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Control of quantum systems, e.g., individual atoms, molecules is an important direction in
modern quantum technologies [1–5]. Consider coherent control of an N–level quantum system
which is isolated from the environment. Its dynamics is described by Schrödinger equation:

i
dU f

t

dt
= (H0 + f(t)V )U f

t , U f
t=0 = I.

Here H0 and V are the free and interaction Hamiltonians (Hermitian N×N -matrices such that
[H0, V ] 6= 0), and f ∈ L2([0, T ],R) is a coherent control.

Let O be a quantum observable (system’s Hermitian operator) and W ∈ SU(N) be a target
unitary operator. Typical quantum control objectives correspond to maximization of average
value of O and generation of target process W and are characterized by objective functionals

JO[f ] = Tr(OU f
Tρ0U

f
T )| → max .

JW [f ] =
1

4
|Tr(W †U f

T )|
2 → max .

Globally optimal controls realize global maximum of the objective. Trap is a control which is
optimal only locally but not globally. To establish whether traps exist or not for a given control
objective is a highly important practical problem, since they determine the level of difficulty
for finding globally optimal controls in numerical and laboratory experiment [5-7].

In [5] it was proposed that quantum control objectives are typically free of traps. However,
this property was proved only for N = 2 [8,9] and for control of transmission (that corresponds
to N =∞) [10]. Examples of trapping behavior were found for systems with N ≥ 3 [6,7].

In [8,9] it was shown that if time T is large enough then the objective functional JW for a
qubit has not traps. To explicitly formulate these results, define the special constant control f0
and the special time T0:

f0 :=
−TrH0TrV + 2Tr(H0V )

(TrV 2)2 − 2Tr(V 2)
,

T0 :=
π

‖H0 − IH0/2 + f0(V − ITrV/2)‖
.

Theorem 1. For N = 2, if TrV = 0 and T ≥ T0, then all maxima and minima of the
objective functionals JO[f ] and JW [f ] are global. Any control f 6= f0 can not be a trap for any
T > 0.

In [10] it was proved that control of quantum transmission of a particle with energy E
through potential V is free of traps. For fixed E, consider TE[V ] as objective functional of the
control potential V . The control goal is to maximize transmission.

Theorem 2. The only extremum of the transmission coefficient TE[V ] is the value TE = 1,
i.e.,

δTE
δV

= 0⇔ TE[V ] = 1
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In [11,12], small-time control landscapes were studied for the control objective JW . The
following result was proved [11].

Theorem 3. Let W ∈ SU(2) be a single qubit quantum gate. If [W,H0 + f0V ] 6= 0 then for
any T > 0 traps do not exist. If [W,H0 + f0V ] = 0 then any control, except possibly f ≡ f0, is
not trap for any T > 0 and the control f0 is not trap for T > T0.

In [12] it is shown that the control f0 is not a trap in the case T ≤ T0 and [W,H0+f0V ] = 0.
One can show that it is sufficient to consider H0 = σz, V = vxσx+vyσy andW = eiϕW σz without
loss of generality. Here σx, σy, σz are the Pauli matrices, υx, υy ∈ R such that υ =

√
υ2x + υ2y > 0,

and ϕW ∈ (0, π]. In this case, the special time is T0 = π
2
and the special control is f0 = 0. For

fixed ϕW and T the value of the objective evaluated at f0 is

JW [f0] = cos2 (ϕW + T ). (1)

The control f0 = 0 is a critical point, i.e., gradient of the objective evaluated at this control is
zero. The Taylor expansion of the functional JW at f0 up to the second order has the form:

JW [f0 + δf ] = JW [f0] +
1

2

∫ T

0

∫ T

0

Hess(t, s)δf(t)δf(s)dtds+ o(‖δf‖2L2
), δf → 0,

where the integral kernel of Hessian has the form (see [12]):

Hess(s, t) = −2υ2 cos (ϕW + T ) cos (ϕW + T − 2|t− s|).

We study the spectrum of this integral operator. For this purpose, we consider the following
cases:

• (ϕW , T ) belongs to the triangle domain

D1 :=
{
(ϕW , T ) : 0 < T <

π

2
,

π

2
≤ ϕW < π − T

}
;

• (ϕW , T ) belongs to the triangle domain

D2 :=
{
(ϕW , T ) : 0 < T ≤ π

2
, π − T < ϕW ≤ π, (ϕW , T ) 6= (

π

2
, π)

}
;

• (ϕW , T ) belongs to the square domain without the diagonal

D3 :=
{
(ϕW , T ) : 0 < T ≤ π

2
, 0 < ϕW <

π

2
, ϕW + T 6= π

2

}
.

Remark 1. It is easy to see from (1) that if (ϕW , T ) ∈ (0, π
2
]× (0, π] \ (D1 ∪ D2 ∪ D3) then

f0 is a point of global extrema of the objective functional JW .
Theorem 4. If (ϕW , T ) ∈ D1 ∪ D2 ∪ D3 then the Hessian of the objective functional JW at

f0 = 0 is an injective compact operator on L2([0, T ],R). Moreover,

1. If (ϕW , T ) ∈ D1, then Hessian at f0 is strictly negative.

2. If (ϕW , T ) ∈ D2 ∪ D3 then Hessian at f0 has both negative and positive eigenvalues. In
this case, the special control f0 = 0 is a saddle point for the objective functional.

The second case was previously proved using a different method [11]. The first case is a new
result of [12], where it was rigorously proved that in this case f0 is either a global maximum
point or a trap. In [12], also numerical optimization methods were used such as Gradient Ascent
Pulse Engineering (GRAPE), differential evolution, and dual annealing to show that the special

2



control is a point of global maximum if (ϕW , T ) ∈ D1. A rigorous proof of this finding remains
an open problem. The numerical results also shown that for π

2
≤ ϕW ≤ π and 0 < T ≤ π

2

achieving the objective functional value 1, i.e., providing exact generation of phase shift gate,
requires a final time T being not less than the minimal time Tmin = π − ϕW .
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