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Introduction. It is known (see [1]) that the linear Barenblatt – Zheltova – Kochina equa-
tion

(λ−∆)u̇ = α∆u+ f, (1)

describing the dynamics of the pressure of the fluid filtered in a fractured porous medium.
The coefficient λ corresponds to the ratio of cracks and pores in rock, and the coefficient α
corresponds for the visco-elastic properties of the liquid. The beginning of the investigation of
equation (1) should be related to [2], where this equation was considered for the first time as a
linear inhomogeneous Sobolev type equation

Lu̇ = Mu+ f. (2)

Here the operators L and M are the operators λ−∆ and α∆, given in some functional spaces
L,M : U→ F. Equation (2) is equipped with the initial Showalter – Sidorov condition [3]

P (u(0)− u0) = 0, (3)

where the projector P is constructed with the use of operators L and M . Note that in the
case of existence operator L−1 ∈ L(F;U) (those linear and bounded operators), condition (3)
becomes the Cauchy condition

u(0) = u0. (4)

We also note [4], where the Barenblatt–Zheltov–Kochina equation (1) is reduced to the form (2)
defined in the spaces of differential forms on smooth Riemannian manifolds without boundary.

We will be interested in the stochastic interpretation of the deterministic of equation (2),
namely:

L
o
η= Mη +NΘ. (5)

Here the operators L and M are the same as in (2), the operator N ∈ L(U;F), η = η(t)
is required, and Θ = Θ(t) is a given stochastic process with values in the Hilbert space U.
Through

o
η we denote the Nelson – Gliklikh derivative of the stochastic process η = η(t) (for

details see [5]).
Preliminary information. Let Ω ≡ (Ω,A,P) be a complete probability space, R be a

set of real numbers endowed with a Borel σ-algebra. Measurable mapping ξ : Ω→ R is called
a random variable. A set of random variables with a zero mathematical expectation (E) and
finite variance (D) forms a Hilbert space with scalar product (ξ1, ξ2) = Eξ1ξ2. The resulting
Hilbert space is denoted by symbol L2.

Let ξ ∈ L2 then Πξ is called the conditional mathematical expectation of a random variable
ξ and denoted by the symbol E(ξ|A0). Recall also that the minimal σ-subalgebra A0 ⊂ A,
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with respect to which the random variable ξ is measurable, is called the σ-algebra generated
by ξ. Let I ⊂ R be a certain interval. Consider two mappings: f : I → L2, which puts to
each t ∈ I a random variable ξ ∈ L2, and g : L2 × Ω → R, which puts to each pair (ξ, ω) the
point ξ(ω) ∈ R. The map η : I× Ω→ R, having the form η = η(f(t), ω), is called a stochastic
process. The stochastic process η is called continuous, if a.s. (almost surely) all its trajectories
are continuous (for almost all ω ∈ Ω the trajectories η(·, ω) are continuous). By the symbol
CL2 we denote the set of the continuous stochastic processes. Let’s call Gaussian continuous
stochastic process the process, if its (independent) random variables are Gaussian.

We use derivative was founded by E. Nelson, and the theory of such derivative was developed
by Yu.E. Gliklikh ( see [5]), then further, for brevity, the derivative of a stochastic process η
will be called the Nelson–Gliklikh derivative and denote by

o
η.

Let U and F be Banach spaces, the operators L,M ∈ L(U;F). Following [2] we introduce
the L-resolvent set ρL(M) = {µ ∈ C : (µL−M)−1 ∈ L(F;U)} and the L-spectrum σL(M) =
C \ ρL(M) of the operator M . If the L-spectrum σL(M) of the operator M is bounded, then
the operator M is said to be (L, σ)-bounded. If the operator M is (L, σ)-bounded, then there
exist projectors

P =
1

2πi

∫
γ

RL
µ(M)dµ ∈ L(U), Q =

1

2πi

∫
γ

LLµ(M)dµ ∈ L(F). (6)

where expression RL
µ(M) = (µL−M)−1L is the right, and LLµ(M) = L(µL−M)−1 is the left L-

resolvent of the operatorM , and the closed contour γ ⊂ C bounds a domain containing σL(M).
We set U0(U1) = kerP (imP ), F0(F1) = kerQ(imQ) and denote by Lk(Mk) the restriction of
the operator L(M) on Uk, k = 0, 1.

Theorem 1. [2] Let the operator M be (L, σ)-bounded, then
(i) the operators Lk(Mk) ∈ L(Uk;Fk), k = 0, 1;
(ii) there exist operators M−1

0 ∈ L(F0;U0) and L−1
1 ∈ L(F1;U1).

We construct the operators H = M−1
0 L0 ∈ L(U0), S = L−1

1 M1 ∈ L(U1).
Corollary 1. [2] Suppose that the operator M is (L, σ)-bounded, then for all µ ∈ ρL(M)

(µL−M)−1 = −
∞∑
k=0

µkHkM−1
0 (I−Q) +

∞∑
k=1

µ−kSk−1L−1
1 Q. (7)

The operator M is called (L, p)-bounded, p ∈ {0} ∪ N, if ∞ is a removable singular point
(that is, H ≡ O, p = 0) or a pole of order p ∈ N (that is Hp 6= O, Hp+1 ≡ O) of the L-resolvent
(µL−M)−1 of the operator M.

We consider a n-dimensional smooth compact oriented connected Riemannian manifold
without boundary Ω and the space of differential q-forms on Ω we denote by Eq = Eq(Ω), 0 ≤
q ≤ n. In particular E0(Rn) is the space of functions of n variables. Note that there exists a
linear Hodge operator ∗ : Eq → En−q, which associates the q-form with Ω (n − q)-form. In
the double application of the Hodge operator, the equality ∗∗ = (−1)q(n−q) holds. In addition,
there is an operator for taking the external differential d : Eq → Eq+1. We define the operator
δ : Eq → Eq−1, setting δ = (−1)n(q+1)+1 ∗ d ∗ . The Laplace-Beltrami operator ∆ : Eq → Eq is
defined by the equality ∆ = δd + dδ, and it is a linear operator on space Eq, 0 ≤ q ≤ n. We
introduce the space of harmonic q-form Hq = {ω ∈ Eq : ∆ω = 0}.

Theorem 2. [4] (Hodge’s splitting theorem) For any integer q, 0 ≤ q ≤ n, space Hq is
finite-dimensional and there is the following decomposition of the space of smooth q-forms on
Ω into an orthogonal direct sum Eq = ∆(Eq)⊕Hq = dδ(Eq)⊕ δd(Eq)⊕Hq.

By the formula (ξ, η)0 =
∫

Ωn

ξ ∧ ∗η, ξ, η ∈ Eq where ∗ is the Hodge operator, we define a

scalar product in the space Eq, q = 0, 1, . . . , n, and denote the corresponding norm by || · ||0.
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We continue this scalar product to a direct sum
n
⊕
q=0

Eq, requiring that different spaces Eq were

orthogonal. Completion of space Eq in the norm || · ||0 we denote by Hq
0. We denote by Pq∆

the projector on Hq
∆.

We similarly define Hq
1 and Hq

2 respectively. Actually upper index means how many times
differentiable in the generalized sense of the q-form in the corresponding spaces.

The spaces Hq
l ,l = 1, 2 are Hilbert spaces, and we have continuous and dense embedding

Hq
2 ⊂ Hq

1 ⊂ Hq
0.

Corollary 2. For any q = 0, 1, . . . , n there are splitting spaces

Hq
l = Hq1

l∆ ⊕ Hq
∆,

where Hq1
l∆ = (I− P∆)[Hq

l ], l = 0, 1, 2.
Main result. Let consider U = UL2H

q
2∆,F = FL2H

q
0∆ be a real separable Hilbert space by

differential q-form with stochastic coefficient defined on a smooth compact oriented Riemannian
manyfold without boundary two and zero times derivative respectively. Our operatorM = λ−∆
be (L, 0)-bounded(L = α∆).

Consider a linear stochastic equation of Sobolev type

L
o
η= Mη +NΘ. (8)

We supplement equation (8) with the initial Showalter-Sidorov condition[
RL
α(M)

]p+1
(η (0)− η0) = 0, (9)

where

η0 =
∞∑
k=1

λkξkϕk, (10)

{ϕk} is an orthonormal basis of the space U, and pairwise independent random Gaussian vari-
ables ξk ∈ L2 are such that Dξk ≤ C0, and {λk} is the spectrum of some nuclear operator

(K = {λk},
∞∑
k=0

λ2
k <∞).

Theorem 3. For any λ ∈ R \ {0}, α ∈ R \ {0} and any operator N ∈ L(F) and η0 ∈ L2, that
does not depend on Θ and satisfies (10) exists a unique classical solution η = η(t) of problem
(8), (9).
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