

National Research University Higher School of Economics (HSE) – N. Novgorod

OFFLINE ANALYSIS AND RECOGNITION OF PHOTOS IN A GALLERY ON MOBILE DEVICE

Andrey V. Savchenko

Dr. of Sci., Prof., Lead Researcher in HSE's international laboratory LATNA

Email: avsavchenko@hse.ru

URL: www.hse.ru/en/staff/avsavchenko

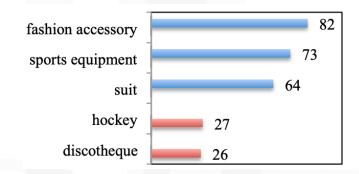
Huawei Workshop on Fundamental and Applied Problems of Machine Learning December 19, 2019

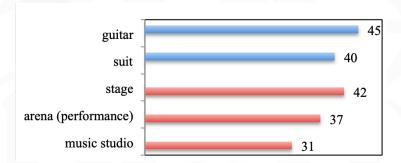
Motivation

Deep understanding of user characteristics by analyzing user images and videos in a mobile device

User images

Profile of interests





- 1. Event recognition in still images
- 2. Event recognition in a gallery of images
- 3. Sequential analysis of high-dimensional features
- 4. PNN with complex exponential activation functions
- 5. Organizing photo and video albums on mobile device

Event recognition in still images

Event recognition

"An event captures the complex behavior of a group of people, interacting with multiple objects, and taking place in a specific environment. Images from the same event category may vary even more in visual appearance and structure" (Wang et al, IJCV 2018)

WIDER (Web Image **Dataset for Event** Recognition)

Dancing

Meeting

PEC (Photo Event

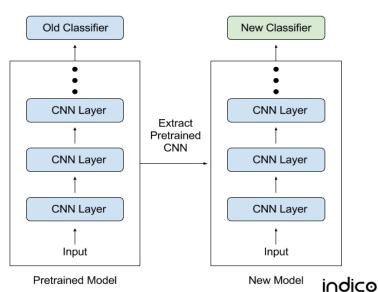
Collection)

Event recognition in single images

Image recognition: it is required to assign an observed image X to one of C classes. Training set contains N reference images (examples) $\{X_n\}$, $n \in \{1, ..., N\}$, with known class label $c_n \in \{1, ..., C\}$

Conventional approach

Fine-tune convolutional neural network (CNN) pre-trained on ImageNet, Places, etc.



Classify *embeddings* (*features*) from one of the last CNN's layers: D-dimensional feature vector $\mathbf{x} = [x_1, ..., x_D]$

Training set is associated with embeddings $\{\mathbf{x}_n\}$, $\mathbf{x}_n = [x_{n,1}, \dots, x_{n:D}]$.

Image captioning

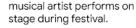
Generate textual descriptions of images Google's Conceptual Captions

the trail climbs steadily uphill most of the way.

by Danail Nachev

the stars in the night sky.

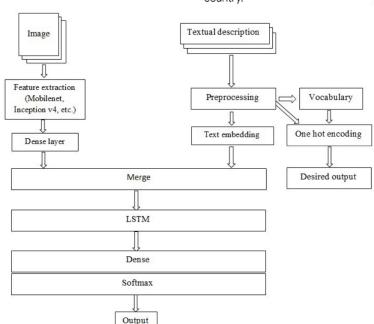
by Justin Higuchi



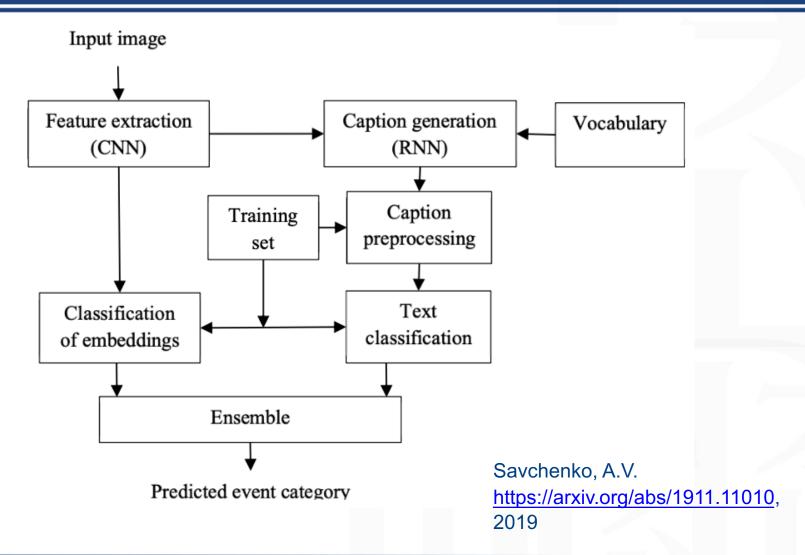
by Viaggio Routard

popular food market showing the traditional foods from the country.

- Show and Tell
- Show, Attend and Tell
- Neural Baby Talk
- Multimodal RNN
- Auto-Reconstructor Network (ARNet)



Proposed pipeline for event recognition in single images



Qualitative results

a woman is doing a handstand at a local fair PersonalSports (texts) ReligiousActivity (embeddings) PersonalArtActivity (ensemble)

the statue of liberty and the moon ThemePark (texts) Christmas (embeddings) ThemePark (ensemble)

person , a painting by person Museum (texts) UrbanTrip (embeddings) PersonalArtActivity (ensemble)

the tower of the city ThemePark (texts) Architecture (embeddings) ThemePark (ensemble)

Experimental results

	WIDER				
Classifier	Features	Lightweight models	Deep models		
	Embeddings	48.31	50.48		
SVM	Objects	19.91	28.66		
S V IVI	Texts	26.38	31.89		
	Proposed ensemble (4), (5)	48.91	51.59		
	Embeddings	49.11	50.97		
Fine-tuned CNN	Objects	12.91	21.27		
rine-tuned CNN	Texts	25.93	30.91		
	Proposed ensemble (4), (5)	49.80	51.84		
	Baseline CNN [35]		39.7		
Deep channel fusion [35]					
Initialization-based transfer learning [32]					
Transfer learning of data and knowledge [32]					

ML-CUFED (Multi-Label Curation of Flickr Events Dataset)

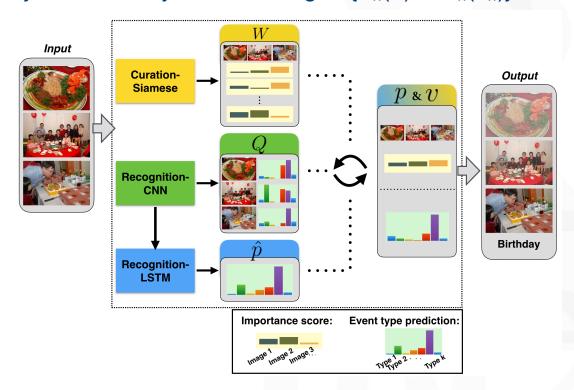
Classifier	Features	Lightweight models	Deep models
	Embeddings	53.54	57.27
SVM	Objects	34.21	40.94
	Texts	37.24	41.52
	Proposed ensemble (4), (5)	55.26	58.86
Fine-tuned CNN	Embeddings	56.01	57.12
	Objects	32.05	40.12
	Texts	36.74	41.35
	Proposed ensemble (4), (5)	57.94	60.01

Workshop on Fundamental and Applied Problems of Machine Learning, 2019

Event recognition in a gallery of images

Event recognition in a set of images

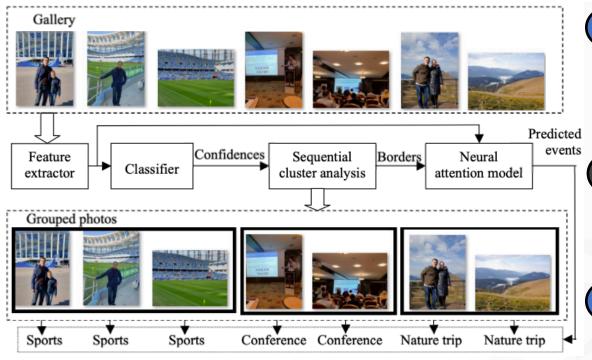
Image-set recognition: it is required to an album of images X_t , $t \in \{1, ..., T\}$ to one of C event classes. Training set of N albums is given: n-th reference album with known class label $c_n \in \{1, ..., C\}$ is defined by a set of images $\{X_n(1), ..., X_n(L_n)\}$



Wang, Y. et al. Recognizing and Curating Photo Albums via Event-Specific Image Importance, BMVC17

Event recognition in a gallery of images

In practice: it is required to assign each photo X_t , $t \in \{1, ..., T\}$ from a gallery to one of C event classes. Training set is the same as above



- Combine sequential photos using distance between L₂-normed classifier's scores for CNN embeddings
- 2 Learn distance threshold by random permutation of albums from the training set
- 3 Attention mechanism

$$\mathbf{x}(k) = \sum_{t=t_{k-1}+1}^{t_k} w(\mathbf{x}_t) \mathbf{x}_t$$

$$w(\mathbf{x}_t) = rac{\exp(\mathbf{q}^T\mathbf{x}_t)}{\sum\limits_{j=t_{k-1}+1}^{t_k} \exp(\mathbf{q}^T\mathbf{x}_j)}$$

Savchenko, A.V.

https://arxiv.org/abs/1911.11010, 2019

Experimental results (1). Conventional tasks

Accuracy (%) of event recognition in a set of images (album)

CNN	Aggregation	PEC	ML-CUFED
MobileNet2,	AvgPool	86.42	81.38
$\alpha = 1.0$	Attention	89.29	84.04
MobileNet2,	AvgPool	87.14	81.91
$\alpha = 1.4$	Attention	87.36	84.31
Inception	AvgPool	86.43	82.45
v3	Attention	87.86	84.84
	CNN-LSTM-Iterative [33]	84.5	79.3
AlexNet	Aggregation of representative	87.9	84.5
	features [34]		
	CNN-LSTM-Iterative [33]	84.5	71.7
ResNet-101	Aggregation of representative	89.1	83.4
	features [34]		

Accuracy (%) of event recognition in a single image

Dataset	CNN	Baseline	Embeddings		Scores
			L_2	χ^2	L_2
	MobileNet2, $\alpha = 1.0$	58.32	60.42	60.69	58.44
PEC	MobileNet2, $\alpha = 1.4$	60.34	61.25	61.92	60.58
	Inception v3	61.82	64.19	64.22	61.97
ML-	MobileNet2, $\alpha = 1.0$	54.41	57.03	57.45	54.56
CUFED	MobileNet2, $\alpha = 1.4$	53.54	54.97	55.98	54.03
	Inception v3	57.26	59.19	60.12	57.87

Experimental results (2). Event recognition is a gallery

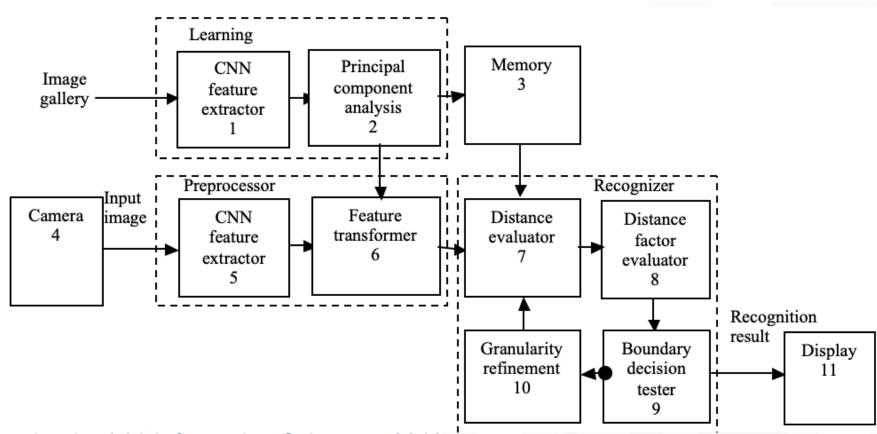
				(%) for PE	EC		
CNN	Aggregation	Baseline	Embe	ddings	Sco		Scores (L_2 -normed)
			L_2	χ^2	L_2	χ^2	L_2
MobileNet2, $\alpha = 1.0$	AvgPool	58.32	66.85 ± 0.59	68.52 ± 0.89	71.08 ± 0.59	-	72.68 ± 0.56
(pre-trained), embeddings	Attention	54.43	68.51 ± 0.41	70.65 ± 1.20	74.49 ± 0.70	-	80.48 ± 1.01
MobileNet2, $\alpha = 1.4$	AvgPool	60.34	68.85 ± 0.59	69.57 ± 0.57	72.59 ± 1.49	-	73.49 ± 0.86
(pre-trained), embeddings	Attention	55.36	70.53 ± 0.79	71.16 ± 0.72	78.20 ± 1.47	-	81.27 ± 0.81
MobileNet2, $\alpha = 1.4$	AvgPool	61.89	-	-	75.66 ± 0.55	76.96 ± 0.97	-
(fine-tuned), scores	Attention	61.55	-	-	78.77 ± 0.49	81.33 ± 0.69	-
Inception v3	AvgPool	61.82	72.29 ± 1.28	72.32 ± 1.54	74.54 ± 1.04	-	76.48 ± 0.47
(pre-trained), embeddings	Attention	56.94	72.38 ± 1.13	71.96 ± 0.67	76.76 ± 0.70	-	80.17 ± 1.14
Inception v3	AvgPool	63.56	-	-	78.87 ± 0.67	79.92 ± 0.65	-
(fine-tuned), scores	Attention	62.91	-	-	81.03 ± 0.77	81.95 ± 1.11	-

Accuracy (%) for ML-CUFED

CNN	Aggregation	Baseline	Embeddings		Scores		Scores (L_2 -normed)
			L_2	χ^2	L_2	χ^2	L_2
MobileNet2, $\alpha = 1.0$	AvgPool	54.41	67.54 ± 0.76	67.42 ± 0.93	69.83 ± 0.74	-	70.42 ± 0.41
(pre-trained), embeddings	Attention	51.05	68.71 ± 0.71	68.55 ± 0.61	71.44 ± 0.82	-	71.61 ± 0.69
MobileNet2, $\alpha = 1.4$	AvgPool	53.54	66.93 ± 0.60	67.21 ± 0.55	68.56 ± 0.73	-	69.47 ± 0.36
(pre-trained), embeddings	Attention	51.12	68.34 ± 0.68	68.62 ± 0.50	70.79 ± 0.75	-	71.78 ± 0.74
MobileNet2, $\alpha = 1.4$	AvgPool	56.01	-	-	70.57 ± 0.48	71.61 ± 0.28	-
(fine-tuned), scores	Attention	56.09	-	-	72.90 ± 0.59	73.46 ± 0.58	-
Inception v3	AvgPool	57.26	69.91 ± 0.58	70.01 ± 0.62	72.25 ± 0.61	-	72.78 ± 0.71
(pre-trained), embeddings	Attention	50.89	69.30 ± 0.47	68.52 ± 0.89	72.73 ± 0.72	-	73.00 ± 0.65
Inception v3	AvgPool	57.12	-	-	72.18 ± 0.63	73.20 ± 0.74	-
(fine-tuned), scores	Attention	57.29	-	-	73.06 ± 0.74	73.92 ± 0.81	-

Sequential analysis of high-dimensional features

Three-way decisions to choose robust representation of the input image



- Savchenko A.V. Information Sciences, 2019
- Savchenko A.V. Knowledge-Based Systems, 2016
- Patent RU 2706960 (22.11.2019) / Author: Savchenko A.V. Assignee: Samsung

[Yao Y., Information Sciences, 2010]: "A **positive** rule makes a decision of **acceptance**, a **negative** rule makes a decision of **rejection**, and a **boundary** rule makes a decision of **abstaining**"

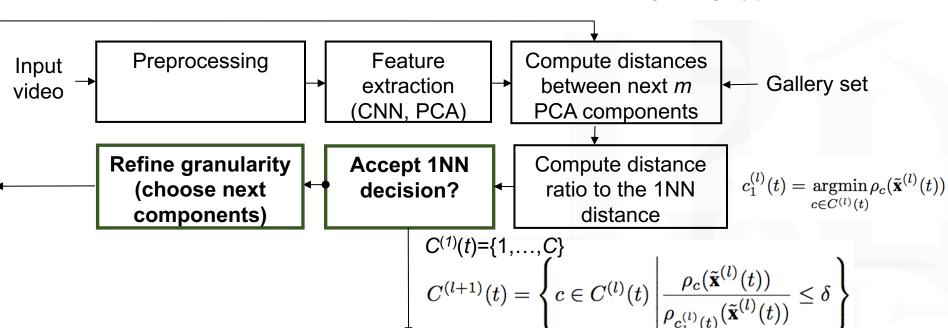
Key question: how to make a decision if the boundary region was chosen? Yao Y. Proc. of RSKT, LNCS, 2013: "Objects with a non-commitment decision may be further investigated by using fine-grained granules"

PCA (principal component analysis), scores are ordered by corresponding eigenvalues $\tilde{\mathbf{x}}(t) = [\tilde{x}_1(t), ..., \tilde{x}_D(t)]$

Proposed: representation of frame at the *I*-th granularity level includes first $d^{(I)}$ =Im principal components. This representation is computationally cheap for additive distances

$$\rho\left(\tilde{\mathbf{x}}^{(l+1)}(t), \tilde{\mathbf{x}}_r^{(l+1)}\right) = \rho\left(\tilde{\mathbf{x}}^{(l)}(t), \tilde{\mathbf{x}}_r^{(l)}\right) + \sum_{d=d^{(l)}+1}^{d^{(l+1)}} \rho(\tilde{x}_d(t), \tilde{x}_{r;d})$$

$$\rho_c(\tilde{\mathbf{x}}^{(l)}(t)) = \min_{r \in \{1, \dots, R\}, c(r) = c} \rho(\tilde{\mathbf{x}}^{(l)}(t), \tilde{\mathbf{x}}_r^{(l)})$$



Final Maximum a-posterior (MAP) decision

$$\max_{c \in C^{(L)}} \sum_{t=1}^T \frac{\exp(-n\rho_c(\tilde{\mathbf{x}}^{(l)}(t)))}{\sum\limits_{i \in C^{(L)}} \exp(-n\rho_c(\tilde{\mathbf{x}}^{(l)}(t))}$$

Strong theoretical foundations for the Jensen-Snannon and Kullback-Leibler divergences

Here is exactly how our method works in practice

Probe photo Closest gallery photos

(a)

(b)

(c)

(d)

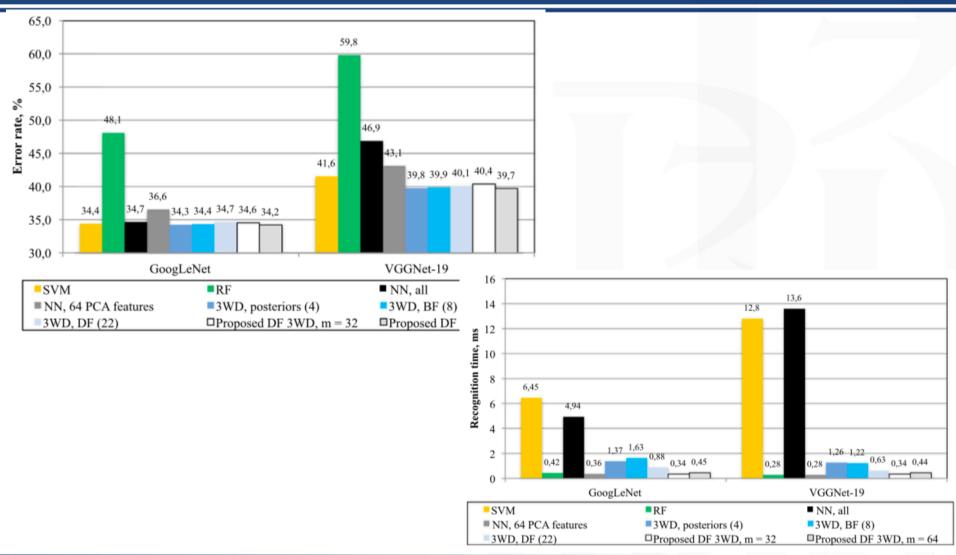
Recognition results, distance factor threshold 0.7

	l	= 1	l	= 2	l=3		
Subject	ho[r]	$ ho_{\min}/ ho[r]$	ho[r]	$ ho_{\min}/ ho[r]$	ho[r]	$ ho_{\min}/ ho[r]$	
Armstrong (d)	0.0086	0.87	0.0122	1	0.0129	1	
Auriemma (b)	0.0074	1.00	0.0170	0.71	0.0195	0.66	
McEwen (c)	0.0104	0.72	0.0188	0.65	_	-	
Williams	0.0100	0.75	0.0300	0.41	-	-	
Wirayuda	0.0103	0.73	0.0217	0.56	_	-	
LeBron	0.0105	0.71	0.0200	0.61	-	-	

Better recognition performance (no need to process all features)

Higher recognition accuracy

Experimental results (Caltech-256 dataset)



Probabilistic Neural Network (PNN) with complex exponential activation functions

Orthogonal density expansions to speed up classification

Statistical approach: empirical Bayesian classifier with naïve assumption about independent features

$$c^* = \underset{c \in \{1, ..., C\}}{\arg \max} \frac{R(c)}{R} f(\mathbf{x}|W_c) \qquad \hat{f}(\mathbf{x}|W_c) = \prod_{d=1}^{D} \hat{f}_d(x_d|W_c)$$

We propose to estimate the individual likelihood as the average of the first *J* partial sums. Here the right-hand side is the non-negative Fejér kernel

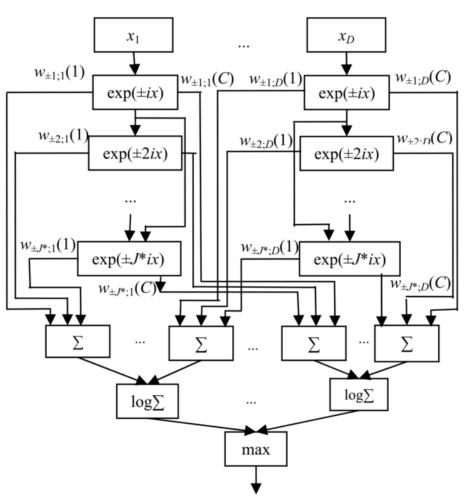
$$\hat{f}_d(x_d|W_c) = \frac{1}{J+1} \sum_{i=0}^{J} \hat{f}_{j;d}(x_d|W_c) \qquad F_{J+1} = \frac{1}{J+1} \left(\frac{\sin((J+1)\pi(x_d - x_{r;d}(c))/2)}{\sin(\pi(x_d - x_{r;d}(c))/2)} \right)^2$$

We replace canonical form of density estimate to the equivalent form, which does not implement the brute force

$$\hat{f}_{J;d}(x_d|W_c) = \sum_{j=-J}^{J} a_{j;d}(c) \exp(ij\pi x_d) \qquad \psi_j(x) = \exp(ij\pi x).$$

- Savchenko, A.V. IEEE Transactions on Neural Networks and Learning Systems, 2019
- Savchenko A.V., IEEE ICPR 2018

PNN based on trigonometric series



$$c^* = \underset{c \in \{1, ..., C\}}{\operatorname{argmax}} \sum_{j=-J}^{D} \log \sum_{j=-J}^{J} w_{j;d}(c) \cdot \psi_j(x_d)$$

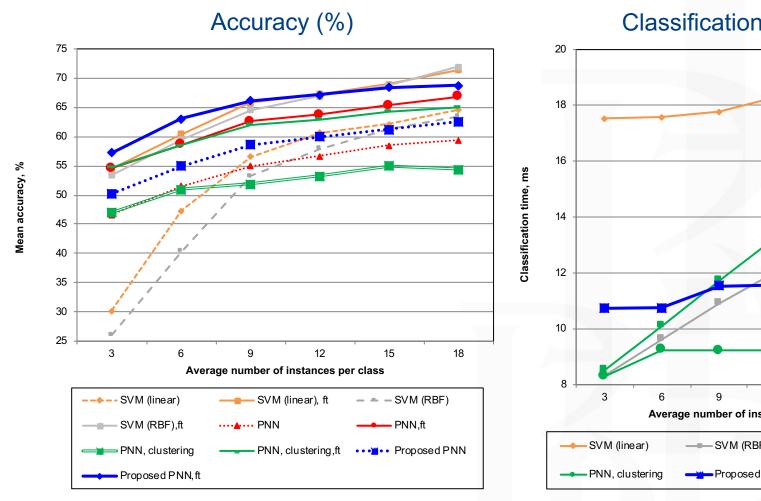
$$\psi_{j+1}(x_d) = \psi_j(x_d) \cdot \psi_1(x_d),$$

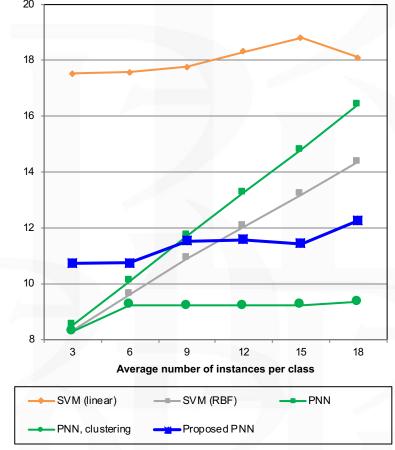
$$\psi_{-j}(x_d) = \overline{\psi_j(x_d)}.$$

- Converges to Bayesian solution
- Very high training speed
- Runtime complexity and memory space complexity: $O(DR^{1/3}C^{1/3})$.

Online classification is approximately $R^{2/3}$ —times faster than instance-based learning (PNN, k-NN) if at least 5 photos per subject are available

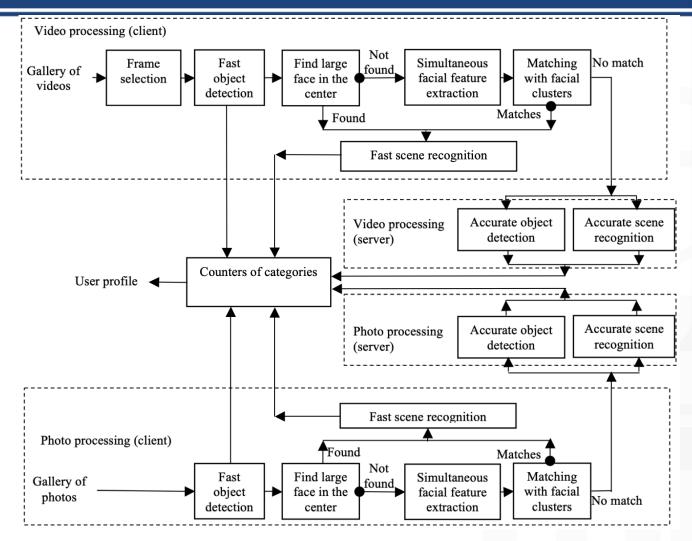
Experimental results (Caltech-256 dataset)





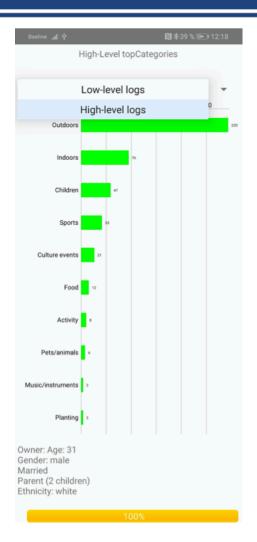
Organizing photo and video albums on mobile device

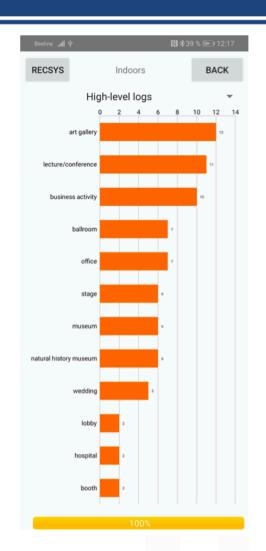
Organizing Photo and Video Albums



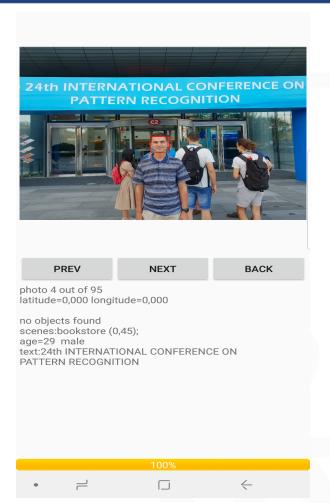
Savchenko A.V. et al., https://arxiv.org/abs/1907.0 4519, 2019

Example (1)





Example (2)

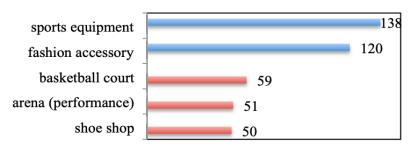


PREV NEXT BACK
photo 26 out of 95
latitude=0,000 longitude=0,000

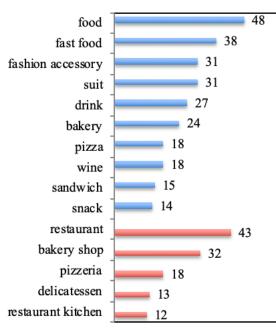
no objects found scenes:cricket (0,37); park (amusement) (0,35); age=53 male age=29 male text:

100% • ⊢ □ ←

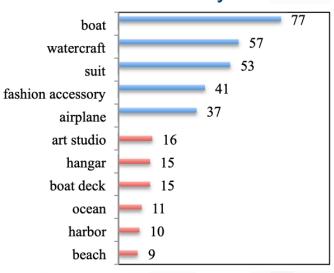
Example (3). Profiles from Instagram accounts



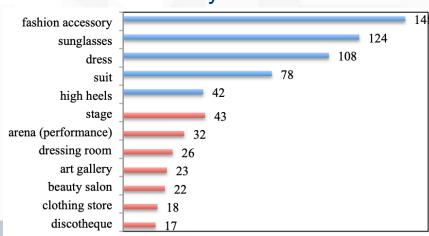
Gordon Ramsay



Fedor Konyukhov

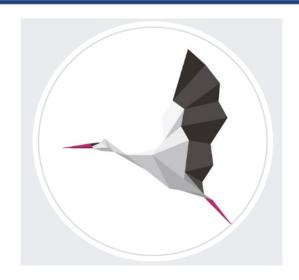


Beyonce



Workshop on Fundamental and Applied Problems of Machine Learning, 2019

- 1. Event recognition in a gallery is a practical task that still needs further study: accuracy is much higher if the albums are known
- 2. Sequential analysis of CNN features/layers can potentially provide high performance without losses in accuracy
- 3. PNN with complex exponential activations proves the possibility to create fast and accurate classifier (when compared to k-NN and PNN)
- 4. User modeling based on visual data from mobile phones can be used to deal with cold start problem in recommender systems



annual International Conference AIST (Analysis of Images, Social networks and Texts)

- Main proceedings Springer LNCS (Lecture Notes in Computer Science);
- Companion volume Springer CCIS (Communications in Computer and Information Science)

http://aistconf.org/

Thank you!