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# Duality theory plays a central role in mathematical
programming. This theory is closely related to the
theory of so—called minimax problems and
saddlepoints.

® Let f, g, F be real-valued functions defined on
XCR™ Y CR"and X xY CR™ x R", respectively.

# Assume that the global minima and maxima which we
address below do exist in all cases.
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Suppose that f(x) < g(y) forall (z,y) € X x Y. Then it
Is clear that

< ' X
max f(x) < i 9(y)

Under certain conditions the above inequality can be
satisfied as an equality

max f(z) = min 9(y).

Each result of this kind is called a duality theorem.
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# ltis easy to prove that the following inequality holds:

in F < mi Flx.u).
me min F(z,y) < min max F(z, y)

# Under certain conditions we can prove that

in F = 1] F(x,y).
e RS S i

#® Each result of this type is called a minimax theorem.

o |
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# The point (z*,y*) € X x Y is a saddlepoint of F' (with
respect to maximizing in Y and minimizing in X) if

F(x*,y) < F(z",y") < F(x,y") for every (z,y) € X xY.

#® Theorem. The point (z*,y*) € X x Y is a saddlepoint of
F iff

F(z*,y*) = in F = mj F(z,y).
(2", ") max min (2,y) = min ma (2, y)

-
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Proof.
® Let (2%, y*) be a saddlepoint of F.

Flxz* y*) < in I ¥ < in I
(z%,y") = minF(z,y") < max min (2, y)
< min max F'(z, < max F(x*,
- zeX yE% (:E y) o Iynel;( (Qj y)
< F(z* y*).



o

Duality in NLP

If

F(z*,y*) = in F = mj F
(=", ") e min (2,y) = min e (2, y),

then we have

min F(z,y*) = F(z*,y") = max F(z",y),
xeX yey

l.e. (z*,y*) Is a saddlepoint.
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# Consider now the optimization problem (primal)
min f(x)
st. g(z) <0, x e X
where g : R" — RP and X C R".
# The Lagrangian of (P) is

(P)

L(z, \) = f(z)+ Mg(z), ) e RY .
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ﬁ.p Note that

sup{f(z) + ' g(w)} =
A>0

{ fx) if g(x) <0

+o00 otherwise,

and Problem (P) can be restated in the form

min max L(x, \).
zeX A\>0
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® For )\ > 0 define the function

d(\) = min L(z, \)
reX

which is concave (independently of the convexity of f or
g). Then the dual problem of (P) is defined to be the
following optimization problem:

g A R e e o
# The objective function d(\) of (D) is often called dual

function.

o
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# Theorem. (Weak Duality Theorem) Let +* be a global
minimum point of the primal problem. Then for every
A>0

d(A) < d(X7) < f(z7)

where \* is a global maximum point of the dual.

# Proof. Since A > 0 and g(z*) < 0 it follows that
M 'g(z*) < 0. On the other hand, for any A > 0 and
v* € X, d\) < f(z*) + M g(2*), and hence

d(A) < maxd(A) = d(\") < f(a7).
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o Ifd(\") < f(z*), then the difference f(x*) — d(A\*) is
called the “duality gap”.

# The following result is then an immediate consequence
of last theorem.

® Theorem. A point (z*, \*) € X x R is a saddlepoint of
the Lagrangian L(z, \) iff 2* is a global minimum point of
the primal Problem (P), \* is a global maximum point of
the dual (D), and the optimal values f(x*) of (P) and
d(\*) of (D) coincide.
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#® The next theorems provide a set of necessary and
sufficient conditions for (z*, \*) to be a saddlepoint of
L(x, A) and hence for the equivalent duality theorem
above.

# Theorem. A point (z*, \*) € X x R is a saddlepoint of
the Lagrangian L(z, )\) iff the following conditions hold:

(i) L(z*, \*) =min{L(x,\*) :z € X}.
(i) g(z*) <0.

(iiiy \*'g(x*) = 0.

o

-
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# Example. Consider the quadratic programming
problem

min  f(z) =clz+ 121 Qu
s.t. Ax <,

where the (n x n)—matrix @ is symmetric positive
definite, c € R", A € R™*"™ b € R".

The corresponding Lagrangian function is
L(z,\) = cla+ 32T Qu + M (Az — b) =
= (c+ ATN 'z + J27Qz — b1 A,
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fThe minimum of L(x, A\) with respect to x occurs at the point
z* where VL(z*,\) =0, I.e.,

oF=—-Q e+ ATN).

Substituting in L we obtain the dual function

1

A = —5

1
MAQ IATA = M b+ AQ te) — §CTQ—1C.
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ence the dual problem is given by T

1
max d(\) = —= AT MA+ db ),
A>0 2

where M = AQ 'AT andd = —(b+ AQ " '¢).

If \* is the solution of the dual problem, then

¥ = —Q (c + AT'X*) is the solution of the original primal
problem.

So, we see that in the convex quadratic case the duality gap
IS zero.

o |
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# The worst case time complexity.

#® We call an algorithm for a problem = polynomial if its
running time on a computer in terms of the number of
required elementary operations (such as arithmetic
operations, comparisons, branching instructions, ...) is,
In the worst case, bounded from above by a polynomial
of degree p in the size L of the input data.

# \We say that the algorithm runs in O(LP?) time.
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# The standard simplex algorithm for LP requires, in the
worst case, a number of steps which is exponential in
the size of the input data (e.g., Klee—Minty example).

xample:

# Kachiyan’s ellipsoid algorithm (or Karmarkar’s interior
point algorithm) requires only a polynomial number of
steps, and each step in these algorithms consists of a
polynomial number of elementary operations.
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# In complexity theory, the collection of problems that can
be solved in polynomial time (i.e., by a polynomial
algorithm) is denoted by P.

# Another important complexity class is NP, the set of all
problems solvable by a “nondeterministic algorithm” in
polynomial time. That is, NP is the class of problems for
which the correctness of a claimed solution (that may
have been computed by a tedious procedure) can be
verified in polynomial time.
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# Clearly P is a subset of NP, and it appears natural that
P £ NP.

#® However, despite enormous research efforts, it remains
one of the most famous unsolved problems in
theoretical computer science whether the two classes P
and NP are different or not.
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#® We say that a problem 7 is polynomially transformable
to a problem 75 if a polynomial algorithm for =5 would
imply a polynomial algorithm for .

# A problem 7 is NP-complete if = € NP and if every
other problem in NP can be polynomially transformed to
it.

#® Every NP-complete problem has the following
property: if it can be solved in polynomial time, then all
problems in NP can be solved in polynomial time. In

other words, if 7 is NP-complete and if = € P then
P=NP.
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NP-complete

The world of NP
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Let x4, ..., x, be a set of Boolean variables whose value
Is either true or false, and let z; denote the negation of
L.

A literal is either a variable or its negation.

A Boolean formula is an expression that can be
constructed using literals, and the operations “and” (A
or e) and “or” (\ or +).

A Boolean formula which can be made true by
assigning some values to its variables is said to be
satisfiable.



Complexity | ssues

f.p The SATISFIABILITY problem is to check whether a T
Boolean formula of the (conjunctive normal) form

F = /\i.“zl(\/?"':1 li;), where ¢;; denotes a literal, is
satisfiable.

#® Cook’s Theorem (1971). SATISFIABILITY is
NP—-complete.
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#® Soon after the appearance of Cook’s proof, the list of
NP-complete problems was substantially enriched.
Another “classical® NP—complete problem is, for
example, to check whether a single linear constraint

> a;xi = b, a;, b integers, has a solution in
1=1
r; € {0,1} (1 =1,...,n) (knapsack problem).
# Other well-known examples include the traveling
salesman problem, the maximum clique problem, and

many classes of nonconvex quadratic optimization
problems.
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# How can we prove that some problem is NP—-complete?

# The following obvious consequence of the definition of
NP—-completeness is often used:

If a problem 7 is NP—complete and 7 is polynomially
transformable to a problem 75 € NP, then 7 is
NP—-complete.

#® Note, however, that one cannot conclude
NP—-completeness of 7w by transforming it polynomially
to another NP—complete problem ;.
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f.’ A problem = is called NP-hard if there is an T

NP-complete problem which can be polynomially
transformed to .

# Thus, an NP-hard problem shares with NP—complete
problems the basic property of being at least as difficult

as any other problem in NP-complete, but it may not
belong to NP.
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o Consider the following quadratic problem

min  f(z)=clz+ 321Qu
S.t. x>0

where () IS an n x n symmetric matrix, and ¢ € R".
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min  f(z)=clz+ 321Qu
S.t. x>0

#® The KKT conditions for this problem become the
following so—called linear complementarity problem
(denoted by LCP(Q, ¢)): Find = € R" (or prove that no
such an z exists) such that

Qr+c>0, >0
21'(Qz +¢) = 0.
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# Hence, the complexity of finding (or proving existence
of) KKT points for the above quadratic problem is
reduced to the complexity of solving the corresponding

(symmetric) LCP.
#® Theorem. The Problem LCP (@, ¢) is NP-hard.



-
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® Proof: Consider the following LCP (Q, ¢) problem in R™*3
defined by

Q(n+3)x (n+3) = ,

or -1 -1 -1

r
Cpas = (a1,...,an,—0,b,0),

where a;, : = 1,...,n, and b are positive integers, I, is the
(n x n)—unit matrix and e,, € R", 0,, € R™ are the vectors
of all ones and zeros, respectively. J
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f.’ Define the following knapsack problem. Find a feasible T
solution to the system

n

Zaixi =0, r; € {0,1} (i: 1,...,71).

1=1

# This problem is known to be NP-complete. Next we

show that the LCP(Q, ¢) is solvable iff the associated
knapsack problem is solvable.

# |f x solves the knapsack problem, then
y = (a11, . .., any,0,0,0)" solves LCP(Q, ¢).

o |
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o Conversely, assume the point y solves the LCP(Q, ¢)
given above.

#® Since Qy +c¢ >0, y > 0 we obtain
Ynt1l = Yna2 = Ypas = 0. This in turn implies that

mn
S yi=band 0 < y; < a;.
1=1

# Finally, if y; < a;, then y' (Qy + ¢) = 0 enforces y; = 0.
Hence, z = (5—1, o z—z) solves the knapsack problem.
[]
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# Therefore, in quadratic programming, the problem of

deciding whether a Kuhn—Tucker point exists is
NP-hard.

# Next we investigate the complexity of finding locally
optimal solutions to nonlinear optimization problems.
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# Computing locally optimal solutions is presumably
easier than finding globally optimal solutions.

# However, from the complexity point of view we will show
that the problem of checking local optimality for a
feasible point and the problem of checking whether a
local minimum is strict, are NP—hard even for problems
with a simple structure in the constraints and the
objective.
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#® We focus our investigation on problems that have
nonconvex quadratic objective and linear constraints,
that is, problems of the form:

min f(z)

st. Az >0, x>0

where f(x) is an indefinite quadratic function.
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# Consider now the 3—satisfiability (3—SAT) problem:
Given a set of Boolean variables z1, ..., z, and given a
Boolean expression S (in conjunctive normal form) with
exactly 3 literals per clause,

S = (l11 + 12 + €13) (21 + Loo + l23) . .. (b1 + L2 + €in3)

where each literal /;; is either some variable x;, or its

negations 7y, is there a truth assignment for the
variables z; which makes S true?

#® Cook: 3—SAT is NP—complete.

o |
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# For each instance of 3—satisfiability we construct an
instance of an optimization problem in the real variables
LOyLlyew-yLp.

Clausein S «— alinear inequality
lij = xy, T,

lij = Ty 1 — xy
S R %

# Example: for the clause z; + z9 + 3 we have
561+£CQ—|—(1—£E3)—|—:CO > %

o |
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f.o Thus, we associate to .S a system of linear inequalities T

Agx > (g + ¢)

where A, is a (sparse) matrix with entries in {0,1, —1}
and z! = (zg,...,1,).

® Let us consider the set D(S) c R"*! of feasible points
satisfying the following linear constraints

ASLE 2 (% —|—C)

\— 12—x0<a; <1242, 2;, 20, 1=1,...,n

|
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# With a given instance S of the 3—satisfiability problem
we associate the following indefinite quadratic problem:

min - f(x) = =Y (2 — (1/2 = w0)) (2 — (1/2 + x0)).

reD(S) P

# Note that f(z) = — Z(xZ —1/2)% + nz3, i.e., the objective

function is a separable iIndefinite quadratic function with
one convex and n concave terms.
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# |n addition, we have the following:

a) f(x) > 0 for all feasible points x. Therefore, the
feasible point z* = (0,1/2,...,1/2)" is a local (global)
minimum of f(z) since f(x*) = 0.

b) f(x)=0ifandonly if x; € {1/2 — xg, 1/2 + x4}, for

1 =1,...,n.

#® Recall that a strict local minimum for the above quadratic
problem is a feasible point =* for which there exists an
e > (0 such that

f(x*) < f(x)forallz € D(S)N{z:0< |z —2| <e}.

o |
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#® The following theorem implies that checking strict local
optimality is NP—hard. Therefore, we cannot expect to
find a polynomial time algorithm for this problem
(assuming P # NP).

® Theorem. S is satisfiable iff z* = (0,1/2,...,1/2)" is not
a strict minimum.

® Proof: Let x4, ..., x, be a truth assignment satisfying S.
Forany zoand: =1,...,n consider

1/2 + xg ifx; = 1.
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For 2° = (zo,2Y,...,2°)" we have f(2°) = 0. Since xz, can be
chosen to be arbitrarily close to zero, x* is not a strict local
minimum.

Suppose now that z* = (0,1/2,...,1/2)" is not a strict local
minimum, that is, there exists y # z* such that

f(y) = f(z*) = 0; therefore, y; € {1/2 — y0,1/2 4+ yo},
:=1,...,n. Then the variables z;, : = 1, ..., n defined by

zi(y) = { 0ify; =1/2 — yo

Lify, =1/2+ yo

satisfy S.
- -
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# [f we fix zg = 1/2 in the above indefinite quadratic
problem, then the objective function f(x) is concave
with z* as the global minimum. Therefore, the problem
of checking if a given point is a strict global minimum of
a concave minimization problem is NP—-hard.

# Consider now the problem of checking local optimality.
We prove that this problem is NP-hard.
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# Given the 3—satisfiability problem, consider the
following indefinite quadratic program:

min gb(:z;):—Z( — (1/2 = x0)) (z; — (1/2 4 20)) —

(z; — 1/2)%,

2n
1=1

#® Theorem. S is satisfiable iff z* = (0,1/2,...,1/2) is not
a local minimum.

o |
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® Proof: Let x4, ..., x, be a truth assignment satisfying S.
Given any z, arbitrary close to zero, definefor: =1,...,n

Xr, =

Then we can easily see that 2° = (g, 27,...,2)) is
feasible and
$2
(") = =5 <0 =g(a7),

Hence, x* is not a local minimum.

o |
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fSuppose now that +* is not a local minimum. Then there
exists a point z = (xy, ..., z,)! such that ¢(z) < 0. We will
now show, by contradiction, that we can find in each clause
of S one literal of value > 1/2. This would imply that S is
satisfiable with

_ { Oif$i§1/2
r; — ;
1 If:L“Z' > 1/2.
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fFor contradiction, assume that the value of each literal in
some clause is < 1/2. For instance, consider a constraint
(clause) of the form

1+ x2 + T3+ 19 > 3/2.

For this inequality to hold, we must have a value > % — 2

for at least one literal /. Consider the case | = z; (the other
cases follow by an analogous argument).
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By assumption we have that x; < 1/2, so

1 1
_ < < — — < — — <
3_371_2:> 3_$1 2_0
Hence,
72
(331—1/2)2<§0
Let

p(z) = —> (v —(1/2 —x0))(x; — (1/2 + x0))
= — > ((xi—1/2)* — x5)

3l

Lbe the “penalty term” in the objective function.
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Then, since (z; — 1/2)? < %@

8
p(a) > — (21— 1/2) +2f > -a}

On the other hand, for the “payoff term”

¢(r) = —5= > (@i — 1/2)% we obtain ¢(z) > —x3/2.

Hence ¢(z) > 823 — 222 > 0, a contradiction. ]
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# Complexity analysis is fundamental in order to
understand the inherent difficulty of nonconvex problems
and has been a motivation to develop new algorithms.

# |tis not clear whether nonconvexity is the only source of
complexity, since some classes of nonconvex problems
can be solved by polynomial time algorithms.

#® Furthermore, there is no easy way to check if a given
complicated function is convex or not (even in the case of
multivariable polynomials).

o |
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