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Duality in Nonlinear Programming (NLP)



Duality in NLP

Duality theory plays a central role in mathematical
programming. This theory is closely related to the
theory of so–called minimax problems and
saddlepoints.

Let f, g, F be real–valued functions defined on
X ⊆ R

m, Y ⊆ R
n and X × Y ⊆ R

m × R
n, respectively.

Assume that the global minima and maxima which we
address below do exist in all cases.



Duality in NLP

Suppose that f(x) ≤ g(y) for all (x, y) ∈ X × Y . Then it
is clear that

max
x∈X

f(x) ≤ min
y∈Y

g(y).

Under certain conditions the above inequality can be
satisfied as an equality

max
x∈X

f(x) = min
y∈Y

g(y).

Each result of this kind is called a duality theorem.



Duality in NLP

It is easy to prove that the following inequality holds:

max
y∈Y

min
x∈X

F (x, y) ≤ min
x∈X

max
y∈Y

F (x, y).

Under certain conditions we can prove that

max
y∈Y

min
x∈X

F (x, y) = min
x∈X

max
y∈Y

F (x, y).

Each result of this type is called a minimax theorem.



Duality in NLP

The point (x∗, y∗) ∈ X × Y is a saddlepoint of F (with
respect to maximizing in Y and minimizing in X) if

F (x∗, y) ≤ F (x∗, y∗) ≤ F (x, y∗) for every (x, y) ∈ X × Y.

Theorem. The point (x∗, y∗) ∈ X × Y is a saddlepoint of
F iff

F (x∗, y∗) = max
y∈Y

min
x∈X

F (x, y) = min
x∈X

max
y∈Y

F (x, y).



Duality in NLP

Proof.

Let (x∗, y∗) be a saddlepoint of F .

F (x∗, y∗) ≤ min
x∈X

F (x, y∗) ≤ max
y∈Y

min
x∈X

F (x, y)

≤ min
x∈X

max
y∈Y

F (x, y) ≤ max
y∈Y

F (x∗, y)

≤ F (x∗, y∗).



Duality in NLP

If

F (x∗, y∗) = max
y∈Y

min
x∈X

F (x, y) = min
x∈X

max
y∈Y

F (x, y),

then we have

min
x∈X

F (x, y∗) = F (x∗, y∗) = max
y∈Y

F (x∗, y),

i.e. (x∗, y∗) is a saddlepoint. �



Duality in NLP

Consider now the optimization problem (primal)

min f(x)
(P)

s.t. g(x) ≤ 0, x ∈ X

where g : R
n → R

p and X ⊆ R
n.

The Lagrangian of (P) is

L(x, λ) = f(x) + λT g(x), λ ∈ R
p
+.



Duality in NLP

Note that

sup
λ≥0

{f(x) + λT g(x)} =

{

f(x) if g(x) ≤ 0

+∞ otherwise,

and Problem (P) can be restated in the form

min
x∈X

max
λ≥0

L(x, λ).



Duality in NLP

For λ ≥ 0 define the function

d(λ) = min
x∈X

L(x, λ)

which is concave (independently of the convexity of f or
g). Then the dual problem of (P) is defined to be the
following optimization problem:

max
λ≥0

d(λ) = max
λ≥0

min
x∈X

L(x, λ). (D)

The objective function d(λ) of (D) is often called dual
function.



Duality in NLP

Theorem. (Weak Duality Theorem) Let x∗ be a global
minimum point of the primal problem. Then for every
λ ≥ 0

d(λ) ≤ d (λ∗) ≤ f (x∗)

where λ∗ is a global maximum point of the dual.

Proof. Since λ ≥ 0 and g(x∗) ≤ 0 it follows that
λT g(x∗) ≤ 0. On the other hand, for any λ ≥ 0 and
x∗ ∈ X, d(λ) ≤ f(x∗) + λT g(x∗), and hence
d(λ) ≤ max

λ≥0
d(λ) = d(λ∗) ≤ f(x∗).



Duality in NLP

If d (λ∗) < f(x∗), then the difference f(x∗) − d(λ∗) is
called the “duality gap”.

The following result is then an immediate consequence
of last theorem.

Theorem. A point (x∗, λ∗) ∈ X × R
p
+ is a saddlepoint of

the Lagrangian L(x, λ) iff x∗ is a global minimum point of
the primal Problem (P), λ∗ is a global maximum point of
the dual (D), and the optimal values f(x∗) of (P) and
d(λ∗) of (D) coincide.



Duality in NLP

The next theorems provide a set of necessary and
sufficient conditions for (x∗, λ∗) to be a saddlepoint of
L(x, λ) and hence for the equivalent duality theorem
above.

Theorem. A point (x∗, λ∗) ∈ X × R
p
+ is a saddlepoint of

the Lagrangian L(x, λ) iff the following conditions hold:

(i) L(x∗, λ∗) = min{L(x, λ∗) : x ∈ X}.

(ii) g(x∗) ≤ 0.

(iii) λ∗T g(x∗) = 0.



Duality in NLP

Example. Consider the quadratic programming
problem

min f(x) = cT x + 1

2
xT Qx

s.t. Ax ≤ b,

where the (n × n)–matrix Q is symmetric positive
definite, c ∈ R

n, A ∈ R
m×n, b ∈ R

n.

The corresponding Lagrangian function is

L(x, λ) = cT x + 1

2
xTQx + λT (Ax − b) =

= (c + ATλ)Tx + 1

2
xTQx − bT λ.



Duality in NLP

The minimum of L(x, λ) with respect to x occurs at the point
x∗ where ∇L(x∗, λ) = 0, i.e.,

x∗ = −Q−1(c + ATλ).

Substituting in L we obtain the dual function

d(λ) = −
1

2
λT AQ−1ATλ − λT (b + AQ−1c) −

1

2
cT Q−1c.



Duality in NLP

Hence the dual problem is given by

max
λ≥0

d(λ) = −
1

2
λT Mλ + dT λ,

where M = AQ−1AT and d = −(b + AQ−1c).

If λ∗ is the solution of the dual problem, then
x∗ = −Q−1(c + AT λ∗) is the solution of the original primal
problem.

So, we see that in the convex quadratic case the duality gap
is zero.



Complexity Issues

The worst case time complexity.

We call an algorithm for a problem π polynomial if its
running time on a computer in terms of the number of
required elementary operations (such as arithmetic
operations, comparisons, branching instructions, ...) is,
in the worst case, bounded from above by a polynomial
of degree p in the size L of the input data.

We say that the algorithm runs in O(Lp) time.



Complexity Issues

Example:

The standard simplex algorithm for LP requires, in the
worst case, a number of steps which is exponential in
the size of the input data (e.g., Klee–Minty example).

Kachiyan’s ellipsoid algorithm (or Karmarkar’s interior
point algorithm) requires only a polynomial number of
steps, and each step in these algorithms consists of a
polynomial number of elementary operations.



Complexity Issues

In complexity theory, the collection of problems that can
be solved in polynomial time (i.e., by a polynomial
algorithm) is denoted by P.

Another important complexity class is NP, the set of all
problems solvable by a “nondeterministic algorithm” in
polynomial time. That is, NP is the class of problems for
which the correctness of a claimed solution (that may
have been computed by a tedious procedure) can be
verified in polynomial time.



Complexity Issues

Clearly P is a subset of NP, and it appears natural that
P 6= NP.

However, despite enormous research efforts, it remains
one of the most famous unsolved problems in
theoretical computer science whether the two classes P
and NP are different or not.



Complexity Issues

We say that a problem π1 is polynomially transformable
to a problem π2 if a polynomial algorithm for π2 would
imply a polynomial algorithm for π1.

A problem π is NP–complete if π ∈ NP and if every
other problem in NP can be polynomially transformed to
it.

Every NP–complete problem has the following
property: if it can be solved in polynomial time, then all
problems in NP can be solved in polynomial time. In
other words, if π is NP–complete and if π ∈ P then
P=NP.



Complexity Issues

NP

NP-complete

P

The world of NP



Complexity Issues

Let x1, . . . , xn be a set of Boolean variables whose value
is either true or false, and let xi denote the negation of
xi.

A literal is either a variable or its negation.

A Boolean formula is an expression that can be
constructed using literals, and the operations “and” (∧
or •) and “or” (∨ or +).

A Boolean formula which can be made true by
assigning some values to its variables is said to be
satisfiable .



Complexity Issues

The SATISFIABILITY problem is to check whether a
Boolean formula of the (conjunctive normal) form
F =

∧k
i=1

(
∨ni

j=1
ℓij), where ℓij denotes a literal, is

satisfiable .

Cook’s Theorem (1971). SATISFIABILITY is
NP–complete.



Complexity Issues

Soon after the appearance of Cook’s proof, the list of
NP–complete problems was substantially enriched.
Another “classical“ NP–complete problem is, for
example, to check whether a single linear constraint
n
∑

i=1

aixi = b, ai, b integers, has a solution in

xi ∈ {0, 1} (i = 1, . . . , n) (knapsack problem).

Other well–known examples include the traveling
salesman problem, the maximum clique problem, and
many classes of nonconvex quadratic optimization
problems.



Complexity Issues

How can we prove that some problem is NP–complete?

The following obvious consequence of the definition of
NP–completeness is often used:

If a problem π1 is NP–complete and π1 is polynomially
transformable to a problem π2 ∈ NP, then π2 is
NP–complete.

Note, however, that one cannot conclude
NP–completeness of π2 by transforming it polynomially
to another NP–complete problem π1.



Complexity Issues

A problem π is called NP–hard if there is an
NP–complete problem which can be polynomially
transformed to π.

Thus, an NP–hard problem shares with NP–complete
problems the basic property of being at least as difficult
as any other problem in NP-complete, but it may not
belong to NP.



Complexity: KKT Points in QP

Consider the following quadratic problem

min f(x) = cTx + 1

2
xTQx

s.t. x ≥ 0

where Q is an n× n symmetric matrix, and c ∈ R
n.



Complexity: KKT Points in QP

min f(x) = cTx + 1

2
xTQx

s.t. x ≥ 0

The KKT conditions for this problem become the
following so–called linear complementarity problem
(denoted by LCP(Q, c)): Find x ∈ R

n (or prove that no
such an x exists) such that

Qx + c ≥ 0, x ≥ 0

xT (Qx + c) = 0.



Complexity: KKT Points in QP

Hence, the complexity of finding (or proving existence
of) KKT points for the above quadratic problem is
reduced to the complexity of solving the corresponding
(symmetric) LCP.

Theorem. The Problem LCP (Q, c) is NP–hard.



Complexity: KKT Points in QP

Proof: Consider the following LCP (Q, c) problem in R
n+3

defined by

Q(n+3)×(n+3) =















−In en −en 0n

eT
n −1 −1 −1

−eT
n −1 −1 −1

0T
n −1 −1 −1















,

cT
n+3 = (a1, . . . , an,−b, b, 0),

where ai, i = 1, . . . , n, and b are positive integers, In is the
(n× n)–unit matrix and en ∈ R

n, 0n ∈ R
n are the vectors

of all ones and zeros, respectively.



Complexity: KKT Points in QP

Define the following knapsack problem. Find a feasible
solution to the system

n
∑

i=1

aixi = b, xi ∈ {0, 1} (i = 1, . . . , n).

This problem is known to be NP–complete. Next we
show that the LCP(Q, c) is solvable iff the associated
knapsack problem is solvable.

If x solves the knapsack problem, then
y = (a1x1, . . . , anxn, 0, 0, 0)T solves LCP(Q, c).



Complexity: KKT Points in QP

Conversely, assume the point y solves the LCP(Q, c)
given above.

Since Qy + c ≥ 0, y ≥ 0 we obtain
yn+1 = yn+2 = yn+3 = 0. This in turn implies that
n
∑

i=1

yi = b and 0 ≤ yi ≤ ai.

Finally, if yi < ai, then yT (Qy + c) = 0 enforces yi = 0.

Hence, x =
(

y1

a1

, . . . , yn

an

)

solves the knapsack problem.

�



Complexity: KKT Points in QP

Therefore, in quadratic programming, the problem of
deciding whether a Kuhn–Tucker point exists is
NP–hard.

Next we investigate the complexity of finding locally
optimal solutions to nonlinear optimization problems.



Complexity of Local Minimization

Computing locally optimal solutions is presumably
easier than finding globally optimal solutions.

However, from the complexity point of view we will show
that the problem of checking local optimality for a
feasible point and the problem of checking whether a
local minimum is strict, are NP–hard even for problems
with a simple structure in the constraints and the
objective.



Complexity of Local Minimization

We focus our investigation on problems that have
nonconvex quadratic objective and linear constraints,
that is, problems of the form:

min f(x)

s.t. Ax ≥ b, x ≥ 0

where f(x) is an indefinite quadratic function.



Complexity of Local Minimization

Consider now the 3–satisfiability (3–SAT) problem:
Given a set of Boolean variables x1, . . . , xn and given a
Boolean expression S (in conjunctive normal form) with
exactly 3 literals per clause,

S = (ℓ11 + ℓ12 + ℓ13)(ℓ21 + ℓ22 + ℓ23) . . . (ℓm1 + ℓm2 + ℓm3)

where each literal ℓij is either some variable xk or its
negations x̄k, is there a truth assignment for the
variables xi which makes S true?

Cook: 3–SAT is NP–complete.



Complexity of Local Minimization

For each instance of 3–satisfiability we construct an
instance of an optimization problem in the real variables
x0, x1, . . . , xn.

Clause in S ←→ a linear inequality
ℓij = xk xk

ℓij = xk 1− xk

... + x0 ≥
3

2
.

Example: for the clause x1 + x2 + x̄3 we have
x1 + x2 + (1− x3) + x0 ≥

3

2
.



Complexity of Local Minimization

Thus, we associate to S a system of linear inequalities

ASx ≥ (
3

2
+ c)

where As is a (sparse) matrix with entries in {0, 1,−1}

and xT = (x0, . . . , xn).

Let us consider the set D(S) ⊂ R
n+1 of feasible points

satisfying the following linear constraints

ASx ≥ (3
2

+ c)

1/2− x0 ≤ xi ≤ 1/2 + x0, xi ≥ 0 , i = 1, . . . , n



Complexity of Local Minimization

With a given instance S of the 3–satisfiability problem
we associate the following indefinite quadratic problem:

min
x∈D(S)

f(x) = −

n
∑

i=1

(xi − (1/2− x0))(xi − (1/2 + x0)).

Note that f(x) = −
n
∑

i=1

(xi− 1/2)2 + nx2
0, i.e., the objective

function is a separable indefinite quadratic function with
one convex and n concave terms.



Complexity of Local Minimization

In addition, we have the following:

a) f(x) ≥ 0 for all feasible points x. Therefore, the

feasible point x∗ = (0, 1/2, . . . , 1/2)T is a local (global)

minimum of f(x) since f(x∗) = 0.

b) f(x) = 0 if and only if xi ∈ {1/2− x0, 1/2 + x0}, for

i = 1, . . . , n.

Recall that a strict local minimum for the above quadratic

problem is a feasible point x∗ for which there exists an

ǫ > 0 such that

f(x∗) < f(x) for all x ∈ D(S) ∩ {x : 0 < ‖x− x∗‖ ≤ ǫ} .



Complexity of Local Minimization

The following theorem implies that checking strict local

optimality is NP–hard. Therefore, we cannot expect to

find a polynomial time algorithm for this problem

(assuming P 6= NP).

Theorem. S is satisfiable iff x∗ = (0, 1/2, . . . , 1/2)T is not

a strict minimum.

Proof: Let x1, . . . , xn be a truth assignment satisfying S.

For any x0 and i = 1, . . . , n consider

x0
i =







1/2− x0 if xi = 0

1/2 + x0 if xi = 1.



Complexity of Local Minimization

For x0 = (x0, x
0
1, . . . , x

0
n)T we have f(x0) = 0. Since x0 can be

chosen to be arbitrarily close to zero, x∗ is not a strict local

minimum.

Suppose now that x∗ = (0, 1/2, . . . , 1/2)T is not a strict local

minimum, that is, there exists y 6= x∗ such that

f(y) = f(x∗) = 0; therefore, yi ∈ {1/2− y0, 1/2 + y0} ,

i = 1, . . . , n. Then the variables xi, i = 1, . . . , n defined by

xi(y) =







0 if yi = 1/2− y0

1 if yi = 1/2 + y0

satisfy S.



Complexity of Local Minimization

If we fix x0 = 1/2 in the above indefinite quadratic
problem, then the objective function f(x) is concave
with x∗ as the global minimum. Therefore, the problem
of checking if a given point is a strict global minimum of
a concave minimization problem is NP–hard.

Consider now the problem of checking local optimality.
We prove that this problem is NP–hard.



Complexity of Local Minimization

Given the 3–satisfiability problem, consider the
following indefinite quadratic program:

min
x∈D(S)

φ(x) = −
n

∑

i=1

(xi − (1/2− x0)) (xi − (1/2 + x0))−

−
1

2n

n
∑

i=1

(xi − 1/2)2.

Theorem. S is satisfiable iff x∗ = (0, 1/2, . . . , 1/2) is not
a local minimum.



Complexity of Local Minimization

Proof: Let x1, . . . , xn be a truth assignment satisfying S.

Given any x0 arbitrary close to zero, define for i = 1, . . . , n

x0
i =







1/2− x0 if xi = 0

1/2 + x0 if xi = 1.

Then we can easily see that x0 = (x0, x
0
1, . . . , x

0
n) is

feasible and

φ(x0) = −
x2

0

2
< 0 = φ(x∗).

Hence, x∗ is not a local minimum.



Complexity of Local Minimization

Suppose now that x∗ is not a local minimum. Then there
exists a point x = (x0, . . . , xn)T such that φ(x) < 0. We will
now show, by contradiction, that we can find in each clause
of S one literal of value > 1/2. This would imply that S is
satisfiable with

x̄i =

{

0 if xi ≤ 1/2

1 if xi > 1/2.



Complexity of Local Minimization

For contradiction, assume that the value of each literal in
some clause is ≤ 1/2. For instance, consider a constraint
(clause) of the form

x1 + x2 + x̄3 + x0 ≥ 3/2.

For this inequality to hold, we must have a value ≥ 1

2
− x0

3

for at least one literal l. Consider the case l = x1 (the other
cases follow by an analogous argument).



Complexity of Local Minimization

By assumption we have that x1 ≤ 1/2, so

1

2
−

x0

3
≤ x1 ≤

1

2
⇒ −

x0

3
≤ x1 −

1

2
≤ 0.

Hence,

(x1 − 1/2)2 ≤
x2

0

9
.

Let

p(x) = −
n
∑

i=1

(xi − (1/2− x0))(xi − (1/2 + x0))

= −
n
∑

i=1

((xi − 1/2)2 − x2
0)

be the “penalty term” in the objective function.
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Then, since (x1 − 1/2)2 ≤ x2

0

9
,

p(x) ≥ −(x1 − 1/2)2 + x2
0 ≥

8

9
x2

0.

On the other hand, for the “payoff term”

q(x) = − 1

2n

n
∑

i=1

(xi − 1/2)2 we obtain q(x) ≥ −x2
0/2.

Hence φ(x) ≥ 8

9
x2

0 −
1

2
x2

0 > 0, a contradiction. �



Complexity of Local Minimization

Complexity analysis is fundamental in order to

understand the inherent difficulty of nonconvex problems

and has been a motivation to develop new algorithms.

It is not clear whether nonconvexity is the only source of

complexity, since some classes of nonconvex problems

can be solved by polynomial time algorithms.

Furthermore, there is no easy way to check if a given

complicated function is convex or not (even in the case of

multivariable polynomials).
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