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Image recognition problem
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Fine-tune convolutional neural 
network (CNN) pre-trained on 
ImageNet, Places, etc.

It is required to assign an observed image X to one of C classes. 
Training set contains N reference images (examples) {Xn}, nÎ{1,… N}, 
with known class label cnÎ{1,… C}

1

2 Classify embeddings 
(features) from one of the 
last CNN’s layers: D-
dimensional feature vector 
x=[x1,…, xD]. Training set 
is associated with 
embeddings {xn}
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The more the better
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• Inference in deep 
CNNs is slow 

• Do we need to 
perform the whole 
inference for every 
input image 
including the 
simplest one?
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Fast classification of high-dimensional features: PCA for CNN
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Preprocessing

Compute likelihood 
ratio to the maximal 

likelihood

Accept 
decision?

Feature 
extraction 

(CNN, PCA)

Final decision

Input 
image

Refine granularity 
(choose next 
components)

Compute likelihoods 
between next m PCA 

components

C(1)(t)={1,…,C} 

• Savchenko A.V. Information Sciences, 2019
• Savchenko A.V. Knowledge-Based Systems, 2016
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Adaptive CNNs
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Conditional deep learning (CDL) network
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https://arxiv.org/pdf/1509.08971.pdf
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BranchyNet

9

https://arxiv.org/pdf/1709.01686.pdf
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Adaptive computational time for ResNets
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https://arxiv.org/abs/1612.02297



OpenTalks.AI 2021

Other dynamic/adaptive CNNs

11

• K. Berestizshevsky and G. Even, “Dynamically sacrificing accuracy for reduced 
computation: Cascaded inference based on softmax confidence,” International 
Conference on Artificial Neural Networks (ICANN), 2019. 

• A. Veit and S. Belongie, “Convolutional networks with adaptive inference 
graphs,” ECCV, 2018. 

• R. Teja Mullapudi et al, “HydraNets: Specialized dynamic architectures for 
efficient inference,” CVPR, 2018. 

• Leroux, Sam et al, “IamNN: Iterative and adaptive mobile neural network for 
efficient image classification”, ICLR2018 workshop

• Rao, Yongming et al, “Runtime Network Routing for Efficient Image 
Classification”, PAMI 2018

• T.Bolukbasi et al,“Adaptive neural networks for efficient inference,” ICML, 2017. 
• Li, Zhichao et al, ”Dynamic computational time for visual attention”, International 

Conference on Computer Vision (ICCV) 2017,

…
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Inference in sequential analysis
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• M > 1 intermediate layers (exit branches) are arbitrarily chosen to split the 
whole computational graph into M sequentially connected parts 

• GAP and L2-norm layers are added in each exit branch. 

• Input image is represented 
as a hierarchy of feature 
vectors x1, ..., xM. 

• Sequential decision-making: 
M classifiers are trained, 
each classifier predicts C-
dimensional vector of 
confidence scores 
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Training

13

• How to choose thresholds?
• Train classifier on part of 

training set, predict confidence 
scores on the remaining 
training examples and fix the 
false acceptance rate (FAR) 𝛼m

• How to choose FAR at the m-th
level based on a given 
confidence level 𝛼 of the whole 
decision-making procedure?

• Multiple testing problem with the 
Benjamini-Hochberg correction 
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Our approach
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• Savchenko, IJCNN 2020
• Savchenko, Information 

Sciences 2021 (in print)
• Савченко, Записки 

научных семинаров 
ПОМИ, 2021
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Experiments
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Datasets
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1. Caltech-101 Object Category 
dataset, which contains 8677 images 
of C = 102 classes including 
distractor background category.

3. Stanford dogs dataset that contains 
20580 images and C = 120 classes.

2. Caltech-256 dataset with 29780 
images of C = 257 classes including 
the clutter category.



OpenTalks.AI 2021

Caltech-101 dataset, InceptionResNet v2
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Performance analysis: Caltech-256 (60 instances per class), InceptionResNet v2 
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Experimental results for EfficientNet-b7

19

Example results of image recognition, Caltech-101



Conclusion
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and disadvantages

1

2

The inference speed of any pre-trained and fine-tuned CNN is 
increased even in few-shot learning with domain adaptation
In contrast to many existing methods that were developed for 
ResNets, proposed algorithm can be applied with any architecture

1 It is impossible to exit from one of the parallel convolutional layers

2 This study clearly highlights the main restriction of the practical 
application of all adaptive neural networks for few-shot learning: 
accuracy for the features extracted from early layers is 7-26% 
lower when compared to accuracy for features from deep layers.

3 1.06-1.7-times speed up over existing techniques on both CPU 
and GPU without significant accuracy degradation

The proposed approach is less limited than existing adaptive CNNs:
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