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Network model

One way to analyze a complex system is to consider associated network
model.

Complete weighted graph G = (V ,E , γ).

Nodes of the network model - elements of the system.

Weights of edges in the network model are given by some measure γ
of connection between elements of the system.

Examples: social networks, market networks, biological network.
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Network structures

Network structures - subgraphs of the network model.
G ′ = (V ′,E ′) : V ′ ⊆ V ,E ′ ⊆ E

Network structures contain useful information on the network model.

Popular network structures for market network: maximum spanning
tree (MST), planar maximally filtered graph (PMFG), market graph
(MG), cliques and independent sets of MG.

Market graph (TG) of network model G = (V ,E , γ) - subgraph
G ′(γ0) = (V ′,E ′) : V ′ = V ;E ′ ⊆ E ,E ′ = {(i , j) : γi ,j > γ0}, where
γ0 - given threshold.

MST of network model G = (V ,E , γ) - tree (graph without circle)
G ′ = (V ′,E ′) : V ′ = V ;E ′ ⊂ E ; |E ′| = |V | − 1; such that∑

(i ,j)∈E ′ γi ,j is maximal.
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History of market network analysis

Mantegna(1999) - MST for market network.

Pardalos (2003) - MG for market network.

Now there are around 3000 papers.

Main purpose - network structure construction by numerical
algorithms to real market data (stock returns) and interpretation of
obtained results.

But the quality of obtained results is unknown.
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Problem description

Stocks returns are random variables.
1 to choose measure of association between random variables.
2 to choose a joint distribution of random variables

Key problem - identify these network structures by observations of
complex system elements or to construct statistical procedure δ(x)
with appropriate properties to identify network structure from
observations.
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Random variable network. Distribution

Random variable network is a pair (X , γ):

X = (X1, . . . ,XN)−random vector,

γ−measure of association.

Example - market network (nodes Xi correspond to the stock returns).
Assume random vector (X1, . . . ,XN) has elliptically contoured distribution
X − ECD(µ,Λ, g)
Definition: Class of elliptically contoured distribution is given by density
functions:

f (x) = |Λ|−
1
2 g{(x − µ)′Λ−1(x − µ)}

where Λ is symmetric positive definite matrix, g(x) ≥ 0, and∫∞
−∞ . . .

∫∞
−∞ g(y ′y)dy1 . . . dyN = 1
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Random variable network. Measure

Random variable network (RVN) is a pair (X , γ):

X = (X1, . . . ,XN)−random vector,

γ−measure of association.

Popular network:=Pearson network: γPi ,j = ρi ,j =
E(Xi−E(Xi ))(Xj−E(Xj ))

σiσj

Alternative network 1:=Sign similarity network:
γSgi ,j = pi ,j = P((Xi − E (Xi ))(Xj − E (Xj) > 0).

Alternative network 2:=Kendall network
γτi ,j = P((Xi (1)− Xi (2))(Xj(1)− Xj(2)) > 0) where(

Xi (1)
Xj(1)

)
,

(
Xi (2)
Xj(2)

)
- iid vectors.
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Network structures invariance.

Any RVN generate network model. Different RVN could generate the
same network model.

Class K of vector X distributions such that under fixed γ network
models generated by (X (1), γ), (X (2), γ) are coincide

γ(X
(1)
i ,X

(1)
j ) = γ(X

(2)
i ,X

(2)
j ), ∀X (1),X (2) ∈ K, ∀i , j = 1, . . . ,N

For all distributions from K network structures coincide also.

Consider the subclass K(Λ) of ECD(µ,Λ, g) distributions with fixed
Λ. Since γPi ,j = λi ,j/

√
λi ,iλj ,j if it exist, Λ = (λi ,j) then network

models, generated by RVNs (X , γP),X ∈ K(Λ) are coincide.
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Sign measure invariance

Theorem 1: If X = (Xi ,Xj) has elliptical distribution ECD(µ,Λ, g),

then probability of sign coincidence γSgi ,j = P((Xi − µi )(Xj − µj) > 0)
does not depend from g .

Theorem 2: If X = (X1,X2, . . . ,XN) has distribution from
ECD(µ,Λ, g), then market graph in Pearson correlation network with
threshold ρ0 coincide with market graph in sign network with
threshold p0 = 1

2 + 1
π arcsin(ρ0).

Theorem 3: If X = (X1,X2, . . . ,XN) has distribution from
ECD(µ,Λ, g), then MST in Pearson correlation network coincide with
MST in sign network.
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Identification problem statement

(X , γ)-RVN, G = (V ,E , γ)-network model.

G ′ = (V ′,E ′) : V ′ ⊆ V ,E ′ ⊆ E - network structure.

X has distribution from K(Λ)

Let S = (si ,j), S ∈ G - set of adjacency matrices.

HS : Λ ∈ ΩS -hypothesis that network structure has adjacency matrix
S , S ∈ G1 ⊆ G.

observations X (t) = (X1(t), . . . ,XN(t)), t = 1, . . . , n

Problem: to construct statistical procedure δ(x) of selection one
from the set of hypotheses HS , with invariant risk function (does

not depend from g).
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Statistical procedure

δ(x) = dQ - decision, that network structure has adjacency matrix
Q,Q ∈ G iff Φ(x) = Q

Φ(x) =


0 ϕ12(x) . . . ϕ1N(x)

ϕ12(x) 0 . . . ϕ2N(x)
. . . . . . . . . . . .

ϕ1N(x) ϕ2N(x) . . . 0

 .

Φ(x)−sample network structure.

ϕij(x) =

{
1, edge (i,j) is added to network structure
0, otherwise
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Statistical procedure. Pearson network

Let X (1), . . . ,X (n)−i.i.d. vectors with existing second moments.
Note ρ(Xi ,Xj) = ρ((Xi (t)− Xi ), (Xj(t)− Xj)),∀t = 1, . . . , n
For Pearson correlation network individual hypotheses have the form:
hi ,j : γPi ,j ≤ γP0 . Individual test is:

ϕCorr
ij (x) =



1,
ri ,j − γP0√

1− r2
i ,j

> ci ,j

0,
ri ,j − γP0√

1− r2
i ,j

≤ ci ,j

where ri ,j is the sample correlation. ci ,j is chosen to make the significance
level of the test equal to prescribed value αi ,j .
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Statistical procedure. Sign network. Known µ

For sign similarity network (X , γSg ) individual hypotheses have the form:

hi ,j : γSgi ,j ≤ γ
Sg
0 . Define

Ii ,j(t) =

{
1, (xi (t)− µi )(xj(t)− µj) ≥ 0
0, (xi (t)− µi )(xj(t)− µj) < 0

T sg
i ,j =

n∑
t=1

Ii ,j(t)

Individual test is: ϕSg
ij =

{
1, T sg

i ,j > cSgi ,j
0, T sg

i ,j ≤ cSgi ,j

Constants cSgi ,j are defined for given αij from binomial equations b(n, γSg0 )
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Quality of statistical procedures for network structure
identification

w(HS ; dQ) = w(S ,Q) - loss from the decision dQ when the
hypothesis HS is true, w(S , S) = 0,S ∈ G.

Risk function of statistical procedure δ(x) is defined by

Risk(S , θ; δ) =
∑
Q∈G

w(S ,Q)Pθ(δ(x) = dQ), θ ∈ ΩS , S ∈ G
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Statistical procedures with invariant risk function

Definition 1. Statistical procedure δ for network structure S
identification in network model G = (V ,E , γ), generated by RVN
(X , γ) : X ∈ EC (µ,Λ, g), has invariant risk function in the class K(Λ),
if risk function R(S , θ, δ), θ = (µ,Λ, g) does not depend from g.

Theorem 4: Let (X1, . . . ,XN) has distribution from ECD(µ,Λ, g)
Then joint distribution of statistics T sg

i ,j (i , j = 1, 2, . . . ,N; i 6= j) does
not depend from function g.

Corollary: If X has distribution from ECD(µ,Λ, g) then algorithms for
network structures identification based on statistics T sg

i ,j has invariant
risk function.

Experimental results shows that procedures based on sample pearson
correlation have not invariant risk function.
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The case of unknown µ

It was noted

ρ(Xi ,Xj) = ρ((Xi (1)− Xi ), (Xj(1)− Xj))

for all distributions with existing second moments.
But what about of

P((Xi − µi )(Xj − µj) > 0) = P((Xi − Xi )(Xj − Xj) > 0)−?
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Iid random variables

Let Xi = 1
n

∑n
t=1 Xi (t)

Yi (t) = Xi (t)− Xi , i = 1, . . . , p

Theorem 5. If X − ECD(µ,Λ, g) and∫ ∞
0

rp+1g(r2)dr < +∞

then
P(Yi (t)Yj(t) > 0) = P((Xi (t)− µi )(Xj(t)− µj) > 0)
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Iid random variables

Corollary 1: Let random vector (X1, . . . ,XN) has elliptically contoured
distribution. Then for any function g one has ((i , j) : i , j = 1, . . . ,N, i 6= j)

γSgi ,j = P((Xi (t)− Xi )(Xj(t)− Xj) > 0) =
1

2
+

1

π
arcsin(γPi ,j)

Corollary 2: For n = 2 one has P((Xi (t)− Xi )(Xj(t)− Xj) > 0) =
P((Xi (1)− Xi (2))(Xj(1)− Xj(2)) > 0) = γτi ,j
Corollary 3: If X −K(Λ) then network structures in Pearson correlation
network, network structures in sign similarity network and network
structures in τ−Kendall network are equivalent and defined by the matrix
Λ only.
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Statistical procedure. Sign network. Unknown µ

For sign similarity network (X , γSg ) individual hypotheses have the form:

hi ,j : γSgi ,j ≤ γ
Sg
0 . Define

I 1
i ,j(t) =

{
1, (xi (t)− xi )(xj(t)− xj) ≥ 0
0, (xi (t)− xi )(xj(t)− xj) < 0

T s
i ,j =

n∑
t=1

I 1
i ,j(t)

Individual test is: ϕS
ij =

{
1, T s

i ,j > cSi ,j
0, T s

i ,j ≤ cSi ,j
Constants cSi ,j are defined for given αij from asymptotic normal
distribution.
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Matrix elliptically contoured distribution

Let

X =


X1(1) X1(2) . . . X1(n)
X2(1) X2(2) . . . X2(n)
. . . . . . . . . . . .
Xp(1) Xp(2) . . . Xp(n)


be the random matrix p × n.
Definition1 Matrix X has matrix elliptically contoured distribution
X − Ep,n(M,Σ⊗ Φ, ψ), if its characteristic function has the form:

φX (t) = exp
(
tr(iT ′M)

)
ψ
(
tr(T ′ΣTΦ)

)
where

T : p × n;M : p × n; Σ : p × p; Φ : n × n; Σ ≥ 0; Φ ≥ 0

and ψ : [0,+∞)→ R
1Gupta F.K. Varga T. Bodnar T. Elliptically Contoured Models in Statistics and

Portfolio Theory, Springer, 2013, ISBN: 978-1-4614-8153-9.
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Sign measure equivalence. Unknown µ.

Theorem 6 If matrix

X =


X1(1) X1(2) . . . X1(n)
X2(1) X2(2) . . . X2(n)
. . . . . . . . . . . .
Xp(1) Xp(2) . . . Xp(n)

− Ep,n(M,Σ⊗ Φ, ψ)

then for any matrix Φ matrix(
Xi (t)− Xi

Xj(t)− Xj

)
− E2,1

((
0
0

)
,

(
ϕt,t(Φ)σ11 ϕt,t(Φ)σ12

ϕt,t(Φ)σ12 ϕt,t(Φ)σ22

)
, ψ

)
∀i , j = 1, . . . , p; i 6= j for ∀t = 1, . . . , n
Corollary 4: For ∀t = 1, . . . , n

P((Xi (t)− Xi )(Xj(t)− Xj) > 0) = P((Xi (t)− µi )(Xj(t)− µj) > 0)
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Experimental results

1 We consider the real-world data from USA stock market. We take
N = 83 largest by capitalization companies and consider the daily
returns of these companies for the period from 03.01.2011 up to
31.12.2013, total 751 observations.

2 We calculate correlation matrix Σ by this data and consider the
matrix Σ as reference matrix. Structures of the matrix are considered
as reference structures.

3 We simulate a certain number of observation (n) using the mixture
distribution. The mixture distribution is constructed as follow -
random vector X = (X1, . . . ,XN) takes value from N(0,Σ) with
probability γ and from t3(0,Σ) with probability 1− γ.

4 We estimate the matrix Σ using the chosen association measure (γP

or γSg ).

5 We construct the sample MG basing on the estimations and compare
it to the reference network structure.
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Experimental results

The model is the mixture distribution consisting of multivariate normal
distribution and multivariate Student distribution with 3 degree of freedom.
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Figure: Risk function for MG. Left - n = 400, star line - δP , line - δSg , right: circle
- γ = 1, δP ; diamond - γ = 0, 5, δP ; square - γ = 0, δP , line - δS .
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Matrix elliptically contoured distribution. Theorems2

Theorem 2.1 Matrix X : p × n has matrix elliptically contoured
distribution X − Ep,n(M,Σ⊗ Φ, ψ) iff x = vec(X ′) has elliptically
contoured distribution ECDpn(vec(M ′),Σ⊗ Φ, ψ).
Theorem 2.2 Let X − Ep,n(M,Σ⊗ Φ, ψ), A : q × p;B : n ×m;C : q ×m
be the matrix with elements from R1. Then
AXB + C − Eq,m(AMB + C , (AΣA)′ ⊗ (B ′ΦB), ψ)
Theorem 2.8 Let X − Ep,n(M,Σ⊗ Φ, ψ). Divide X ,M,Σ by submatrices

X =

(
X1

X2

)
,M =

(
M1

M2

)
,Σ =

(
Σ11 Σ12

Σ21 Σ22

)
where X1− matrix of q × n, M1−matrix of q × n, Σ11−matrix of q × q.
Then X1 − Eq,n(M1,Σ11 ⊗ Φ, ψ)

2Gupta F.K. Varga T. Bodnar T. Elliptically Contoured Models in Statistics and
Portfolio Theory, Springer, 2013, ISBN: 978-1-4614-8153-9.
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