Trace decreasing semigroup for an open quantum system interacting with a repeatedly measured ancilla
S. N. Filippov

Keywords: Zeno effect; non-Hermitian Hamiltonian; trace decreasing quantum semigroup.

MSC2010 codes: 81S22

Problem setting. We consider a quantum system dynamics caused by successive selective measurements of an ancilla coupled to the system. This scenario is similar to the Zeno effect because the ancilla remains effectively frozen; however, the system dynamics is non-trivial. For the finite measurement rate \(\tau^{-1} \) and the system-probe interaction strength \(\gamma \) we derive analytical evolution equations for the system in the stroboscopic limit \(\tau \to 0 \) and \(\gamma^2 \tau = \text{const} \). We prove that the induced dynamics of the subnormalized density operator is a semigroup provided the system-ancilla interaction is unitary [1]. Dynamics of the normalized density operator is given by a non-linear equation [1]. The obtained semigroup dynamics can be considered as a deviation from the Zeno subspace dynamics on a longer timescale \(T \sim (\gamma^2 \tau)^{-1} \gg \gamma^{-1} \).

Main result. Importantly, the induced conditional dynamics of the main system is described by the effective non-Hermitian Hamiltonian. By physical examples of multi-spin models we show that the effective non-Hermitian Hamiltonian may drive the system to a maximally entangled stationary state [2]. In addition, we report a new recipe to construct a physical scenario where the quantum dynamics of a physical system represented by a given non-Hermitian Hamiltonian \(H_{\text{eff}} \) may be simulated [2]:

Theorem. The trace decreasing semigroup dynamics with the generator \(-i[H_{\text{eff}}, \cdot] \) results from the stroboscopic measurements on an ancilla, which is originally prepared in the state \(|0_A\rangle \langle 0_A| \) and interacts with the system through self-adjoint Hamiltonian

\[
H = \frac{1}{2}(H_{\text{eff}} + H_{\text{eff}}^\dagger) \otimes |0_A\rangle \langle 0_A| + \sqrt{c I + \frac{i}{\tau}(H_{\text{eff}} - H_{\text{eff}}^\dagger)} \otimes (|0_A\rangle \langle 1_A| + |1_A\rangle \langle 0_A|),
\]

where \(c = \max(0, -M) \) and \(M \) is the minimum eigenvalue of the operator \(\frac{i}{\tau}(H_{\text{eff}} - H_{\text{eff}}^\dagger) \).

Discussion. The developed formalism can be generalized to the case of time-dependent system-ancilla Hamiltonian and the case of non-selective measurements [3]; however, the semigroup dynamics for the system does not take place in general. We can also consider a situation, in which the measurement basis changes in time, which is illustrated by nonselective measurements in the basis of diabatic states of the Landau-Zener model.

References:

\(^{1}\text{Steklov Mathematical Institute of Russian Academy of Sciences, Department of Mathematical Methods for Quantum Technologies, Russia, Moscow. Email: sergey.filippov@mi-ras.ru}\)