On topology of ambient manifolds admitting A-diffeomorphisms

V. Grines¹.

The report is devoted to exposition of a result obtained in collaboration with E.V. Zhuzhoma and V.S. Medvedev.

Let M^n, $n \geq 3$, be a closed orientable n-manifold and $\mathcal{G}(M^n)$ the set of A-diffeomorphisms $f : M^n \rightarrow M^n$ satisfying the following conditions:

- if a basic set belonging to nonwandering set $NW(f)$ of a diffeomorphism $f \in \mathcal{G}(M^n)$ is nontrivial (that is different from periodic orbit) then it is either an orientable codimension one expanding attractor or an orientable codimension one contracting repeller;
- invariant manifolds of isolated saddle periodic points intersects transversally;
- separatrices of isolated saddle periodic points with Morse index one can intersect only (n-1)-dimensional separatrices of other saddle isolated periodic orbits and separatrices of isolated saddle periodic points with Morse index (n-1) can intersect only one-dimensional separatrices of other saddle isolated periodic orbits.

Let us recall that Morse index of hyperbolic periodic point $p \in NW(f)$ of a diffeomorphism $f : M^n \rightarrow M^n$ is called the dimension of unstable manifold $W^u(p)$ of the point p.

For $f \in \mathcal{G}(M^n)$ denote $\mu_f \geq 0$ the number of all nodal periodic points (sinks and sources), $\nu_f \geq 0$ the number of isolated saddle periodic points with Morse index 1 or $n - 1$ and $\lambda_f \geq 0$ the number of all periodic points whose Morse index does not belong to the set $\{0, 1, n - 1, n\}$. Moreover denote by $k_f \geq 0$ the number of nontrivial basic sets and κ_f the number all bunches belonging to union of all nontrivial basic sets of f.

Below, S^n is an m-sphere, T^n is an n-torus. Denote T^n_m a manifold that is either empty set if $m = 0$ or is connected sum of $m \geq 1$ copies of n-torus T^n if $m > 0$:

$$\underbrace{T^n \# \cdots \# T^n}_{m \geq 1}.$$

Denote S^n_m a manifold that is either the sphere S^n if $m = 0$ or is connected sum of $m \geq 1$ copies of $S^{n-1} \times S^1$ if $m > 0$:

$$\underbrace{(S^{n-1} \times S^1) \# \cdots \# (S^{n-1} \times S^1)}_{m \geq 1}.$$

Denote N^n_m a manifold that is either empty set if $m = 0$ or is connected sum of simply-connected manifolds N^n_i if $m > 0$:

$$N^n_0 \# \cdots \# N^n_m,$$

and each manifold N_i admits polar Morse-Smale diffeomorphisms $f_i : N_i \rightarrow N_i$ such that $NW(f_i)$ does not contain saddle periodic points with Morse index 1 or $n - 1$.

Theorem. Let M^n be a closed orientable n-manifold, $n \geq 3$, supporting a diffeomorphism $f \in \mathcal{G}(M^n)$. Then there are integers $k_f \geq 0$, $g_f \geq 0$, $l_f \geq 0$ such that M^n is homeomorphic to connected sum:

$$T^{k_f \# S^{n}_f \# N_i}_f,$$

where $g_f \leq \kappa_f + \nu_f - 1$, $l_f \leq \lambda_f$.

Remark If $k_f = 0$ then $g_f = \frac{\nu_f - \mu_f + 2}{2}$.

Acknowledgments. Report is supported by the Russian Science Foundation under grant 17-11-01041.

¹National Research University “Higher School of Economics”, Laboratory of Dynamical Systems and Applications, Russia, Nizhny Novgorod. Email: vgrines@hse.ru