On perturbations of one-parameter semigroups
determined by covariant operator valued measures on the half-axis
G. G. Amosov,¹ E. L. Baitenov.²

Keywords: perturbations of semigroups; covariant operator valued measures; the semigroup of
shifts on the half-axis.

MSC2010 codes: 47D06, 46L51

A one-parameter family of contractions \(T_t : X \to X, \ t \geq 0 \), acting on a Banach space \(X \) is said to be a semigroup if \(T_{t+s} = T_t T_s, \ t, s \geq 0, \) and \(T_0 = I \) (the identical transformation). If orbits of the semigroup \(T = (T_t) \) are continuous in some topology then there exists a linear
operator \(\mathcal{L} \) with the domain \(\mathcal{D}(\mathcal{L}) \) dense in \(X \) in the same topology such that \(T_t = \exp(t\mathcal{L}), \ t \geq 0 \). The operator \(\mathcal{L} \) is said to be a generator of the semigroup \(T \) [1]. For the case \(X = \mathcal{B}(H) \) (the algebra of all bounded operators in a Hilbert space \(H \)) a perturbation of \(\mathcal{T} \) of the semigroup \(T \) can be defined as a solution to the integral equation

\[
\hat{T}_t - \int_0^t \mathcal{M}(ds)\hat{T}_{t-s} = T_t, \ t \geq 0,
\]

where \(\mathcal{M} \) is a measure on the half-axis taking values in the set of all completely positive maps
on the algebra \(\mathcal{B}(H) \). To define a semigroup the measure \(\mathcal{M} \) should be covariant with respect
to the action of \(T \) in the sense

\[
T_r \circ \mathcal{M}([t, s]) = \mathcal{M}([t + r, s + r]), \ r \geq 0, \ s \geq t \geq 0.
\]

Let us go back to an arbitrary Banach space \(X \). If we consider a perturbation of the generator \(\mathcal{L} \) by a bounded operator \(\Delta \) in \(X \), then the operator \(\hat{\mathcal{L}} = \mathcal{L} + \Delta \) having the same domain
\(\mathcal{D}(\hat{\mathcal{L}}) = \mathcal{D}(\mathcal{L}) \) is a generator of the semigroup that is a solution to the integral equation
determined by the covariant measure

\[
\mathcal{M}([t, s]) = \int_t^s T_r \Delta dr, \ s, t \geq 0.
\]

More complicated cases that lead to a change of the domain of a generator are defined by non-
trivial cohomologies of \(T \). We consider two examples in which a crucial role is played by the
semigroup \(S = (S_t) \) consisting of right shifts in the Hilbert space \(H = L^2(\mathbb{R}_+) \). In one example,
perturbations of the semigroup \(S \) are introduced in [3-4]. The second example determines the
construction of perturbation for the semigroup \(T = (T_t) \) acting in \(X = \mathcal{B}(\mathcal{F}(H)) \) by the formula

\[
T_t(x) = \hat{S}_t x \hat{S}_t^*, \ x \in \mathcal{B}(\mathcal{F}(H)),
\]

where \(\hat{S}_t \) acts in the antisymmetric Fock space \(\mathcal{F}(H) = \{\mathbb{C}\Omega\} \oplus H \oplus H^{\otimes 2} \oplus \cdots \oplus H^{\otimes 2} \oplus \cdots \)
over one-particle Hilbert space \(H = L^2(\mathbb{R}_+) \) by the formula

\[
\hat{S}_t \Omega = \Omega, \ S_t(f_1 \Lambda f_2 \Lambda \cdots \Lambda f_n) = S_t f_1 \Lambda S_t f_2 \Lambda \cdots \Lambda S_t f_n, \ t \geq 0, \ f_j \in H.
\]

References:

¹Steklov Mathematical Institute, Russia, Moscow. Email: gramos@mi-ras.ru
²Moscow Institute of Physics and Technology, Russia, Moscow. Email: baiteneg@mail.ru

