Duality and Complexity

 Issues in Global Optimization
Panos M. Pardalos

Distinguished Professor CAO, Dept. of Industrial and

Systems Engineering, University of Florida http://www.ise.ufl.edu/pardalos

Duality in Nonlinear Programming (NLP)

Duality in NLP

- Duality theory plays a central role in mathematical programming. This theory is closely related to the theory of so-called minimax problems and saddlepoints.
- Let f, g, F be real-valued functions defined on $X \subseteq \mathbb{R}^{m}, Y \subseteq \mathbb{R}^{n}$ and $X \times Y \subseteq \mathbb{R}^{m} \times \mathbb{R}^{n}$, respectively.
- Assume that the global minima and maxima which we address below do exist in all cases.

Duality in NLP

- Suppose that $f(x) \leq g(y)$ for all $(x, y) \in X \times Y$. Then it is clear that

$$
\max _{x \in X} f(x) \leq \min _{y \in Y} g(y) .
$$

- Under certain conditions the above inequality can be satisfied as an equality

$$
\max _{x \in X} f(x)=\min _{y \in Y} g(y) .
$$

- Each result of this kind is called a duality theorem.

Duality in NLP

- It is easy to prove that the following inequality holds:

$$
\max _{y \in Y} \min _{x \in X} F(x, y) \leq \min _{x \in X} \max _{y \in Y} F(x, y) .
$$

- Under certain conditions we can prove that

$$
\max _{y \in Y} \min _{x \in X} F(x, y)=\min _{x \in X} \max _{y \in Y} F(x, y) .
$$

- Each result of this type is called a minimax theorem.

Duality in NLP

- The point $\left(x^{*}, y^{*}\right) \in X \times Y$ is a saddlepoint of F (with respect to maximizing in Y and minimizing in X) if

$$
F\left(x^{*}, y\right) \leq F\left(x^{*}, y^{*}\right) \leq F\left(x, y^{*}\right) \text { for every }(x, y) \in X \times Y .
$$

- Theorem. The point $\left(x^{*}, y^{*}\right) \in X \times Y$ is a saddlepoint of F iff

$$
F\left(x^{*}, y^{*}\right)=\max _{y \in Y} \min _{x \in X} F(x, y)=\min _{x \in X} \max _{y \in Y} F(x, y)
$$

Duality in NLP

Proof.

- Let $\left(x^{*}, y^{*}\right)$ be a saddlepoint of F.

$$
\begin{aligned}
F\left(x^{*}, y^{*}\right) & \leq \min _{x \in X} F\left(x, y^{*}\right) \leq \max _{y \in Y} \min _{x \in X} F(x, y) \\
& \leq \min _{x \in X} \max _{y \in Y} F(x, y) \leq \max _{y \in Y} F\left(x^{*}, y\right) \\
& \leq F\left(x^{*}, y^{*}\right) .
\end{aligned}
$$

Duality in NLP

- If

$$
F\left(x^{*}, y^{*}\right)=\max _{y \in Y} \min _{x \in X} F(x, y)=\min _{x \in X} \max _{y \in Y} F(x, y),
$$

then we have

$$
\min _{x \in X} F\left(x, y^{*}\right)=F\left(x^{*}, y^{*}\right)=\max _{y \in Y} F\left(x^{*}, y\right),
$$

i.e. $\left(x^{*}, y^{*}\right)$ is a saddlepoint.

Duality in NLP

- Consider now the optimization problem (primal)

$$
\begin{array}{ll}
& \min f(x) \tag{P}\\
\text { s.t. } & g(x) \leq 0, x \in X
\end{array}
$$

where $g: \mathbb{R}^{n} \rightarrow \mathbb{R}^{p}$ and $X \subseteq \mathbb{R}^{n}$.

- The Lagrangian of (P) is

$$
L(x, \lambda)=f(x)+\lambda^{T} g(x), \lambda \in \mathbb{R}_{+}^{p} .
$$

Duality in NLP

- Note that

$$
\sup _{\lambda \geq 0}\left\{f(x)+\lambda^{T} g(x)\right\}=\left\{\begin{array}{l}
f(x) \text { if } g(x) \leq 0 \\
+\infty \text { otherwise }
\end{array}\right.
$$

and Problem (P) can be restated in the form

$$
\min _{x \in X} \max _{\lambda \geq 0} L(x, \lambda) .
$$

Duality in NLP

- For $\lambda \geq 0$ define the function

$$
d(\lambda)=\min _{x \in X} L(x, \lambda)
$$

which is concave (independently of the convexity of f or g). Then the dual problem of (P) is defined to be the following optimization problem:

$$
\begin{equation*}
\max _{\lambda \geq 0} d(\lambda)=\max _{\lambda \geq 0} \min _{x \in X} L(x, \lambda) . \tag{D}
\end{equation*}
$$

- The objective function $d(\lambda)$ of (D) is often called dual function.

Duality in NLP

- Theorem. (Weak Duality Theorem) Let x^{*} be a global minimum point of the primal problem. Then for every $\lambda \geq 0$

$$
d(\lambda) \leq d\left(\lambda^{*}\right) \leq f\left(x^{*}\right)
$$

where λ^{*} is a global maximum point of the dual.

- Proof. Since $\lambda \geq 0$ and $g\left(x^{*}\right) \leq 0$ it follows that $\lambda^{T} g\left(x^{*}\right) \leq 0$. On the other hand, for any $\lambda \geq 0$ and $x^{*} \in X, d(\lambda) \leq f\left(x^{*}\right)+\lambda^{T} g\left(x^{*}\right)$, and hence $d(\lambda) \leq \max _{\lambda \geq 0} d(\lambda)=d\left(\lambda^{*}\right) \leq f\left(x^{*}\right)$.

Duality in NLP

- If $d\left(\lambda^{*}\right)<f\left(x^{*}\right)$, then the difference $f\left(x^{*}\right)-d\left(\lambda^{*}\right)$ is called the "duality gap".
- The following result is then an immediate consequence of last theorem.
- Theorem. A point $\left(x^{*}, \lambda^{*}\right) \in X \times \mathbb{R}_{+}^{p}$ is a saddlepoint of the Lagrangian $L(x, \lambda)$ iff x^{*} is a global minimum point of the primal Problem (P), λ^{*} is a global maximum point of the dual (D), and the optimal values $f\left(x^{*}\right)$ of (P) and $d\left(\lambda^{*}\right)$ of (D) coincide.

Duality in NLP

- The next theorems provide a set of necessary and sufficient conditions for (x^{*}, λ^{*}) to be a saddlepoint of $L(x, \lambda)$ and hence for the equivalent duality theorem above.
- Theorem. A point $\left(x^{*}, \lambda^{*}\right) \in X \times \mathbb{R}_{+}^{p}$ is a saddlepoint of the Lagrangian $L(x, \lambda)$ iff the following conditions hold:
(i) $L\left(x^{*}, \lambda^{*}\right)=\min \left\{L\left(x, \lambda^{*}\right): x \in X\right\}$.
(ii) $g\left(x^{*}\right) \leq 0$.
(iii) $\lambda^{* T} g\left(x^{*}\right)=0$.

Duality in NLP

- Example. Consider the quadratic programming problem

$$
\begin{array}{ll}
\min & f(x)=c^{T} x+\frac{1}{2} x^{T} Q x \\
\text { s.t. } & A x \leq b,
\end{array}
$$

where the $(n \times n)$-matrix Q is symmetric positive definite, $c \in \mathbb{R}^{n}, A \in \mathbb{R}^{m \times n}, b \in \mathbb{R}^{n}$.
The corresponding Lagrangian function is

$$
\begin{aligned}
& L(x, \lambda)=c^{T} x+\frac{1}{2} x^{T} Q x+\lambda^{T}(A x-b)= \\
& =\left(c+A^{T} \lambda\right)^{T} x+\frac{1}{2} x^{T} Q x-b^{T} \lambda .
\end{aligned}
$$

Duality in NLP

The minimum of $L(x, \lambda)$ with respect to x occurs at the point x^{*} where $\nabla L\left(x^{*}, \lambda\right)=0$, i.e.,

$$
x^{*}=-Q^{-1}\left(c+A^{T} \lambda\right) .
$$

Substituting in L we obtain the dual function

$$
d(\lambda)=-\frac{1}{2} \lambda^{T} A Q^{-1} A^{T} \lambda-\lambda^{T}\left(b+A Q^{-1} c\right)-\frac{1}{2} c^{T} Q^{-1} c .
$$

Duality in NLP

Hence the dual problem is given by

$$
\max _{\lambda \geq 0} d(\lambda)=-\frac{1}{2} \lambda^{T} M \lambda+d^{T} \lambda,
$$

where $M=A Q^{-1} A^{T}$ and $d=-\left(b+A Q^{-1} c\right)$.
If λ^{*} is the solution of the dual problem, then
$x^{*}=-Q^{-1}\left(c+A^{T} \lambda^{*}\right)$ is the solution of the original primal problem.

So, we see that in the convex quadratic case the duality gap is zero.

Complexity Issues

- The worst case time complexity.
- We call an algorithm for a problem π polynomial if its running time on a computer in terms of the number of required elementary operations (such as arithmetic operations, comparisons, branching instructions, ...) is, in the worst case, bounded from above by a polynomial of degree p in the size L of the input data.
- We say that the algorithm runs in $O\left(L^{p}\right)$ time.

Complexity Issues

Example:

- The standard simplex algorithm for LP requires, in the worst case, a number of steps which is exponential in the size of the input data (e.g., Klee-Minty example).
- Kachiyan's ellipsoid algorithm (or Karmarkar's interior point algorithm) requires only a polynomial number of steps, and each step in these algorithms consists of a polynomial number of elementary operations.

Complexity Issues

- In complexity theory, the collection of problems that can be solved in polynomial time (i.e., by a polynomial algorithm) is denoted by \mathbf{P}.
- Another important complexity class is NP, the set of all problems solvable by a "nondeterministic algorithm" in polynomial time. That is, NP is the class of problems for which the correctness of a claimed solution (that may have been computed by a tedious procedure) can be verified in polynomial time.

Complexity Issues

- Clearly \mathbf{P} is a subset of $\mathbf{N P}$, and it appears natural that $\mathbf{P} \neq \mathbf{N P}$.
- However, despite enormous research efforts, it remains one of the most famous unsolved problems in theoretical computer science whether the two classes \mathbf{P} and NP are different or not.

Complexity Issues

- We say that a problem π_{1} is polynomially transformable to a problem π_{2} if a polynomial algorithm for π_{2} would imply a polynomial algorithm for π_{1}.
- A problem π is NP-complete if $\pi \in \mathbf{N P}$ and if every other problem in NP can be polynomially transformed to it.
- Every NP-complete problem has the following property: if it can be solved in polynomial time, then all problems in NP can be solved in polynomial time. In other words, if π is $\mathbf{N P}$-complete and if $\pi \in \mathbf{P}$ then $P=N P$.

Complexity Issues

Complexity Issues

- Let x_{1}, \ldots, x_{n} be a set of Boolean variables whose value is either true or false, and let \bar{x}_{i} denote the negation of x_{i}.
- A literal is either a variable or its negation.
- A Boolean formula is an expression that can be constructed using literals, and the operations "and" (\wedge or \bullet) and "or" (\vee or +).
- A Boolean formula which can be made true by assigning some values to its variables is said to be satisfiable.

Complexity Issues

- The SATISFIABILITY problem is to check whether a Boolean formula of the (conjunctive normal) form $F=\bigwedge_{i=1}^{k}\left(\bigvee_{j=1}^{n_{i}} \ell_{i j}\right)$, where $\ell_{i j}$ denotes a literal, is satisfiable.
- Cook's Theorem (1971). SATISFIABILITY is NP-complete.

Complexity Issues

- Soon after the appearance of Cook's proof, the list of NP-complete problems was substantially enriched. Another "classical" NP-complete problem is, for example, to check whether a single linear constraint $\sum_{i=1}^{n} a_{i} x_{i}=b, a_{i}, b$ integers, has a solution in $x_{i} \in\{0,1\}(i=1, \ldots, n)$ (knapsack problem).
- Other well-known examples include the traveling salesman problem, the maximum clique problem, and many classes of nonconvex quadratic optimization problems.

Complexity Issues

- How can we prove that some problem is NP-complete?
- The following obvious consequence of the definition of NP-completeness is often used:
If a problem π_{1} is $\mathbf{N P}$-complete and π_{1} is polynomially transformable to a problem $\pi_{2} \in \mathbf{N P}$, then π_{2} is NP-complete.
- Note, however, that one cannot conclude NP-completeness of π_{2} by transforming it polynomially to another NP-complete problem π_{1}.

Complexity Issues

- A problem π is called NP-hard if there is an NP-complete problem which can be polynomially transformed to π.
- Thus, an NP-hard problem shares with NP-complete problems the basic property of being at least as difficult as any other problem in NP-complete, but it may not belong to NP.

Complexity: KKT Points in QP

- Consider the following quadratic problem

$$
\begin{array}{cc}
\text { min } & f(x)=c^{T} x+\frac{1}{2} x^{T} Q x \\
\text { s.t. } & x \geq 0
\end{array}
$$

where Q is an $n \times n$ symmetric matrix, and $c \in \mathbb{R}^{n}$.

Complexity: KKT Points in QP

-

$$
\begin{array}{cc}
\min & f(x)=c^{T} x+\frac{1}{2} x^{T} Q x \\
\text { s.t. } & x \geq 0
\end{array}
$$

- The KKT conditions for this problem become the following so-called linear complementarity problem (denoted by $\operatorname{LCP}(Q, c)$): Find $x \in \mathbb{R}^{n}$ (or prove that no such an x exists) such that

$$
\begin{gathered}
Q x+c \geq 0, x \geq 0 \\
x^{T}(Q x+c)=0 .
\end{gathered}
$$

Complexity: KKT Points in QP

- Hence, the complexity of finding (or proving existence of) KKT points for the above quadratic problem is reduced to the complexity of solving the corresponding (symmetric) LCP.
- Theorem. The Problem LCP (Q, c) is NP-hard.

Complexity: KKT Points in QP

- Proof: Consider the following LCP (Q, c) problem in \mathbb{R}^{n+3} defined by

$$
\begin{aligned}
Q_{(n+3) \times(n+3)} & =\left[\begin{array}{cccc}
-I_{n} & e_{n} & -e_{n} & 0_{n} \\
e_{n}^{T} & -1 & -1 & -1 \\
-e_{n}^{T} & -1 & -1 & -1 \\
0_{n}^{T} & -1 & -1 & -1
\end{array}\right], \\
c_{n+3}^{T} & =\left(a_{1}, \ldots, a_{n},-b, b, 0\right),
\end{aligned}
$$

where $a_{i}, i=1, \ldots, n$, and b are positive integers, I_{n} is the ($n \times n$)-unit matrix and $e_{n} \in \mathbb{R}^{n}, 0_{n} \in \mathbb{R}^{n}$ are the vectors of all ones and zeros, respectively.

Complexity: KKT Points in QP

- Define the following knapsack problem. Find a feasible solution to the system

$$
\sum_{i=1}^{n} a_{i} x_{i}=b, x_{i} \in\{0,1\} \quad(i=1, \ldots, n) .
$$

- This problem is known to be NP-complete. Next we show that the $\operatorname{LCP}(Q, c)$ is solvable iff the associated knapsack problem is solvable.
- If x solves the knapsack problem, then
$y=\left(a_{1} x_{1}, \ldots, a_{n} x_{n}, 0,0,0\right)^{T}$ solves $\operatorname{LCP}(Q, c)$.

Complexity: KKT Points in QP

- Conversely, assume the point y solves the $\operatorname{LCP}(Q, c)$ given above.
- Since $Q y+c \geq 0, y \geq 0$ we obtain $y_{n+1}=y_{n+2}=y_{n+3}=0$. This in turn implies that $\sum_{i=1}^{n} y_{i}=b$ and $0 \leq y_{i} \leq a_{i}$.
- Finally, if $y_{i}<a_{i}$, then $y^{T}(Q y+c)=0$ enforces $y_{i}=0$. Hence, $x=\left(\frac{y_{1}}{a_{1}}, \ldots, \frac{y_{n}}{a_{n}}\right)$ solves the knapsack problem. \square

Complexity: KKT Points in QP

- Therefore, in quadratic programming, the problem of deciding whether a Kuhn-Tucker point exists is NP-hard.
- Next we investigate the complexity of finding locally optimal solutions to nonlinear optimization problems.

Complexity of Local Minimization

- Computing locally optimal solutions is presumably easier than finding globally optimal solutions.
- However, from the complexity point of view we will show that the problem of checking local optimality for a feasible point and the problem of checking whether a local minimum is strict, are NP-hard even for problems with a simple structure in the constraints and the objective.

Complexity of Local Minimization

- We focus our investigation on problems that have nonconvex quadratic objective and linear constraints, that is, problems of the form:

$$
\begin{array}{ll}
& \min f(x) \\
\text { s.t. } & A x \geq b, x \geq 0
\end{array}
$$

where $f(x)$ is an indefinite quadratic function.

Complexity of Local Minimization

- Consider now the 3 -satisfiability (3-SAT) problem: Given a set of Boolean variables x_{1}, \ldots, x_{n} and given a Boolean expression S (in conjunctive normal form) with exactly 3 literals per clause,
$S=\left(\ell_{11}+\ell_{12}+\ell_{13}\right)\left(\ell_{21}+\ell_{22}+\ell_{23}\right) \ldots\left(\ell_{m 1}+\ell_{m 2}+\ell_{m 3}\right)$
where each literal $\ell_{i j}$ is either some variable x_{k} or its negations \bar{x}_{k}, is there a truth assignment for the variables x_{i} which makes S true?
- Cook: 3-SAT is NP-complete.

Complexity of Local Minimization

- For each instance of 3-satisfiability we construct an instance of an optimization problem in the real variables $x_{0}, x_{1}, \ldots, x_{n}$.

Clause in $S \longleftrightarrow$ a linear inequality

$$
\begin{array}{cc}
\ell_{i j}=x_{k} & x_{k} \\
\ell_{i j}=\bar{x}_{k} & 1-x_{k} \\
& \ldots+x_{0} \geq \frac{3}{2}
\end{array}
$$

- Example: for the clause $x_{1}+x_{2}+\bar{x}_{3}$ we have $x_{1}+x_{2}+\left(1-x_{3}\right)+x_{0} \geq \frac{3}{2}$.

Complexity of Local Minimization

- Thus, we associate to S a system of linear inequalities

$$
A_{S} x \geq\left(\frac{3}{2}+c\right)
$$

where A_{s} is a (sparse) matrix with entries in $\{0,1,-1\}$ and $x^{T}=\left(x_{0}, \ldots, x_{n}\right)$.

- Let us consider the set $D(S) \subset \mathbb{R}^{n+1}$ of feasible points satisfying the following linear constraints

$$
A_{S} x \geq\left(\frac{3}{2}+c\right)
$$

$$
1 / 2-x_{0} \leq x_{i} \leq 1 / 2+x_{0}, x_{i} \geq 0, i=1, \ldots, n
$$

Complexity of Local Minimization

- With a given instance S of the 3-satisfiability problem we associate the following indefinite quadratic problem:

$$
\min _{x \in D(S)} f(x)=-\sum_{i=1}^{n}\left(x_{i}-\left(1 / 2-x_{0}\right)\right)\left(x_{i}-\left(1 / 2+x_{0}\right)\right) .
$$

- Note that $f(x)=-\sum_{i=1}^{n}\left(x_{i}-1 / 2\right)^{2}+n x_{0}^{2}$, i.e., the objective function is a separable indefinite quadratic function with one convex and n concave terms.

Complexity of Local Minimization

- In addition, we have the following:
a) $f(x) \geq 0$ for all feasible points x. Therefore, the feasible point $x^{*}=(0,1 / 2, \ldots, 1 / 2)^{T}$ is a local (global) minimum of $f(x)$ since $f\left(x^{*}\right)=0$.
b) $f(x)=0$ if and only if $x_{i} \in\left\{1 / 2-x_{0}, 1 / 2+x_{0}\right\}$, for $i=1, \ldots, n$.
- Recall that a strict local minimum for the above quadratic problem is a feasible point x^{*} for which there exists an $\epsilon>0$ such that

$$
f\left(x^{*}\right)<f(x) \text { for all } x \in D(S) \cap\left\{x: 0<\left\|x-x^{*}\right\| \leq \epsilon\right\} .
$$

Complexity of Local Minimization

- The following theorem implies that checking strict local optimality is NP-hard. Therefore, we cannot expect to find a polynomial time algorithm for this problem (assuming $\mathbf{P} \neq \mathbf{N P}$).
- Theorem. S is satisfiable iff $x^{*}=(0,1 / 2, \ldots, 1 / 2)^{T}$ is not a strict minimum.
- Proof: Let x_{1}, \ldots, x_{n} be a truth assignment satisfying S. For any x_{0} and $i=1, \ldots, n$ consider

$$
x_{i}^{0}=\left\{\begin{array}{l}
1 / 2-x_{0} \text { if } x_{i}=0 \\
1 / 2+x_{0} \text { if } x_{i}=1 .
\end{array}\right.
$$

Complexity of Local Minimization

For $x^{0}=\left(x_{0}, x_{1}^{0}, \ldots, x_{n}^{0}\right)^{T}$ we have $f\left(x^{0}\right)=0$. Since x_{0} can be chosen to be arbitrarily close to zero, x^{*} is not a strict local minimum.
Suppose now that $x^{*}=(0,1 / 2, \ldots, 1 / 2)^{T}$ is not a strict local minimum, that is, there exists $y \neq x^{*}$ such that
$f(y)=f\left(x^{*}\right)=0$; therefore, $y_{i} \in\left\{1 / 2-y_{0}, 1 / 2+y_{0}\right\}$,
$i=1, \ldots, n$. Then the variables $x_{i}, i=1, \ldots, n$ defined by

$$
x_{i}(y)=\left\{\begin{array}{l}
0 \text { if } y_{i}=1 / 2-y_{0} \\
1 \text { if } y_{i}=1 / 2+y_{0}
\end{array}\right.
$$

satisfy S.

Complexity of Local Minimization

- If we fix $x_{0}=1 / 2$ in the above indefinite quadratic problem, then the objective function $f(x)$ is concave with x^{*} as the global minimum. Therefore, the problem of checking if a given point is a strict global minimum of a concave minimization problem is NP-hard.
- Consider now the problem of checking local optimality. We prove that this problem is NP-hard.

Complexity of Local Minimization

- Given the 3-satisfiability problem, consider the following indefinite quadratic program:

$$
\begin{gathered}
\min _{x \in D(S)} \phi(x)=-\sum_{i=1}^{n}\left(x_{i}-\left(1 / 2-x_{0}\right)\right)\left(x_{i}-\left(1 / 2+x_{0}\right)\right)- \\
-\frac{1}{2 n} \sum_{i=1}^{n}\left(x_{i}-1 / 2\right)^{2} .
\end{gathered}
$$

- Theorem. S is satisfiable iff $x^{*}=(0,1 / 2, \ldots, 1 / 2)$ is not a local minimum.

Complexity of Local Minimization

- Proof: Let x_{1}, \ldots, x_{n} be a truth assignment satisfying S. Given any x_{0} arbitrary close to zero, define for $i=1, \ldots, n$

$$
x_{i}^{0}=\left\{\begin{array}{l}
1 / 2-x_{0} \text { if } x_{i}=0 \\
1 / 2+x_{0} \text { if } x_{i}=1 .
\end{array}\right.
$$

Then we can easily see that $x^{0}=\left(x_{0}, x_{1}^{0}, \ldots, x_{n}^{0}\right)$ is feasible and

$$
\phi\left(x^{0}\right)=-\frac{x_{0}^{2}}{2}<0=\phi\left(x^{*}\right) .
$$

Hence, x^{*} is not a local minimum.

Complexity of Local Minimization

Suppose now that x^{*} is not a local minimum. Then there exists a point $x=\left(x_{0}, \ldots, x_{n}\right)^{T}$ such that $\phi(x)<0$. We will now show, by contradiction, that we can find in each clause of S one literal of value $>1 / 2$. This would imply that S is satisfiable with

$$
\bar{x}_{i}=\left\{\begin{array}{l}
0 \text { if } x_{i} \leq 1 / 2 \\
1 \text { if } x_{i}>1 / 2 .
\end{array}\right.
$$

Complexity of Local Minimization

For contradiction, assume that the value of each literal in some clause is $\leq 1 / 2$. For instance, consider a constraint (clause) of the form

$$
x_{1}+x_{2}+\bar{x}_{3}+x_{0} \geq 3 / 2 .
$$

For this inequality to hold, we must have a value $\geq \frac{1}{2}-\frac{x_{0}}{3}$ for at least one literal l. Consider the case $l=x_{1}$ (the other cases follow by an analogous argument).

Complexity of Local Minimization

By assumption we have that $x_{1} \leq 1 / 2$, so

$$
\frac{1}{2}-\frac{x_{0}}{3} \leq x_{1} \leq \frac{1}{2} \Rightarrow-\frac{x_{0}}{3} \leq x_{1}-\frac{1}{2} \leq 0
$$

Hence,

$$
\left(x_{1}-1 / 2\right)^{2} \leq \frac{x_{0}^{2}}{9}
$$

Let

$$
\begin{aligned}
p(x) & =-\sum_{i=1}^{n}\left(x_{i}-\left(1 / 2-x_{0}\right)\right)\left(x_{i}-\left(1 / 2+x_{0}\right)\right) \\
& =-\sum_{i=1}^{n}\left(\left(x_{i}-1 / 2\right)^{2}-x_{0}^{2}\right)
\end{aligned}
$$

be the "penalty term" in the objective function.

Complexity of Local Minimization

Then, since $\left(x_{1}-1 / 2\right)^{2} \leq \frac{x_{0}^{2}}{9}$,

$$
p(x) \geq-\left(x_{1}-1 / 2\right)^{2}+x_{0}^{2} \geq \frac{8}{9} x_{0}^{2} .
$$

On the other hand, for the "payoff term"
$q(x)=-\frac{1}{2 n} \sum_{i=1}^{n}\left(x_{i}-1 / 2\right)^{2}$ we obtain $q(x) \geq-x_{0}^{2} / 2$.
Hence $\phi(x) \geq \frac{8}{9} x_{0}^{2}-\frac{1}{2} x_{0}^{2}>0$, a contradiction.

Complexity of Local Minimization

- Complexity analysis is fundamental in order to understand the inherent difficulty of nonconvex problems and has been a motivation to develop new algorithms.
- It is not clear whether nonconvexity is the only source of complexity, since some classes of nonconvex problems can be solved by polynomial time algorithms.
- Furthermore, there is no easy way to check if a given complicated function is convex or not (even in the case of multivariable polynomials).

Basic References

Eds, R. Horst and P.M. Pardalos Handbook of Global Optimization Springer, (1995)

Eds, P.M. Pardalos and H.E. Romeijn Handbook of Global Optimization, Vol. 2
Springer, (2002)

R. Horst, P.M. Pardalos, and N.V. Thoai Introduction to Global Optimization Springer, (2000), $2^{\text {nd }}$ Edition

