
International Online Conference “One-Parameter Semigroups of Operators 2021”

Inverse problem for Sobolev type equation of the second order
A. V. Lut,1 A. A. Zamyshliaeva.2

Keywords: Sobolev type equation; inverse problem; method of successive approximations; poly-
nomial boundedness of operator pencils.

MSC2010 codes: 34A55, 65M32, 65L09, 35G05

Introduction. Let U ,F ,Y be Banach spaces, operators B1, B0 ∈ Cl(U ;F), A ∈ L(U ;F),
kerA 6= {0}, C ∈ L(U ;Y), the functions χ : [0, T ] → L(Y ;F), f : [0, T ] → F , Ψ : [0, T ] → Y .
Consider the following problem

Av′′(t) = B1v
′(t) +B0v(t) + χ(t)q(t) + f(t), t ∈ [0, T ], (1)

v(0) = v0, v′(0) = v1, (2)

Cv(t) = Ψ(t). (3)

The problem of finding a pair of functions v(t) ∈ C2([0, T ];U) and q(t) ∈ C1([0, T ];Y) from
relations (1) – (3) is called the inverse problem.

Existence of solutions. Let the pencil ~B = (B0, B1) be polynomially A-bounded and
condition ∫

γ

RA
µ (
−→
B )dµ ≡ O, (A)

where γ = {µ ∈ C : |µ| = r > a}, be fulfilled, then v(t) = Pv(t) + (I − P )v(t) = u(t) + ω(t).
Here P is the relatively spectral projector in U . Put U0 = ker P, U1 = im P. Suppose that
U0 ⊂ ker C. Then, by virtue of [3], problem (1) – (3) is equivalent to the problem of finding
the functions u ∈ C2([0, T ];U1), ω ∈ C2([0, T ];U0), q ∈ C1([0, T ];Y) from the relations

u′′(t) = S1u
′(t) + S0u(t) + (A1)−1Qχ(t)q(t) + (A1)−1Qf(t), (4)

u(0) = u0, u
′(0) = u1, (5)

Cu(t) = Ψ(t) ≡ Cv(t), (6)

H0ω
′′(t) = H1ω

′(t) + ω(t) + (B0
0)−1(I−Q)χ(t)q(t) + (B0

0)−1(I−Q)f(t), (7)

ω(0) = ω0, ω
′(0) = ω1, (8)

where S1 = (A1)−1B1
1 , S0 = (A1)−1B1

0 , u0 = Pv0, u1 = Pv1, ω0 = (I − P )v0, ω1 = (I − P )v1,
H0 = (B0

0)−1A0, H1 = (B0
0)−1B0

1 , t ∈ [0, T ].

Theorem 1. Let the pencil ~B be polynomially A-bounded and condition (A) be fulfilled,
moreover, the ∞ be a pole of order p ∈ N0 of the A-resolvent of the pencil ~B, U0 ⊂ ker C,
χ ∈ Cp+2([0, T ];L(Y ;F)), f ∈ Cp+2([0, T ];F), Ψ ∈ Cp+4([0, T ];Y), for any t ∈ [0, T ] operator
C(A1)−1Qχ be invertible, with (C(A1)−1Qχ)

−1 ∈ Cp+2([0, T ];L(Y)) the condition Cu1 = Ψ′(0)
be satisfied at some initial value v1 ∈ U1, and the initial values wk = (I− P )vk ∈ U0 satisfy

wk = −
p∑
j=0

K2
j (B0

0)−1 d
j+k

dtj+k

[
(I−Q)(χ(0)q(0) + f(0))

]
, k = 0, 1.
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Then there exists a unique solution (v, q) of inverse problem (1) – (3), where q ∈ Cp+2([0, T ];Y),
v = u + w, whence u ∈ C2([0, T ];U1) is a solution of (4) – (6) and the function
w ∈ C2([0, T ];U0) is a solution of (7) – (8) given by

w(t) = −
p∑
j=0

K2
j (B0

0)−1 d
j

dtj

[
(I−Q)(χ(t)q(t) + f(t))

]
.

Applications. Let Ω ⊂ Rn be a bounded domain with a boundary ∂Ω of class C∞. In the
cylinder Ω× [0;T ] consider the Boussinesq – Love equation

(λ−∆)vtt = α(∆− λ′)vt + β(∆− λ′′)v + fq, (9)

with initial conditions
v(x, 0) = v0(x), vt(x, 0) = v1(x), (10)

boundary condition
v(x, t)|∂Ω = 0 (11)

and overdetermination condition ∫
Ω

v(x, t)K(x)dx = Φ(t), (12)

where K(x) is a given function in L2(Ω) and f(x, t) = χ(t).
Equation (9) describes the longitudinal vibration in the elastic rod, taking into account the

inertia and under external load. Conditions (10) set the initial displacement and initial speed,
respectively, and (11) sets the value at the boundaries. The overdetermination condition (12)
arises when, in addition to finding the function u, one needs to restore part of external load
q. Problem (9) – (12) can be reduced to the second-order Sobolev type equation (1) with
conditions (2), (3).

Theorem 2. Let one of the conditions

λ /∈ σ(∆) or (λ ∈ σ(∆)) ∧ (λ = λ′) ∧ (λ 6= λ′′)

be fulfilled. Moreover, K, u0, u1 ∈ U1, f ∈ C2([0, T ];L(Y ;F)), Φ ∈ C4([0, T ];Y),∑
λ 6=λk

<f(·,t),K>
λ−λk

6= 0, the condition
∫
Ω

v1(x)K(x)dx = Φ′(0) be satisfied at some initial value

v1 ∈ U1, and the initial values wk = (I− P )vk ∈ U0 satisfy

< v0 +
f(·, 0)q(0)

β(λk − λ′′)
, ϕk >= 0 for k : λk = λ,

< v1 +
ft(·, 0)q(0) + f(·, 0)q′(0)

β(λk − λ′′)
, ϕk >= 0 for k : λk = λ.

Then there exists a unique solution (v, q) of inverse problem (9) – (12), where q ∈ C2([0, T ];Y),
v = u + w, whence u ∈ C2([0, T ];U1) is the solution of (4) – (6) and the function
w ∈ C2([0, T ];U0) is a solution of (7), (8) given by

w(t) = −
∑
λ=λk

<
f(·, t)q(t)
β(λk − λ′′)

, ϕk > ϕk.

Computational experiment. Let

λ = −1, λ′ = −1, λ′′ = −2, α = 2, β = −2, ε = 4, T = 1, l = π,

2



f(x, t) = cos(x), v0(x) = sin(2x), v1(x) = sin(2x), K(x) = cos(x), F (t) =
4

3
sin(t).

Consequently, the Boussinesq – Love equation (9) takes the form

(−1−∆)vtt = 2(∆ + 1)vt − 2(∆ + 2)v + cos(x)q(t),

conditions (10) have the form

v(x, 0) = sin(2x), vt(x, 0) = sin(2x),

and the overdetermination condition
1∫

0

v(x, t) cos(x)dx =
4

3
sin(t).

Therefore, all conditions of Theorem 2 are satisfied. The function q was obtained by the method
of successive approximations.

q(t) =
(−24

√
21 + 56)e

(−3+
√
21)t

3 + (24
√

21 + 56)e−
(3+
√
21)t

3 − 168 sin(t)

21π
.

It is an approximate solution of the problem posed, reaching admissible error 1.944964447 < ε
at the first approximation step.

Further, the required function v(x, t) was found using the algorithms developed for the
direct problem [2]

v(x, t) =

√
2 sin(

√
4x)√

π

(
64
√

2 cos(t)

85π
3
2

+
224
√

2 sin(t)

255π
3
2

+

+

√
2e−t

224910π
3
2

(
−63 cosh

(
t
√

21

3

)
(−1785π2 + 5440t+ 2688)+

+2 sinh

(
t
√

21

3

)
√

21(16065π2 + 19040t− 1728)

))
.
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