Trace decreasing semigroup for an open quantum system
 interacting with a repeatedly measured ancilla

Sergey Filippov

${ }^{1}$ Steklov Mathematical Institute of Russian Academy of Sciences
${ }^{2}$ Moscow Institute of Physics and Technology (National Research University)
${ }^{3}$ Valiev Institute of Physics and Technology of Russian Academy of Sciences

International Conference "One-Parameter Semigroups of Operators (OPSO) 2021"
HSE Nizhny Novgorod, Russia (online)
April 7, 2021

Talk is based on

R. Grimaudo, A. Messina, A. Sergi, N.V. Vitanov, S.N. Filippov. Two-qubit entanglement generation through non-Hermitian Hamiltonians induced by repeated measurements on an ancilla.
Entropy 22, 1184 (2020)
E-print arXiv:2009.10004 [quant-ph]
and
I. A. Luchnikov, S. N. Filippov. Quantum evolution in the stroboscopic limit of repeated measurements. Phys. Rev. A 95, 022113 (2017)
E-print arXiv:1609.05501 [quant-ph]

Non-Hermitian Hamiltonian

Non-Hermitian Hamiltonian

$$
\frac{d}{d t}|\Psi(t)\rangle=-i H_{\mathrm{eff}}|\Psi(t)\rangle
$$

Non-Hermitian Hamiltonian

$$
\begin{gathered}
\frac{d}{d t}|\Psi(t)\rangle=-i H_{\mathrm{eff}}|\Psi(t)\rangle \\
\frac{d}{d t} \rho(t)=-\frac{i}{\hbar}\left(H_{\mathrm{eff}} \rho(t)-\rho(t) H_{\mathrm{eff}}^{\dagger}\right)
\end{gathered}
$$

Non-Hermitian Hamiltonian

$$
\begin{array}{r}
\frac{d}{d t}|\Psi(t)\rangle=-i H_{\mathrm{eff}}|\Psi(t)\rangle \\
\frac{d}{d t} \rho(t)=-\frac{i}{\hbar}\left(H_{\mathrm{eff}} \rho(t)-\rho(t) H_{\mathrm{eff}}^{\dagger}\right) \\
H_{0}=\left(H_{\mathrm{eff}}+H_{\mathrm{eff}}^{\dagger}\right) / 2 \text { and } i \Gamma=-\left(H_{\mathrm{eff}}-H_{\mathrm{eff}}^{\dagger}\right) / 2
\end{array}
$$

Non-Hermitian Hamiltonian

$$
\begin{array}{r}
\frac{d}{d t}|\Psi(t)\rangle=-i H_{\mathrm{eff}}|\Psi(t)\rangle \\
\frac{d}{d t} \rho(t)=-\frac{i}{\hbar}\left(H_{\mathrm{eff}} \rho(t)-\rho(t) H_{\mathrm{eff}}^{\dagger}\right) \\
H_{0}=\left(H_{\mathrm{eff}}+H_{\mathrm{eff}}^{\dagger}\right) / 2 \text { and } i \Gamma=-\left(H_{\mathrm{eff}}-H_{\mathrm{eff}}^{\dagger}\right) / 2 \\
\frac{d}{d t} \rho(t)=-\frac{i}{\hbar}\left[H_{0}, \rho(t)\right]-\frac{1}{\hbar}\{\Gamma, \rho(t)\}
\end{array}
$$

Non-Hermitian Hamiltonian

$$
\begin{array}{r}
\frac{d}{d t}|\Psi(t)\rangle=-i H_{\mathrm{eff}}|\Psi(t)\rangle \\
\frac{d}{d t} \rho(t)=-\frac{i}{\hbar}\left(H_{\mathrm{eff}} \rho(t)-\rho(t) H_{\mathrm{eff}}^{\dagger}\right) \\
H_{0}=\left(H_{\mathrm{eff}}+H_{\mathrm{eff}}^{\dagger}\right) / 2 \text { and } i \Gamma=-\left(H_{\mathrm{eff}}-H_{\mathrm{eff}}^{\dagger}\right) / 2 \\
\frac{d}{d t} \rho(t)=-\frac{i}{\hbar}\left[H_{0}, \rho(t)\right]-\frac{1}{\hbar}\{\Gamma, \rho(t)\} \\
\frac{d}{d t} \operatorname{Tr}[\rho(t)]=-\frac{2}{\hbar} \operatorname{Tr}[\Gamma \rho(t)]
\end{array}
$$

Non-Hermitian Hamiltonian

$$
\varrho(t)=\frac{\rho(t)}{\operatorname{Tr}[\rho(t)]}=\frac{e^{-i H_{\text {eff }} t} \rho(0) e^{i H_{\text {eff }}^{\dagger} t}}{\operatorname{Tr}\left[e^{-i H_{\text {eff }} t} \rho(0) e^{i H_{\text {eff }}^{\dagger} t}\right]}
$$

Non-Hermitian Hamiltonian

$$
\begin{gathered}
\varrho(t)=\frac{\rho(t)}{\operatorname{Tr}[\rho(t)]}=\frac{e^{-i H_{\text {eft }} t} \rho(0) e^{i H_{\text {Hff }}^{\dagger} t}}{\operatorname{Tr}\left[e^{-i H_{\text {eff }} t} \rho(0) e^{i H_{\text {eff }}^{\dagger} t}\right]} \\
\frac{d}{d t} \varrho(t)=-\frac{i}{\hbar}\left[H_{0}, \varrho(t)\right]-\frac{1}{\hbar}\{\Gamma, \varrho(t)\}+\frac{2}{\hbar} \operatorname{Tr}[\Gamma \varrho(t)] \varrho(t)
\end{gathered}
$$

$$
\begin{aligned}
\rho_{S}(0) \longrightarrow \rho_{S}^{c}(t) & =\left\langle 0_{A}\right| U(t)\left[\rho_{S}(0) \otimes\left|0_{A}\right\rangle\left\langle 0_{A}\right|\right] U^{\dagger}(t)\left|0_{A}\right\rangle \\
& =K(t) \rho_{S}(0) K^{\dagger}(t),
\end{aligned}
$$

$$
K(t)=\left\langle 0_{A}\right| U(t)\left|0_{A}\right\rangle
$$

$$
\begin{aligned}
\rho_{S}(0) \longrightarrow \rho_{S}^{c}(t) & =\left\langle 0_{A}\right| U(t)\left[\rho_{S}(0) \otimes\left|0_{A}\right\rangle\left\langle 0_{A}\right|\right] U^{\dagger}(t)\left|0_{A}\right\rangle \\
& =K(t) \rho_{S}(0) K^{\dagger}(t),
\end{aligned}
$$

$$
K(t)=\left\langle 0_{A}\right| U(t)\left|0_{A}\right\rangle
$$

$$
p_{\rho_{S}(0)}(t)=\operatorname{tr} \rho_{S}^{c}(t), \quad \varrho_{S}^{c}(t)=\rho_{S}^{c}(t) / \operatorname{tr} \rho_{S}^{c}(t)=\rho_{S}^{c}(t) / p_{0}(t)
$$

$$
p(n \tau)=\operatorname{tr}\left[K(\tau) \rho_{S}^{c}((n-1) \tau) K^{\dagger}(\tau)\right]=\operatorname{tr}\left[K^{n}(\tau) \rho_{S}(0)\left(K^{n}(\tau)\right)^{\dagger}\right]=\operatorname{tr} \rho_{S}^{c}(n \tau)
$$

$$
\begin{aligned}
& \rho_{S}(0) \longrightarrow \rho_{S}^{c}(n \tau)=K^{n}(\tau) \rho_{S}(0)\left(K^{n}(\tau)\right)^{\dagger} \\
& p(n \tau)=\operatorname{tr}\left[K(\tau) \rho_{S}^{c}((n-1) \tau) K^{\dagger}(\tau)\right]=\operatorname{tr}\left[K^{n}(\tau) \rho_{S}(0)\left(K^{n}(\tau)\right)^{\dagger}\right]=\operatorname{tr} \rho_{S}^{c}(n \tau) \\
& K(\tau)=\left\langle 0_{A}\right| \exp (-i H \tau)\left|0_{A}\right\rangle
\end{aligned}
$$

$$
\begin{aligned}
K(\tau) & =\left\langle 0_{A}\right|\left(I_{S+A}-i \tau H-\frac{\tau^{2}}{2} H^{2}+o_{S+A}\left(\tau^{2}\right)\right)\left|0_{A}\right\rangle \\
& =I_{S}-i \tau\left\langle 0_{A}\right| H\left|0_{A}\right\rangle-\frac{\tau^{2}}{2}\left\langle 0_{A}\right| H^{2}\left|0_{A}\right\rangle+o_{S}\left(\tau^{2}\right) \\
& =\exp \left(-i \tau H_{0}^{\mathrm{S}}-\frac{\tau^{2}}{2} \Gamma_{\mathrm{S}}+o_{S}\left(\tau^{2}\right)\right)
\end{aligned}
$$

$\lim _{\tau \rightarrow 0}\left\|o\left(\tau^{2}\right)\right\| / \tau^{2}=0$

$$
H_{0}^{\mathrm{S}}=\left(H_{0}^{\mathrm{S}}\right)^{\dagger}=\left\langle 0_{A}\right| H\left|0_{A}\right\rangle
$$

$$
\Gamma_{\mathrm{S}}=\Gamma_{\mathrm{S}}^{\dagger}=\left\langle 0_{A}\right| H^{2}\left|0_{A}\right\rangle-\left(H_{0}^{\mathrm{S}}\right)^{2}=\left\langle 0_{A}\right| H\left|1_{A}\right\rangle\left\langle 1_{A}\right| H\left|0_{A}\right\rangle \geq 0
$$

$t=n \tau$
$t=n \tau$

$$
\begin{aligned}
K^{n}(\tau) & =\exp \left(-i n \tau H_{0}^{\mathrm{S}}-\frac{n \tau^{2}}{2} \Gamma_{\mathrm{S}}+o\left(\tau^{2}\right)\right) \\
& =\exp \left[-i t\left(H_{0}^{\mathrm{S}}-\frac{i \tau}{2} \Gamma_{\mathrm{S}}\right)+o\left(\tau^{2}\right)\right]
\end{aligned}
$$

$t=n \tau$

$$
\begin{aligned}
& K^{n}(\tau)= \exp \left(-i n \tau H_{0}^{\mathrm{S}}-\frac{n \tau^{2}}{2} \Gamma_{\mathrm{S}}+o\left(\tau^{2}\right)\right) \\
&= \exp \left[-i t\left(H_{0}^{\mathrm{S}}-\frac{i \tau}{2} \Gamma_{\mathrm{S}}\right)+o\left(\tau^{2}\right)\right] \\
& H_{\mathrm{eff}}=H_{0}^{\mathrm{S}}-\frac{i \tau}{2} \Gamma_{\mathrm{S}}
\end{aligned}
$$

$t=n \tau$

$$
\begin{gathered}
K^{n}(\tau)=\exp \left(-i n \tau H_{0}^{\mathrm{S}}-\frac{n \tau^{2}}{2} \Gamma_{\mathrm{S}}+o\left(\tau^{2}\right)\right) \\
=\exp \left[-i t\left(H_{0}^{\mathrm{S}}-\frac{i \tau}{2} \Gamma_{\mathrm{S}}\right)+o\left(\tau^{2}\right)\right] \\
H_{\mathrm{eff}}=H_{0}^{\mathrm{S}}-\frac{i \tau}{2} \Gamma_{\mathrm{S}} \\
\frac{d \rho_{S}^{c}(t)}{d t}=-i\left(H_{\mathrm{eff}} \rho_{S}^{c}(t)-\rho_{S}^{c}(t) H_{\mathrm{eff}}^{\dagger}\right)
\end{gathered}
$$

$t=n \tau$

$$
\begin{gathered}
K^{n}(\tau)=\exp \left(-i n \tau H_{0}^{\mathrm{S}}-\frac{n \tau^{2}}{2} \Gamma_{\mathrm{S}}+o\left(\tau^{2}\right)\right) \\
=\exp \left[-i t\left(H_{0}^{\mathrm{S}}-\frac{i \tau}{2} \Gamma_{\mathrm{S}}\right)+o\left(\tau^{2}\right)\right] \\
H_{\mathrm{eff}}=H_{0}^{\mathrm{S}}-\frac{i \tau}{2} \Gamma_{\mathrm{S}} \\
\frac{d \rho_{S}^{c}(t)}{d t}=-i\left(H_{\mathrm{eff}} \rho_{S}^{c}(t)-\rho_{S}^{c}(t) H_{\mathrm{eff}}^{\dagger}\right) \\
\frac{d p(t)}{d t}=\frac{d \operatorname{tr}\left[\rho_{S}^{c}(t)\right]}{d t}=-\tau \operatorname{tr}\left[\Gamma_{\mathrm{S}} \rho_{S}^{c}(t)\right] \leq 0
\end{gathered}
$$

$$
\varrho_{S}^{c}(t)=\frac{\rho_{S}^{c}(t)}{\operatorname{tr}\left[\rho_{S}^{c}(t)\right]}=\frac{K^{n}(t) \rho_{S}(0)\left(K^{n}\right)^{\dagger}(t)}{\operatorname{tr}\left[K^{n}(t) \rho_{S}(0)\left(K^{n}\right)^{\dagger}(t)\right]}=\frac{e^{-i H_{\text {eff }} t} \rho_{S}(0) e^{+i H_{\text {eff }}^{\dagger} t}}{\operatorname{tr}\left[e^{-i H_{\text {eff }} t} \rho_{S}(0) e^{+i H_{\text {eff }}^{\dagger} t}\right]}
$$

$$
\begin{gathered}
\varrho_{S}^{c}(t)=\frac{\rho_{S}^{c}(t)}{\operatorname{tr}\left[\rho_{S}^{c}(t)\right]}=\frac{K^{n}(t) \rho_{S}(0)\left(K^{n}\right)^{\dagger}(t)}{\operatorname{tr}\left[K^{n}(t) \rho_{S}(0)\left(K^{n}\right)^{\dagger}(t)\right]}=\frac{e^{-i H_{\mathrm{eff}} t} \rho_{S}(0) e^{+i H_{\mathrm{eff}}^{\dagger} t}}{\operatorname{tr}\left[e^{-i H_{\mathrm{eff}} t} \rho_{S}(0) e^{+i H_{\mathrm{eff}}^{\dagger} t}\right]} \\
\frac{d \varrho_{S}^{c}(t)}{d t}=-i\left[H_{0}^{\mathrm{S}}, \varrho_{S}^{c}(t)\right]-\frac{\tau}{2}\left\{\Gamma_{\mathrm{S}}, \varrho_{S}^{c}(t)\right\}+\tau \operatorname{tr}\left[\Gamma_{\mathrm{S}} \varrho_{S}^{c}(t)\right] \varrho_{S}^{c}(t)
\end{gathered}
$$

$$
\begin{gathered}
\varrho_{S}^{c}(t)=\frac{\rho_{S}^{c}(t)}{\operatorname{tr}\left[\rho_{S}^{c}(t)\right]}=\frac{K^{n}(t) \rho_{S}(0)\left(K^{n}\right)^{\dagger}(t)}{\operatorname{tr}\left[K^{n}(t) \rho_{S}(0)\left(K^{n}\right) \dagger^{\dagger}(t)\right]}=\frac{e^{-i H_{\text {eff }} t} \rho_{S}(0) e^{+i H_{\text {eft }}^{\dagger} t}}{\operatorname{tr}\left[e^{-i H_{\text {eff }} t} \rho_{S}(0) e^{+i H_{\text {eff }}^{\dagger} t}\right]} \\
\frac{d \varrho_{S}^{c}(t)}{d t}=-i\left[H_{0}^{\mathrm{S}}, \varrho_{S}^{c}(t)\right]-\frac{\tau}{2}\left\{\Gamma_{\mathrm{S}}, \varrho_{S}^{c}(t)\right\}+\tau \operatorname{tr}\left[\Gamma_{S} \varrho_{S}^{c}(t)\right] \varrho_{S}^{c}(t) \\
i \frac{d\left|\psi_{S}(t)\right\rangle}{d t}=\left(H_{0}^{\mathrm{S}}-\frac{i \tau}{2} \Gamma_{\mathrm{S}}\right)\left|\psi_{S}(t)\right\rangle+\frac{i \tau}{2}\left\langle\psi_{S}(t)\right| \Gamma_{\mathrm{S}}\left|\psi_{S}(t)\right\rangle\left|\psi_{S}(t)\right\rangle
\end{gathered}
$$

Non-Hermitian Hamiltonian Engineering

Arbitrary non-Hermitian Hamiltonian $H_{\text {eff }}$

Non-Hermitian Hamiltonian Engineering

Arbitrary non-Hermitian Hamiltonian $H_{\text {eff }}$ $H_{\text {eff }}=H_{1}+i H_{2}$

Non-Hermitian Hamiltonian Engineering

Arbitrary non-Hermitian Hamiltonian $H_{\text {eff }}$

$$
\begin{aligned}
& H_{\mathrm{eff}}=H_{1}+i H_{2} \\
& H_{1}=\frac{1}{2}\left(H_{\mathrm{eff}}+H_{\mathrm{eff}}^{\dagger}\right)=H_{0}^{\mathrm{S}}
\end{aligned}
$$

Non-Hermitian Hamiltonian Engineering

Arbitrary non-Hermitian Hamiltonian $H_{\text {eff }}$

$$
\begin{aligned}
& H_{\mathrm{eff}}=H_{1}+i H_{2} \\
& H_{1}=\frac{1}{2}\left(H_{\mathrm{eff}}+H_{\mathrm{eff}}^{\dagger}\right)=H_{0}^{\mathrm{S}} \\
& H_{2}=-i\left(H_{\mathrm{eff}}-H_{\mathrm{eff}}^{\dagger}\right)
\end{aligned}
$$

Non-Hermitian Hamiltonian Engineering

Arbitrary non-Hermitian Hamiltonian $H_{\text {eff }}$
$H_{\text {eff }}=H_{1}+i H_{2}$
$H_{1}=\frac{1}{2}\left(H_{\text {eff }}+H_{\text {eff }}^{\dagger}\right)=H_{0}^{\mathrm{S}}$
$H_{2}=-i\left(H_{\mathrm{eff}}-H_{\mathrm{eff}}^{\dagger}\right)$
Denote by f the maximum Bohr frequency of H_{2}. Fix τ in such a way that $f \tau \ll 1$, e.g., $\tau=10^{-2} f^{-1}$.

Non-Hermitian Hamiltonian Engineering

Arbitrary non-Hermitian Hamiltonian $H_{\text {eff }}$
$H_{\text {eff }}=H_{1}+i H_{2}$
$H_{1}=\frac{1}{2}\left(H_{\text {eff }}+H_{\text {eff }}^{\dagger}\right)=H_{0}^{\mathrm{S}}$
$H_{2}=-i\left(H_{\mathrm{eff}}-H_{\mathrm{eff}}^{\dagger}\right)$
Denote by f the maximum Bohr frequency of H_{2}. Fix τ in such a way that $f \tau \ll 1$, e.g., $\tau=10^{-2} f^{-1}$.
$c=\max (0,-M)$, where M is the minimum eigenvalue of the operator $\frac{i}{\tau}\left(H_{\text {eff }}-H_{\mathrm{eff}}^{\dagger}\right)$.

Non-Hermitian Hamiltonian Engineering

Arbitrary non-Hermitian Hamiltonian $H_{\text {eff }}$
$H_{\text {eff }}=H_{1}+i H_{2}$
$H_{1}=\frac{1}{2}\left(H_{\text {eff }}+H_{\mathrm{eff}}^{\dagger}\right)=H_{0}^{\mathrm{S}}$
$H_{2}=-i\left(H_{\mathrm{eff}}-H_{\mathrm{eff}}^{\dagger}\right)$
Denote by f the maximum Bohr frequency of H_{2}. Fix τ in such a way that $f \tau \ll 1$, e.g., $\tau=10^{-2} f^{-1}$.
$c=\max (0,-M)$, where M is the minimum eigenvalue of the operator $\frac{i}{\tau}\left(H_{\text {eff }}-H_{\text {eff }}^{\dagger}\right)$.
$c I+\frac{i}{\tau}\left(H_{\text {eff }}-H_{\text {eff }}^{\dagger}\right) \geq 0$ and corresponds to Γ_{S}

Non-Hermitian Hamiltonian Engineering

Arbitrary non-Hermitian Hamiltonian $H_{\text {eff }}$

$$
\begin{aligned}
& H_{\mathrm{eff}}=H_{1}+i H_{2} \\
& H_{1}=\frac{1}{2}\left(H_{\mathrm{eff}}+H_{\mathrm{eff}}^{\dagger}\right)=H_{0}^{\mathrm{S}} \\
& H_{2}=-i\left(H_{\mathrm{eff}}-H_{\mathrm{eff}}^{\dagger}\right)
\end{aligned}
$$

Denote by f the maximum Bohr frequency of H_{2}. Fix τ in such a way that $f \tau \ll 1$, e.g., $\tau=10^{-2} f^{-1}$.
$c=\max (0,-M)$, where M is the minimum eigenvalue of the operator $\frac{i}{\tau}\left(H_{\text {eff }}-H_{\text {eff }}^{\dagger}\right)$.
$c I+\frac{i}{\tau}\left(H_{\text {eff }}-H_{\text {eff }}^{\dagger}\right) \geq 0$ and corresponds to Γ_{S}

$$
H=\frac{1}{2}\left(H_{\mathrm{eff}}+H_{\mathrm{eff}}^{\dagger}\right) \otimes\left|0_{A}\right\rangle\left\langle 0_{A}\right|+\sqrt{c I+\frac{i}{\tau}\left(H_{\mathrm{eff}}-H_{\mathrm{eff}}^{\dagger}\right)} \otimes\left(\left|0_{A}\right\rangle\left\langle 1_{A}\right|+\left|1_{A}\right\rangle\left\langle 0_{A}\right|\right)
$$

Example

$$
\begin{array}{r}
H=\gamma_{x y}\left(\sigma_{1}^{x} \sigma_{2}^{x}+\sigma_{1}^{y} \sigma_{2}^{y}\right)+\gamma_{z} \sigma_{1}^{z} \sigma_{2}^{z}+g_{x y}\left(\sigma_{1}^{x} \sigma_{3}^{x}+\sigma_{1}^{y} \sigma_{3}^{y}\right) \\
+g_{z} \sigma_{1}^{z} \sigma_{3}^{z}+g_{x y}\left(\sigma_{2}^{x} \sigma_{3}^{x}+\sigma_{2}^{y} \sigma_{3}^{y}\right)+g_{z} \sigma_{2}^{z} \sigma_{3}^{z} \\
\text { A:- }
\end{array}
$$

Example

$$
\begin{gathered}
H=\begin{array}{c}
\gamma_{x y}\left(\sigma_{1}^{x} \sigma_{2}^{x}+\sigma_{1}^{y} \sigma_{2}^{y}\right)+\gamma_{z} \sigma_{1}^{z} \sigma_{2}^{z}+g_{x y}\left(\sigma_{1}^{x} \sigma_{3}^{x}+\sigma_{1}^{y} \sigma_{3}^{y}\right) \\
+g_{z} \sigma_{1}^{z} \sigma_{3}^{z}+g_{x y}\left(\sigma_{2}^{x} \sigma_{3}^{x}+\sigma_{2}^{y} \sigma_{3}^{y}\right)+g_{z} \sigma_{2}^{z} \sigma_{3}^{z}
\end{array} \\
H_{\mathrm{eff}}=\gamma_{x y}\left(\sigma_{1}^{x} \sigma_{2}^{x}+\sigma_{1}^{y} \sigma_{2}^{y}\right)+\gamma_{z} \sigma_{1}^{z} \sigma_{2}^{z}+g_{z}\left(\sigma_{1}^{z}+\sigma_{2}^{z}\right) \\
-i \tau g_{x y}^{2}\left(2 I_{12}+\sigma_{1}^{x} \sigma_{2}^{x}+\sigma_{1}^{y} \sigma_{2}^{y}-\sigma_{1}^{z}-\sigma_{2}^{z}\right)
\end{gathered}
$$

$$
H_{\mathrm{eff}}^{\prime}=H_{\mathrm{eff}}+2 i \tau g_{x y}^{2} I_{12}
$$

$$
H_{\mathrm{eff}}^{\prime}=H_{\mathrm{eff}}+2 i \tau g_{x y}^{2} I_{12}
$$

$\mathcal{U}(t)$
$=\left(\begin{array}{cccc}e^{-i\left(\gamma_{z}+2 g_{z}\right) t / \hbar} & e^{2 \tau g_{x y}^{2} t / \hbar} & 0 & 0 \\ 0 \\ 0 & \cos \alpha & -i \sin \alpha & 0 \\ 0 & -i \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & e^{-i\left(\gamma_{z}-2 g_{z}\right) t / \hbar} e^{-2 \tau g_{x y}^{2} t / \hbar}\end{array}\right)$
with $\alpha=2\left(\gamma_{x y}-i \tau g_{x y}^{2}\right) t \equiv(\gamma-i g) t$

$$
H_{\mathrm{eff}}^{\prime}=H_{\mathrm{eff}}+2 i \tau g_{x y}^{2} I_{12}
$$

$\mathcal{U}(t)$
$=\left(\begin{array}{cccc}e^{-i\left(\gamma_{z}+2 g_{z}\right) t / \hbar} & e^{2 \tau g_{x y}^{2} t / \hbar} & 0 & 0 \\ 0 \\ 0 & \cos \alpha & -i \sin \alpha & 0 \\ 0 & -i \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & e^{-i\left(\gamma_{z}-2 g_{z}\right) t / \hbar} e^{-2 \tau g_{x y}^{2} t / \hbar}\end{array}\right)$
with $\alpha=2\left(\gamma_{x y}-i \tau g_{x y}^{2}\right) t \equiv(\gamma-i g) t$

$$
\varrho_{S}^{c}(t)=\frac{\rho_{S}^{c}(t)}{\operatorname{Tr}\left\{\rho_{S}^{c}(t)\right\}}=\frac{\mathcal{U}(t) \rho_{S}(0) \mathcal{U}^{\dagger}(t)}{\operatorname{Tr}\left\{\mathcal{U}(t) \rho_{S}(0) \mathcal{U}^{\dagger}(t)\right\}}
$$

$$
\rho_{S}(0)=|01\rangle\langle 01|
$$

$$
\begin{aligned}
\rho_{S}(0) & =|01\rangle\langle 01| \\
\varrho_{S}^{c}(t) & =\frac{1}{|\cos (\alpha)|^{2}+|\sin (\alpha)|^{2}}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & |\cos \alpha|^{2} & i \cos \alpha \sin \alpha^{*} & 0 \\
0 & -i \cos \alpha^{*} \sin \alpha & |\sin \alpha|^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

with $\alpha=2\left(\gamma_{x y}-i \tau g_{x y}^{2}\right) t \equiv(\gamma-i g) t$

$$
\begin{aligned}
\rho_{S}(0) & =|01\rangle\langle 01| \\
\varrho_{S}^{c}(t) & =\frac{1}{|\cos (\alpha)|^{2}+|\sin (\alpha)|^{2}}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & |\cos \alpha|^{2} & i \cos \alpha \sin \alpha^{*} & 0 \\
0 & -i \cos \alpha^{*} \sin \alpha & |\sin \alpha|^{2} & 0 \\
0 & 0 & 0 & 0
\end{array}\right)
\end{aligned}
$$

with $\alpha=2\left(\gamma_{x y}-i \tau g_{x y}^{2}\right) t \equiv(\gamma-i g) t$

$$
\varrho_{S}^{c}(t \rightarrow \infty)=\frac{1}{2}\left(\begin{array}{cccc}
0 & 0 & 0 & 0 \\
0 & 1 & -1 & 0 \\
0 & -1 & 1 & 0 \\
0 & 0 & 0 & 0
\end{array}\right)=\left|\Psi^{-}\right\rangle\left\langle\Psi^{-}\right|, \quad\left|\Psi^{-}\right\rangle=\frac{|01\rangle-|10\rangle}{\sqrt{2}}
$$

Summary

- Derivation of a quantum non-Hermitian Hamiltonian in a physically motivated scenario

Summary

- Derivation of a quantum non-Hermitian Hamiltonian in a physically motivated scenario
- Trace decreasing semigroup for subnormalized density operators

Summary

- Derivation of a quantum non-Hermitian Hamiltonian in a physically motivated scenario
- Trace decreasing semigroup for subnormalized density operators
- Inverse problem (non-Hermitian Hamiltonian engineering) is resolved

Summary

- Derivation of a quantum non-Hermitian Hamiltonian in a physically motivated scenario
- Trace decreasing semigroup for subnormalized density operators
- Inverse problem (non-Hermitian Hamiltonian engineering) is resolved
- If S is a composed system, then some interesting effects like entanglement generation (entanglement stabilization) are predicted

Summary

- Derivation of a quantum non-Hermitian Hamiltonian in a physically motivated scenario
- Trace decreasing semigroup for subnormalized density operators
- Inverse problem (non-Hermitian Hamiltonian engineering) is resolved
- If S is a composed system, then some interesting effects like entanglement generation (entanglement stabilization) are predicted
- Hermitian Hamiltonian dynamics for $S+A \Longrightarrow$ map for S has Kraus rank $=1$, so the conditional output states remain pure if they were pure in the beginning

Summary

- Derivation of a quantum non-Hermitian Hamiltonian in a physically motivated scenario
- Trace decreasing semigroup for subnormalized density operators
- Inverse problem (non-Hermitian Hamiltonian engineering) is resolved
- If S is a composed system, then some interesting effects like entanglement generation (entanglement stabilization) are predicted
- Hermitian Hamiltonian dynamics for $S+A \Longrightarrow$ map for S has Kraus rank $=1$, so the conditional output states remain pure if they were pure in the beginning
- Open problem: What dynamics would be induced if the interaction between S and A is not unitary?

