Master equations in all orders of perturbation theory 
with Bogolubov-van Hove scaling

A. E. Teretenkov.¹

Keywords: non-Markovian quantum dynamics; open system; master equation. (3-8 keywords recommended)

MSC2010 codes: 81S22, 81Q05, 81Q15

We consider the dynamics of the reduced density matrix for the spin-boson model in the rotating wave approximation with the reservoir at zero temperature. We show that if one considers the perturbation theory with Bogolubov-van Hove scaling, then the dynamics of the perturbative part of the reduced density matrix is described by the Gorini – Kossakowski – Sudarshan – Lindblad equation with constant coefficients. So, it is simpler than the usual time-convolutionless master equation derived by usual perturbation methods (without time scaling). We also show that the initial conditions for the exact reduced density matrix and for its perturbative part generally do not coincide. Moreover, under certain resonance conditions the initial condition for the asymptotic equation should be not a density matrix to provide the given asymptotic precision outside the reservoir correlation time. The talk is based on [1], both further details and references could be found here.

References:


¹Steklov Mathematical Institute of Russian Academy of Sciences, Moscow, Russia. Email: taemsu@mail.ru