Asymptotic behaviour of a class of random evolution problems with application to combinatorial and metric graphs

S. Bonaccorsi1

We consider a family of graphs $\{G_k, \ k = 1, \ldots, N\}$, each associated to the (discrete or continuous) Laplacian operator \mathcal{L}_k acting on the function defined on the vertices (edges) of the graph.

Given a stochastic mechanism of switching the graphs during time, we get that the evolution is lead by an operator \mathcal{L}_{X_k} (selected from the set $\{\mathcal{L}_1, \ldots, \mathcal{L}_N\}$ according to some Markov chain X_k) during the (random) time interval $[T_k, T_{k+1})$

$$\begin{cases}
\partial_t u(t, x) = \mathcal{L}_{X_k} u(t, x), & t \in [T_k, T_{k+1}), \\
u(0, x) = f(x).
\end{cases} \quad (1)$$

We can associate to (1) the (random) evolution operator

$$S(t) = e^{(t-T_n)\mathcal{L}_{X_n}} \prod_{k=0}^{n-1} e^{(T_{k+1}-T_k)\mathcal{L}_{X_k}}, \quad t \in [T_n, T_{n+1}).$$

Our main problem can be stated as follows:

(P) under which condition the random evolution operator $S(t)$ converges? towards which limit?

The paper is based on a joint work with Francesca Cottini (Università di Milano Bicocca) and Delio Mugnolo (FernUniversität in Hagen).

References

1Dipartimento di Matematica, Università di Trento, 38123 Povo (Trento), Italy. Email: stefano.bonaccorsi@unitn.it