Let the input facial image X be specified. The problem is to assign this image to one of C>>1 subjects (large dataset) specified by R reference facial images $\{X_r\}$.

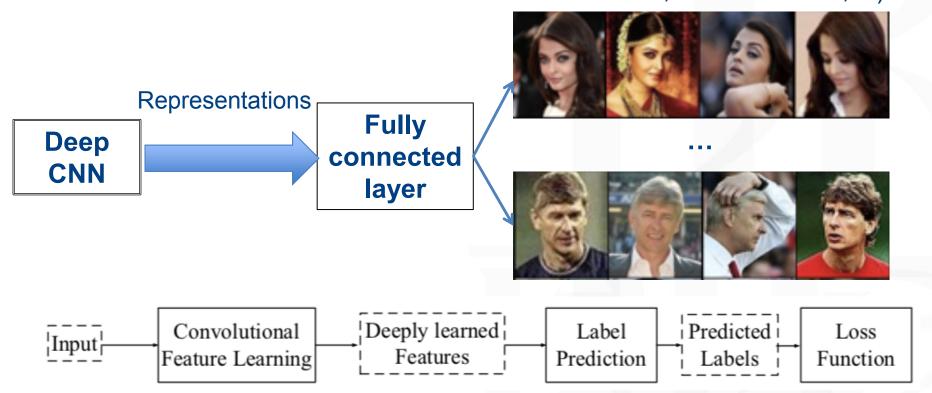
2. Still-to-video recognition

The input sequence $\{X(t)\}$ of T>1 observations of one person is assigned to one of C>1 classes specified by R instances $\{X_r\}$



CNN and domain adaptation: Deep faces

Large training set of celebrities (VGGFace2, CASIA-WebFace, MS-Celeb-1M,...)



Each image is described by *D*-dimensional features (*D*=256..4096) by CNN.

[Wen et al, ECCV 2016]

Small-sample-size

The number of photos per class is small (including one sample per person): *C*≈*R*

Nearest neighbor (NN) classifier

Recognition of each frame [Learnable] pooling (aggregation)

$$\min_{r \in \{1, \dots, R\}} \sum_{t=1}^{T} \rho(\mathbf{x}(t), \mathbf{x}_r)$$

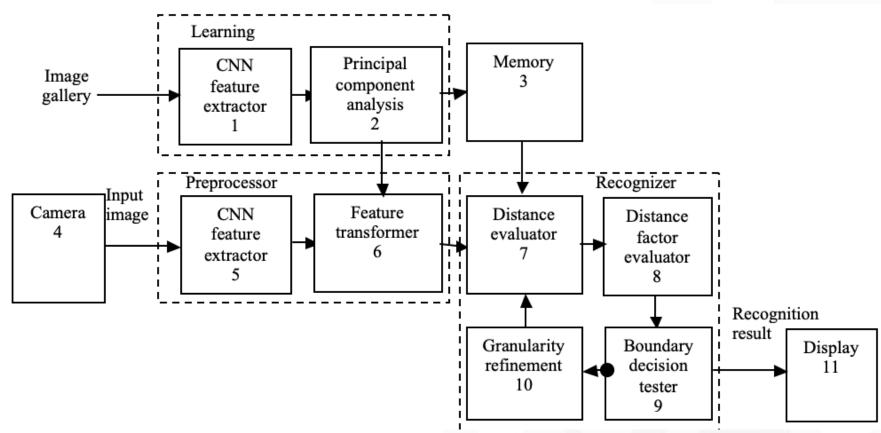
$$\bar{\mathbf{x}} = \sum_{t=1}^{T} w_t \mathbf{x}(t)$$

Brute force of the whole database, run-time complexity: O(RD).

- Performance is insufficient, especially for mobile devices
- Multi-objective optimization (minimize error rate with reasonable recognition time): $\overline{\alpha} \to \min \quad \overline{t} \le t_0$

Sequential analysis of high-dimensional features

Three-way decisions to choose robust representation of the input image



- Savchenko, A.V. Information Sciences, 2019
- Savchenko, A.V. Knowledge-Based Systems, 2016
- Savchenko A.V., IEEE SACI 2018

Sequential three-way decisions and granular computing: PCA for CNN

[Yao Y., Information Sciences, 2010]: "A **positive** rule makes a decision of **acceptance**, a **negative** rule makes a decision of **rejection**, and a **boundary** rule makes a decision of **abstaining**"

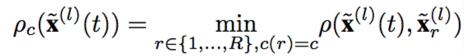
Key question: how to make a decision if the boundary region was chosen? Yao Y. Proc. of RSKT, LNCS, 2013: "Objects with a non-commitment decision may be further investigated by using fine-grained granules"

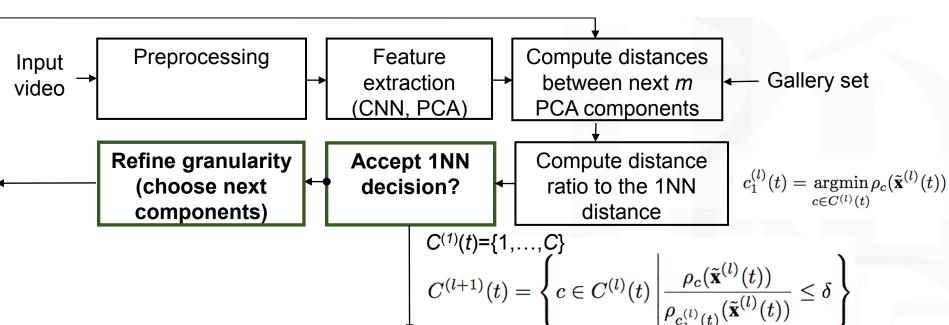
PCA (principal component analysis), scores are ordered by corresponding eigenvalues $\tilde{\mathbf{x}}(t) = [\tilde{x}_1(t), ..., \tilde{x}_D(t)]$

Proposed: representation of frame at the *I*-th granularity level includes first $d^{(I)}=Im$ principal components. This representation is computationally cheap for additive distances

$$\rho\left(\tilde{\mathbf{x}}^{(l+1)}(t), \tilde{\mathbf{x}}_r^{(l+1)}\right) = \rho\left(\tilde{\mathbf{x}}^{(l)}(t), \tilde{\mathbf{x}}_r^{(l)}\right) + \sum_{d=d^{(l)}+1}^{d^{(l+1)}} \rho(\tilde{x}_d(t), \tilde{x}_{r;d})$$

Distance ratio





Final Maximum a-posterior (MAP) decision

$$\max_{c \in C^{(L)}} \sum_{t=1}^{T} \frac{\exp(-n\rho_c(\tilde{\mathbf{x}}^{(l)}(t)))}{\sum\limits_{i \in C^{(L)}} \exp(-n\rho_c(\tilde{\mathbf{x}}^{(l)}(t))}$$

Strong theoretical foundations for the Jensen-Snannon and Kullback-Leibler divergences

Here is exactly how our method works in practice

Probe photo Closest gallery photos

(a)

(b)

(c)

(d)

Recognition results, distance factor threshold 0.7

	l=1		l=2		l=3	
Subject	ho[r]	$ ho_{\min}/ ho[r]$	ho[r]	$ ho_{\min}/ ho[r]$	ho[r]	$ ho_{\min}/ ho[r]$
Armstrong (d)	0.0086	0.87	0.0122	1	0.0129	1
Auriemma (b)	0.0074	1.00	0.0170	0.71	0.0195	0.66
McEwen (c)	0.0104	0.72	0.0188	0.65	-	-
Williams	0.0100	0.75	0.0300	0.41	-	-
Wirayuda	0.0103	0.73	0.0217	0.56	-	-
LeBron	0.0105	0.71	0.0200	0.61	_	-

Better recognition performance (no need to process all features)

Higher recognition accuracy

Experimental results: YTF/LFW

	ResFace		VGG	Face	VGGFace2_ft	
Classifier	Accuracy (%)	Running time (ms)	Accuracy (%)	Running time (ms)		Running time (ms)
SVM	18.53±0.5	10213±33	22.49±0.6	19840±40	52.85±1.2	10137±35
SVM, AvgPooling	22.15±1.2	10269±39	26.90±0.7	20070±37	55.91±1.3	10252±42
k-NN	30.92±0.1	12.3±0.0	43.44±0.1	23.3±0.1	74.48±0.1	12.7±0.0
MAP	31.49±0.0	12.3±0.0	43.50±0.1	23.7±0.1	74.41±0.1	12.6±0.1
k-NN/32 PCA	26.28±0.3	1.7±0.0	37.69±0.1	2.2±0.1	58.81±0.0	19±0.1
k-NN/256 PCA	31.21±0.1	2.3±0.0	44.64±0.2	2.9±0.1	75.02±0.0	2.5±0.1
Proposed, k-NN	31.21±0.1	0.8±0.0	44.64±0.1	1.1±0.1	74.77±0.1	0.7±0.0
Proposed, MAP	31.52±0.2	0.9±0.1	45.46±0.1	1.2±0.1	74.87±0.2	0.7±0.0

Experimental results: still-to-video recognition

	ResFace		VGGFace		VGGFace2_ft	
Classifier	Accuracy (%)	Running time (ms)		Running time (ms)		Running time (ms)
SVM	55.98±0.3	117.3±0.9	70.88±0.3	230.3±1.6	84.12±0.4	117.8±1.1
SVM, AvgPooling	57.17±0.5	114.7±0.7	73.62±0.0	233.0±4.7	87.06±0.1	124.4±1.4
k-NN	54.41±0.0	12.9±0.0	68.88±0.3	24.9±0.2	85.67±0.2	12.8±0.1
MAP	55.16±0.2	13.3±0.3	70.50±0.8	25.0±0.0	87.09±0.1	12.8±0.1
k-NN/32 PCA	48.49±0.4	1.2±0.1	66.26±0.3	1.9±0.2	77.91±0.2	1.3±0.1
k-NN/256 PCA	53.91±0.3	1.9±0.1	70.94±0.1	2.5±0.1	85.48±0.1	2.1±0.0
Proposed, k-NN	54.12±0.2	0.8±0.1	70.94±0.1	1.2±0.0	85.65±0.2	0.8±0.0
Proposed, MAP	56.01±0.1	0.8±0.1	73.06±0.5	1.2±0.1	86.89±0.1	0.8±0.1

Probabilistic Neural Network (PNN) with complex exponential activation functions

Huawei Machine Learning Workshop 2019

Orthogonal density expansions to speed up classification

Statistical approach: empirical Bayesian classifier with naïve assumption about independent features

$$c^* = \underset{c \in \{1, ..., C\}}{\arg \max} \frac{R(c)}{R} f(\mathbf{x}|W_c) \qquad \hat{f}(\mathbf{x}|W_c) = \prod_{d=1}^{D} \hat{f}_d(x_d|W_c)$$

We propose to estimate the individual likelihood as the average of the first *J* partial sums. Here the right-hand side is the non-negative Fejér kernel

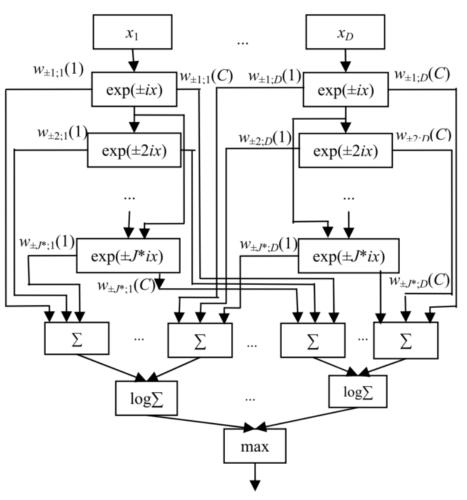
$$\hat{f}_d(x_d|W_c) = \frac{1}{J+1} \sum_{j=0}^{J} \hat{f}_{j;d}(x_d|W_c) \qquad F_{J+1} = \frac{1}{J+1} \left(\frac{\sin((J+1)\pi(x_d - x_{r;d}(c))/2)}{\sin(\pi(x_d - x_{r;d}(c))/2)} \right)^2$$

We replace canonical form of density estimate to the equivalent form, which does not implement the brute force

$$\hat{f}_{J;d}(x_d|W_c) = \sum_{j=-J}^{J} a_{j;d}(c) \exp(ij\pi x_d) \qquad \psi_j(x) = \exp(ij\pi x).$$

- Savchenko, A.V. IEEE Transactions on Neural Networks and Learning Systems, 2019
- Savchenko A.V., IEEE ICPR 2018

PNN based on trigonometric series



$$c^* = \underset{c \in \{1, ..., C\}}{\operatorname{argmax}} \sum_{j=-J}^{D} \underset{j=-J}{\log} \sum_{w_{j;d}}^{J} (c) \cdot \psi_j(x_d)$$

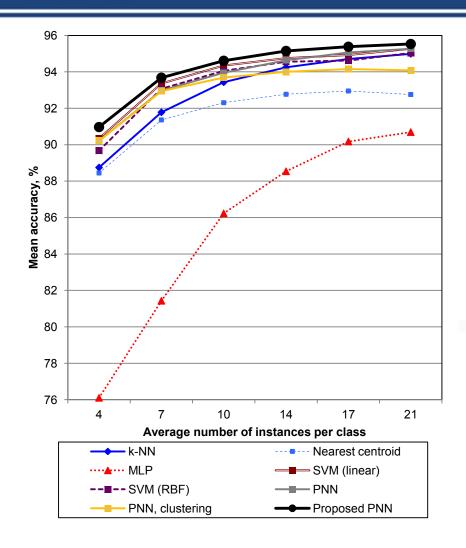
$$\psi_{j+1}(x_d) = \psi_j(x_d) \cdot \psi_1(x_d),$$

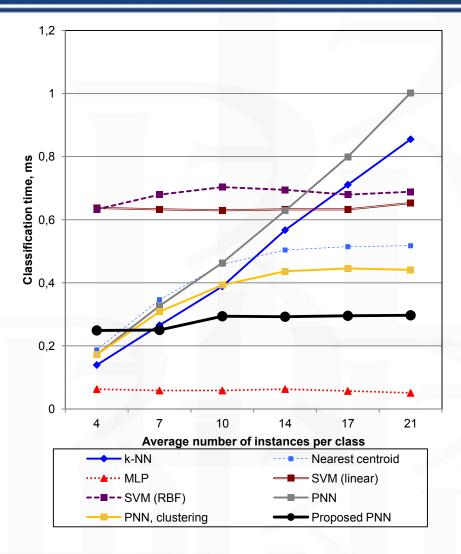
$$\psi_{-j}(x_d) = \overline{\psi_j(x_d)}.$$

- Converges to Bayesian solution
- Very high training speed
- Runtime complexity and memory space complexity: $O(DR^{1/3}C^{1/3})$.

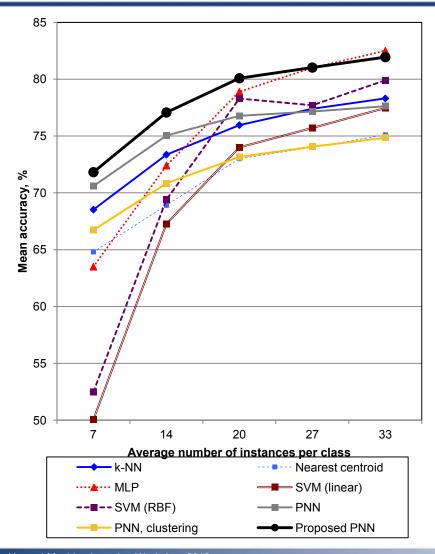
Online classification is approximately $R^{2/3}$ —times faster than instance-based learning (PNN, k-NN) if at least 5 photos per subject are available

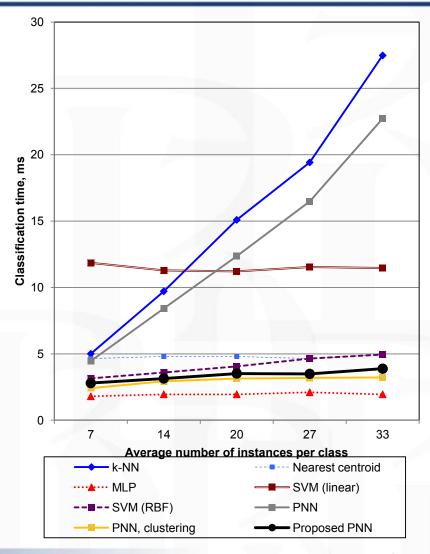
Experimental results (PubFig83 dataset)





Experimental results (subset of Casia WebFaces)





Maximum likelihood of distances

Approximate nearest neighbor

The next reference example (instance) to check is chosen based on the maximal likelihood of *distances*

$$r_{k+1} = \underset{\nu \in \{1,\dots,R\}-\{r_1,\dots,r_k\}}{\operatorname{argmax}} \left(p_{\nu} \cdot \prod_{i=1}^k f(\rho(X, X_{r_i}) | W_{\nu}) \right),$$

KL divergence is asymptotically distributed as non-central chisquared, normal approximation

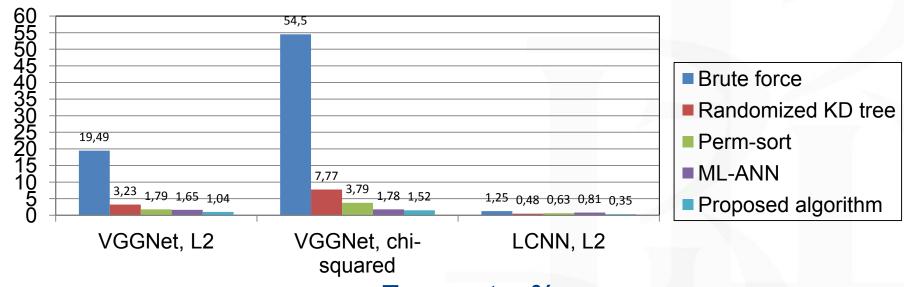
$$\mathcal{N}\left(\rho_{KL}(\mathbf{x}_r,\mathbf{x}_i) + \frac{D-1}{WH}, \frac{4WH\rho_{KL}(\mathbf{x}_r,\mathbf{x}_i) + (D-1)}{2(WH)^2}\right)$$

$$r_{k+1} = \underset{\mu \in \{1, \dots, R\} - \{r_1, \dots, r_k\}}{\operatorname{argmin}} \left(\sum_{i=1}^k \varphi_{\mu}(r_i) - lnp_{\mu} \right) \qquad \varphi_{\mu}(r_i) \approx \frac{\left(\rho(X, X_{r_i}) - \rho_{\mu, r_i}\right)^2}{\rho_{\mu, r_i}}$$

- Savchenko A.V., Pattern Recognition, 2017,2012
- Savchenko A.V., Optimization Letters, 2017

Experimental Results for face identification in LFW

Recognition time, ms



Error rate, %

	VGGFace, L2	VGGFace, chi-squared	Light CNN, L2
SVM	49.6	-	28.9
1-NN (Brute force)	10.7	10.2	9.6
Randomized KD tree	11.0	10.6	9.9
Perm-sort	10.9	10.6	9.9
ML-ANN	10.9	10.6	10.5
Proposed algorithm	10.9	10.5	9.9

Improve the accuracy by penalizing the classes if their features do not behave like the features of input image in the space of dissimilarities

$$f(\rho_1(\mathbf{x}), \dots, \rho_C(\mathbf{x})|W_c) = f(\rho_c(\mathbf{x})|W_c) \cdot \prod_{i=1, i \neq c}^C f(\rho_i(\mathbf{x})|W_c)$$

Final criterion

$$\min_{c \in \{c_1, \dots, c_M\}} \left(\rho_c(\mathbf{x}) + \frac{\lambda}{C} \sum_{i=1, i \neq c}^{C} \frac{(\rho_i(\mathbf{x}) - \rho_{c;i} - \frac{D-1}{WH})^2}{\rho_{c;i} + \frac{D-1}{4WH}} \right)$$

It can be considered as adding regularization term to the nearest neighbor (NN) rule

- Savchenko A.V. et al. Expert Systems With Applications, 2018
- Savchenko A.V. et al Optical Memory and Neural Networks, 2018

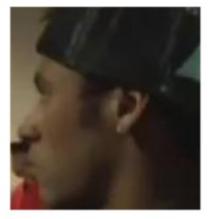
Example

Probe

first NN

second NN (SubjectId 942) (SubjectId 1001) (SubjectId 1303)

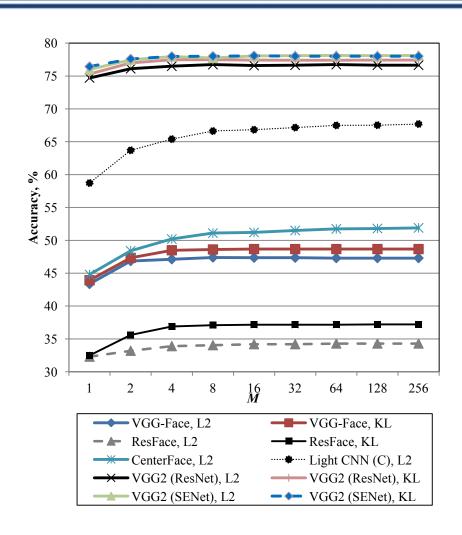
Our result (seventh NN, SubjectId 942)

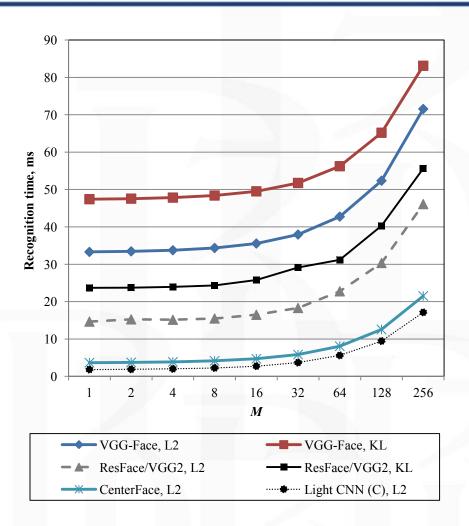




SubjectId	L ₂ distance	Regularization term	Total objective
1001	0.0236	0.0152	0.0247
1303	0.0238	0.0152	0.0249
314	0.0239	0.0113	0.0247
1980	0.0240	0.0166	0.0252
387	0.0241	0.0300	0.0262
1289	0.0241	0.0140	0.0251
942	0.0242	0.0059	0.0246
1287	0.0242	0.0174	0.0258

Experimental results: YTF/LFW





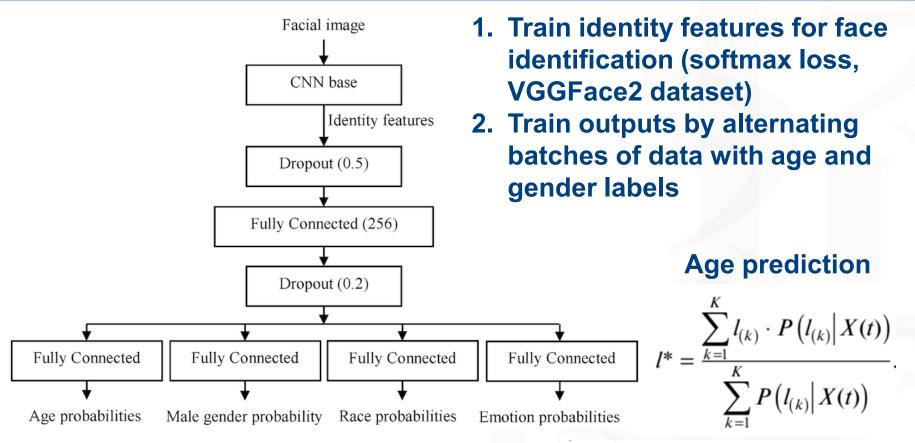
Experimental results: IJB-A

Rank-1 accuracy (%) in 1:N identification

Features	Distance	IJB-A bounding boxes			MTCNN face detection		
		SVM	NN	Proposed	SVM	NN	Proposed
CenterFace	L ₂	52.6 ± 1.8	49.5 ± 1.9	54.6 ± 1.7	64.6 ± 1.0	64.9 ± 1.1	66.8 ± 1.1
Light CNN	L_2	57.2 ± 0.5	58.3 ± 0.7	$61.8~\pm~0.6$	$79.9\ \pm\ 0.4$	$81.3~\pm~0.4$	$83.3\ \pm\ 0.3$
ResFace	L_2	79.8 ± 0.7	$77.9~\pm~0.5$	$80.7\ \pm\ 0.7$	$86.4\ \pm\ 0.5$	$85.6\ \pm\ 0.6$	$87.6~\pm~0.6$
ResFace	KL	-	$79.2~\pm~0.6$	81.3 ± 0.7	-	$86.0\ \pm\ 0.5$	$88.3\ \pm\ 0.6$
VGG-Face	L_2	$87.7~\pm~0.6$	$87.0\ \pm\ 0.5$	$88.5~\pm~0.6$	$89.2\ \pm\ 0.4$	$89.0\ \pm\ 0.4$	$90.3~\pm~0.4$
VGG-Face	KL	_	$87.5\ \pm\ 0.6$	$88.9~\pm~0.6$	-	$90.0\ \pm\ 0.3$	$91.5~\pm~0.4$
VGG2 (ResNet)	L_2	$95.7~\pm~0.3$	$95.7~\pm~0.5$	$96.1 ~\pm~ 0.4$	$96.8\ \pm\ 0.4$	$97.7~\pm~0.4$	$98.0\ \pm\ 0.3$
VGG2 (ResNet)	KL	_	$96.4~\pm~0.4$	$96.7~\pm~0.3$	_	$97.5~\pm~0.4$	$98.0~\pm~0.5$
VGG2 (SENet)	L_2	$95.3~\pm~0.3$	$95.9~\pm~0.5$	$96.8~\pm~0.5$	$97.3~\pm~0.5$	$97.8~\pm~0.5$	$98.1 ~\pm~ 0.4$
VGG2 (SENet)	KL	-	$96.0~\pm~0.5$	$96.7~\pm~0.3$	-	$98.0\ \pm\ 0.4$	$98.2~\pm~0.6$
LBP histograms	L_2	$25.8~\pm~1.2$	$24.2 ~\pm~ 1.1$	$26.2 ~\pm~ 1.3$	$29.0~\pm~1.0$	28.1 ± 1.2	$29.2 ~\pm~ 1.2$
LBP histograms (synthetic images)	L_2	$28.2\ \pm\ 1.5$	$27.3~\pm~1.2$	$28.9~\pm~1.4$	$32.3\ \pm\ 1.6$	31.0 ± 1.3	$32.8 ~\pm~ 1.4$
LBP histograms	KL	-	$31.0\ \pm\ 1.3$	$33.7~\pm~1.5$	-	$33.6~\pm~1.1$	$34.7 ~\pm~ 1.4$
LBP histograms (synthetic images)	KL	_	$33.7 ~\pm~ 1.4$	$35.2 ~\pm~ 1.6$	-	$35.4~\pm~1.2$	$36.3~\pm~1.4$
HOG	L_2	11.7 ± 3.4	$19.7~\pm~2.0$	$27.9~\pm~2.1$	12.1 ± 3.3	$23.0\ \pm\ 1.8$	$29.1~\pm~2.0$
HOG (synthetic images)	L_2	$12.3~\pm~3.5$	$23.9~\pm~3.1$	$31.9~\pm~3.2$	$12.9~\pm~3.1$	$26.6\ \pm\ 2.6$	$32.3\ \pm\ 2.8$
HOG	KL	_	$29.4~\pm~1.9$	$32.3~\pm~2.0$	_	31.5 ± 1.6	$33.3 ~\pm~ 1.8$
HOG (synthetic images)	KL	-	$32.9\ \pm\ 1.4$	$34.4~\pm~1.4$	-	$35.1 ~\pm~ 1.6$	$37.2 ~\pm~ 1.2$

Facial attributes recognition

Multi-output model for age, gender and identity recognition



$$P(l_{(1)}|X(t)) \ge P(l_{(2)}|X(t)) \ge \dots \ge P(l_{(L)}|X(t))$$

[Savchenko, PeerJ Computer Science, 2019]

https://github.com/HSE-asavchenko/HSE FaceRec tf/tree/master/age gender identity

Experimental results: Age/gender recognition for UTKFace (In-the-wild faces) dataset

Models	Gender accuracy, %	Age MAE	Age accuracy, %	Model size, Mb	Inference time, ms
DEX	91.05	6.48	51.77	1050.5	47.1
Wide ResNet (weights.28-3.73)	88.12	9.07	46.27	191.2	10.5
Wide ResNet (weights.18-4.06)	85.35	10.05	43.23	191.2	10.5
FaceNet	89.54	8.58	49.02	89.1	20.3
BKNetStyle2	57.76	15.94	23.49	29.1	12.5
SSRNet	85.69	11.90	34.86	0.6	6.6
MobileNet v2 (Agegendernet)	91.47	7.29	53.30	28.4	11.4
ResNet-50 from InsightFace	87.52	8.57	48.92	240.7	25.3
"New" model from InsightFace	84.69	8.44	48.41	1.1	5.1
Inception trained on Adience	71.77	-	32.09	85.4	37.7
age_net/gender_net	87.32	-	45.07	87.5	8.6
MobileNets with single head	93.59	5.94	60.29	25.7	7.2
Proposed MobileNet, fine-tuned from ImageNet	91.81	5.88	58.47	13.8	4.7
Proposed MobileNet, pre-trained on VG-GFace2	93.79	5.74	62.67	13.8	4.7
Proposed MobileNet, fine-tuned	94.10	5.44	63.97	13.8	4.7

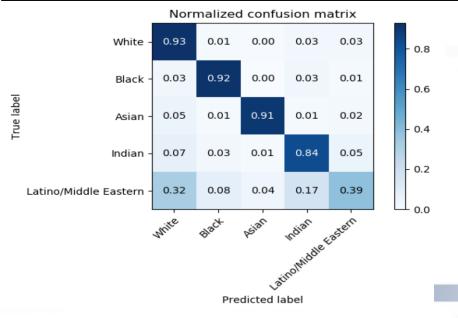
Face extraction and alignment: https://github.com/dandynaufaldi/Agendernet

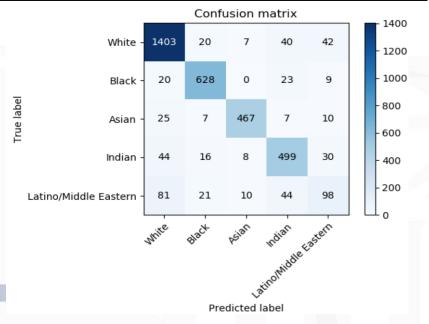
Experimental results: Age/gender recognition for UTKFace (aligned & cropped faces)

Models	Gender accuracy, %	Age MAE	Age accuracy, %
DEX	83.16	9.84	41.22
Wide ResNet (weights.28-3.73)	73.01	14.07	29.32
Wide ResNet (weights.18-4.06)	69.34	13.57	37.23
FaceNet	86.14	9.60	44.70
BKNetStyle2	60.93	15.36	21.63
SSRNet	72.29	14.18	30.56
MobileNet v2 (Agegendernet)	86.12	11.21	42.02
ResNet-50 from InsightFace	81.15	9.53	45.30
"New" model from InsightFace	80.55	8.51	48.53
Inception trained on Adience	65.89	-	27.01
age_net/gender_net	82.36	-	34.18
MobileNets with single head	91.89	6.73	57.21
Proposed MobileNet, fine-tuned from ImageNet	84.30	7.24	58.05
Proposed MobileNet, pre-trained on VGGFace2	91.95	6.00	61.70
Proposed MobileNet, fine-tuned	91.95	5.96	62.74

Ethnicity recognition results, UTKFace

	VGGFace	VGGFace-2	FaceNet	Our Mo	bileNet
				Age/gender features	Identity features
Random Forest	83.5	87.8	84.3	80.1	83.8
k-NN	76.2	84.5	84.4	72.2	82.2
SVM (RBF)	78.8	82.4	86.2	82.8	87.7
Linear SVM	79.5	83.1	85.6	80.6	85.6
New Dense layer	80.4	86.4	84.4	80.1	87.0





Dempster-Shafer theory for fusion of decisions for video frames

CNN	Aggregation	Eurecom Kinect	IMFDB	AFEW	IJB-A
	Simple Voting	0.73	0.71	0.75	0.60
gender_net	Product rule	0.77	0.75	0.75	0.59
	Dempster-Shafer	0.83	0.80	0.78	0.63
	Simple Voting	0.84	0.81	0.80	0.81
DEX	Product rule	0.84	0.88	0.81	0.82
	Dempster-Shafer	0.92	0.90	0.90	0.81
	Simple Voting	0.94	0.98	0.93	0.95
Our MobileNet	Product rule	0.93	0.99	0.93	0.96
	Dempster-Shafer	0.95	0.98	0.93	0.96
Our MobileNet,	Simple Voting	0.88	0.96	0.92	0.93
quantized	Product rule	0.86	0.96	0.93	0.94
	Dempster-Shafer	0.89	0.97	0.93	0.94
Our MobileNet,	Simple Voting	0.93	0.95	0.91	0.94
fine-tuned	Product rule	0.95	0.97	0.92	0.95
	Dempster-Shafer	0.96	0.96	0.92	0.95

[Kharchevnikova, Savchenko, Optical Memory and Neural Networks (Information Optics), 2018]

Group-level emotion recognition

"positive"

"neutral"

"negative"

EmotiW2017 sub-challenge:

- 3 classes (positive, neutral, negative)
- Training set: 3630 photos
- Validation set: 2065 photos

We got the 4th place (75.4% accuracy on validation set - 23+% better than the baseline, 78.53% on test set - 25+% than the baseline)

Our ensemble based on Dlib face detector and VGGFace was too complicated

[Rassadin, Gruzdev, Savchenko, ICMI, 2017]

Leaderboard:

Group-level Emotion Recognition				
SIAR	80.89%			
UDI-GPB	80.61%			
BNU	79.79%			
AMD	78.53%			
AmritaEEE	75.07%			

Fast emotion recognition

Small convolutional neural networks (CNNs) pre-trained on emotion recognition with FER-2013 (64x64 facial images)

[Tarasov, Savchenko, AIST 2018]

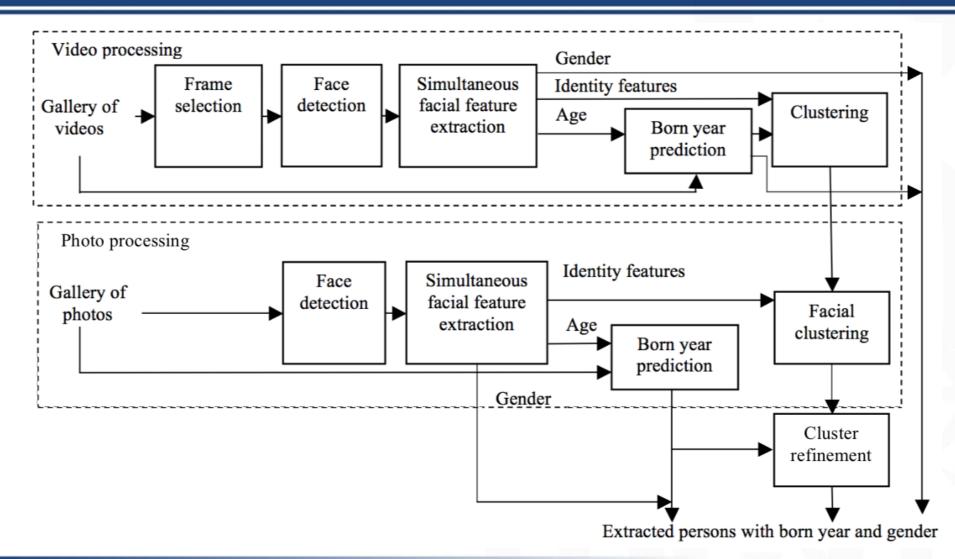
Pipeline Emotion Final decision making (mean/median/voting) Tiny Face Set of pre-trained classifiers Detector Set of located faces Classifiers training Feature extractor Final feature vector of the whole image Set of feature vectors Mean/Median/ Normalization

Experimental results on EmotiW 2017 data

	CI	NN-5	F	CN
Classifier	7 softmax scores	128 embeddings	7 softmax scores	112 embeddings
RBF SVM	57.0	60.5	68.5	69.3
Gradient Boosting	61.3	61.9	67.2	70.1
Extra Trees	59.1	61.9	69.6	70.2
Linear SVM	59.6	61.5	69.8	70.3
Bagging	59.0	61.5	68.8	70.7
Random Forest (RF)	58.0	59.9	69.0	70.9
AdaBoost	57.4	58.1	69.5	70.9
Proposed approach (all classifiers)	61.5	62.2	70.7	72.3
Proposed approach (RF, RBF SVM and Linear SVM)	61.9	64.2	73.2	75.5

Organizing photo and video albums on mobile device

Organizing Photo and Video Albums



Experimental results: GFW (Grouping Faces in the Wild) dataset

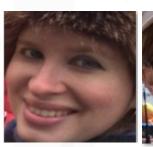
		K/C	ARI	AMI	Homogeneity	Completenes	sF-measure
Single	VGGFace	4.10	0.440	0.419	0.912	0.647	0.616
	VGGFace2	3.21	0.580	0.544	0.942	0.709	0.707
	Ours	4.19	0.492	0.441	0.961	0.655	0.636
Average	VGGFace	1.42	0.565	0.632	0.860	0.751	0.713
	VGGFace2	1.59	0.603	0.663	0.934	0.761	0.746
	Ours	1.59	0.609	0.658	0.917	0.762	0.751
Complete	VGGFace	0.95	0.376	0.553	0.811	0.690	0.595
	e VGGFace2	1.44	0.392	0.570	0.916	0.696	0.641
	Ours	1.28	0.381	0.564	0.886	0.693	0.626
Weighted	VGGFace	1.20	0.464	0.597	0.839	0.726	0.662
	l VGGFace2	1.05	0.536	0.656	0.867	0.762	0.710
	Ours	1.57	0.487	0.612	0.915	0.727	0.697
Median	VGGFace	5.30	0.309	0.307	0.929	0.587	0.516
	VGGFace2	4.20	0.412	0.422	0.929	0.639	0.742
	Ours	6.86	0.220	0.222	0.994	0.552	0.411
Rank-	VGGFace	0.82	0.319	0.430	0.650	0.694	0.630
Order	VGGFace2	1.53	0.367	0.471	0.937	0.649	0.641
	Ours	1.26	0.379	0.483	0.914	0.658	0.652

In average, C = 46 subjects

Example (1)

male 1987

female 1982

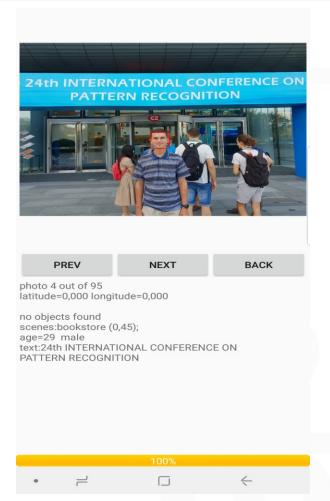


female 2015

female 2016

male 2009

Example (2)



PREV NEXT BACK
photo 26 out of 95

no objects found scenes:cricket (0,37); park (amusement) (0,35); age=53 male age=29 male text:

latitude=0,000 longitude=0,000

• ⊢ □ ←

- 1. State-of-the-art results are obtained with modern deep CNNs, but sometimes their usage is restricted due to performance (low speed) issues
- 2. Sequential analysis of CNN features/layers can potentially provide high performance without losses in accuracy
- 3. Combination of conventional machine learning techniques with face descriptors extracted by contemporary CNNs has proved its potential in approximate nearest neighbor search and modifications of instance-based learning methods

Thank you!