О возмущениях алгебраических автоморфизмов двумерного тора

В. З. Гринес, Д. И. Минц, Е. Е. Чилина

ниу вшэ нн

2021

Представим окружность \mathbb{S}^1 как фактор-группу группы \mathbb{R}^1 по группе $\mathbb{Z}: \mathbb{S}^1 = \mathbb{R}^1/\mathbb{Z}$ с естественной проекцией $p_1: \mathbb{R}^1 \to \mathbb{S}^1$ и двумерный тор \mathbb{T}^2 как фактор-группу группы \mathbb{R}^2 по целочисленной решётке $\Gamma = \mathbb{Z} \oplus \mathbb{Z}: \mathbb{T}^2 = \mathbb{R}^2/\Gamma$ с естественной проекцией $p_2: \mathbb{R}^2 \to \mathbb{T}^2$.

Пусть $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}$ – целочисленная квадратная матрица второго порядка и det $A = \pm 1$. Тогда она индуцирует отображение $\hat{A} : \mathbb{T}^2 \to \mathbb{T}^2$, заданное формулой

$$\hat{A}: egin{cases} \overline{x} = ax + by \pmod{1} \ \overline{y} = cx + dy \pmod{1} \end{cases}$$

которое является алгебраическим автоморфизмом двумерного тора.

Если собственные значения матрицы A не равны по модулю единице, то автоморфизм \hat{A} называется **гиперболическим**. В противном случае автоморфизм \hat{A} будем называть **негиперболическим**.

Периодический автоморфизм двумерного тора

Определение

Автоморфизм \hat{A} называется периодическим, если существует такое $n \in \mathbb{N}$, что $\hat{A}^n = id$. Наименьшее из таких n называется периодом \hat{A} .

Топологическая классификация негиперболических алгебраических автоморфизмов двумерного тора

Из результатов работы [1] следует:

Утверждение.

Каждый класс топологической сопряженности негиперболических алгебраических автоморфизмов двумерного тора задан в точности одной из следующих матриц:

$$A_{1}(m) = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, A_{2}(m) = \begin{pmatrix} -1 & m \\ 0 & -1 \end{pmatrix} (m \in \{0, 1, 2, \dots\});$$
$$A_{3} = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, A_{4} = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix},$$
$$A_{5} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, A_{6} = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, A_{7} = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}.$$

 S.Batterson. The dynamics of Morse-Smale diffeomorphisms on the torus. Transactions of the American Mathematical Society, Vol. 256 (Dec., 1979), pp. 395-403

Топологическая классификация негиперболических алгебраических автоморфизмов двумерного тора

Следствие.

Существует 6 классов топологической сопряжённости периодических алгебраических автоморфизмов двумерного тора, каждый из которых задан в точности одной из следующих матриц:

$$\begin{aligned} A_2(0) &= \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, A_4 = \begin{pmatrix} 1 & 1 \\ 0 & -1 \end{pmatrix}, \\ A_5 &= \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, A_6 = \begin{pmatrix} 0 & 1 \\ -1 & -1 \end{pmatrix}, A_7 = \begin{pmatrix} 0 & -1 \\ 1 & 1 \end{pmatrix}. \end{aligned}$$

Матрицы $A_2(0), A_5, A_6, A_7$ индуцируют сохраняющие ориентацию автоморфизмы двумерного тора периода 2, 4, 3 и 6 соответственно, а матрицы A_3, A_4 индуцируют не сохраняющие ориентацию автоморфизмы двумерного тора периода 2.

Диффеоморфизм Морса-Смейла

Диффеоморфизм $f: M^n \to M^n$, заданный на гладком замкнутом (компактном без края) связном ориентируемом *п*-многообразии, $(n \ge 1), M^n$ называется **диффеоморфизмом Морса-Смейла**, если

- неблуждающее множество Ω_f конечно и гиперболично;
- многообразия W^s_p, W^u_q пересекаются трансверсально для любых периодических точек p, q.

Диффеоморфизм Морса-Смейла f называется градиентно-подобным, если из условия $W^s_{\sigma_1} \cap W^u_{\sigma_2} \neq \emptyset$ для различных точек $\sigma_1, \sigma_2 \in \Omega_f$ следует, что dim $W^u_{\sigma_1} < \dim W^u_{\sigma_2}$.

Утверждение

Диффеоморфизм Морса-Смейла $f: M^2 \to M^2$, где M^2 – замкнутая ориентируемая поверхность, является градиентно-подобным, если устойчивые и неустойчивые многообразия различных седловых точек не пересекаются.

Рассмотрим диффеоморфизм $M_z : \mathbb{R}^1 \to \mathbb{R}^1$, который зависит от единственного параметра $\varepsilon \in (-1, 1)$ и на каждом промежутке $(k; k+1], k \in \mathbb{Z}$, задаётся формулой:

$$M_{z}: \overline{z} = k + \frac{1}{2} + \frac{1}{\pi} \operatorname{arctg} \left(\frac{1 - \varepsilon}{1 + \varepsilon} \operatorname{tg} \left(\pi \left(z - \frac{1}{2} \right) \right) \right).$$

Рассмотрим отображение $M_{z,p_1}:\mathbb{S}^1\to\mathbb{S}^1$, заданное следующей формулой:

$$M_{z,p_1} = p_1(M_z(p_1^{-1}(z))),$$

где под $p_1^{-1}(z)$ подразумевается полный прообраз точки z.

Отображение M_{z,p_1} мы будем называть отображением Мёбиуса на окружности.

Отображение Мёбиуса на двумерном торе

Рассмотрим отображение двумерного тора, заданное формулой:

$$M_{arepsilon,\chi_2} = egin{pmatrix} M_{x,\chi_1} & 0 \ 0 & M_{y,\chi_1} \end{pmatrix}$$

которое будем называть отображением Мёбиуса на двумерном торе, где $arepsilon \in (-1,1).$

При $\varepsilon = 0$ отображение M_{ε, ρ_2} тождественно. При $\varepsilon \neq 0$ отображение M_{ε, ρ_2} является градиентно-подобным диффеоморфизмом, неблуждающее множество которого состоит из 4-х неподвижных точек: стока, источника и 2-х сёдел. Устойчивые и неустойчивые многообразия различных седловых точек не пересекаются. Ограничение отображения M_{ε, χ_2} на инвариантные многообразия неподвижных точек сохраняет его ориентацию. Из работы [2] следует, что отображение M_{ε, χ_2} при $\varepsilon \neq 0$ включается в топологический поток.

Фазовый портрет потока, в который включается отображение Мёбиуса на двумерном торе при $\varepsilon \in (-1,0)$

Основной результат

Пусть $f_{\varepsilon,A} = M_{\varepsilon,p_2} \circ \hat{A}$, где M_{ε,p_2} введённое ранее отображение Мёбиуса на двумерном торе, а \hat{A} некоторый алгебраический автоморфизм.

Теорема 1

Отображение
$$f_{\varepsilon,A}$$
, где
 $A \in \{A_2(0) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}, A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, A_5 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}\}$, при
 $\varepsilon \in (-1,0) \cup (0,1)$ представляет собой градиентно-подобный
диффеоморфизм.

Теорема 2

Отображение $f_{\varepsilon,A}$, где $A \in \{A_1(m) = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, m = 2n \ (n \in \mathbb{N})\}$, при $\varepsilon \in (-1,0) \cup (0,1)$ представляет собой диффеоморфизм Морса-Смейла, блуждающее множество которого содержит в точности m гетероклинических орбит.

Отображение $\hat{A}_2(0)$, индуцированное матрицей $A_2(0) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, является сохраняющим ориентацию автоморфизмом двумерного тора периода 2.

Для отображения $\hat{A}_2(0)$ существует в точности 4 неподвижные точки $(p_2(\frac{1}{2},\frac{1}{2}), p_2(0,0), p_2(0,\frac{1}{2})$ и $p_2(\frac{1}{2},0))$, которые совпадают с неблуждающим множеством отображения Мёбиуса на торе M_{ε,p_2} . На плоскости в фундаментальной области $[0,1] \times [0,1]$ отображение представляет собой поворот на π радиан относительно точки $(\frac{1}{2};\frac{1}{2})$.

Отображение $f_{\varepsilon,A_2(0)} = M_{\varepsilon,p_2} \circ \hat{A}_2(0)$ двумерного тора является градиентно-подобным диффеоморфизмом, неблуждающее множество которого совпадает с множеством неподвижных точек возмущаемого автоморфизма.

Отображение \hat{A}_5 , индуцированное матрицей $A_5 = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}$, является сохраняющим ориентацию автоморфизмом двумерного тора периода 4.

Для отображения \hat{A}_5 множество точек тора, период которых меньше 4, состоит из 4-х точек, которые совпадают с неблуждающим множеством отображения Мёбиуса на торе M_{ε,p_2} . При этом точки $p_2(\frac{1}{2},\frac{1}{2})$ и $p_2(0,0)$ являются неподвижными, точки $p_2(0,\frac{1}{2})$ и $p_2(\frac{1}{2},0)$ образуют орбиту периода 2. На плоскости в фундаментальной области $[0,1] \times [0,1]$ отображение представляет собой поворот на $\frac{\pi}{2}$ радиан относительно точки $(\frac{1}{2},\frac{1}{2})$.

Отображение $f_{\varepsilon,A_5} = M_{\varepsilon,p_2} \circ \hat{A}_5$ двумерного тора является градиентно-подобным диффеоморфизмом, неблуждающее множество которого совпадает с множеством точек периода, меньшего периода возмущаемого автоморфизма. При этом при возмущении одна неподвижная точка становится стоком, другая источником, а орбита периода 2 становится седловой орбитой периода 2.

Отображение \hat{A}_3 , индуцированное матрицей $A_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}$, является не сохраняющим ориентацию автоморфизмом двумерного тора периода 2.

Для отображения \hat{A}_3 множество неподвижных точек представляет две параллели тора, которые являются проекциями прямых y = 0 и $y = \frac{1}{2}$ относительно p_2 . На плоскости в фундаментальной области $[0,1] \times [0,1]$ автоморфизм представляет собой отображение симметрии относительно оси $y = \frac{1}{2}$.

Отображение $f_{\varepsilon,A_3} = M_{\varepsilon,p_2} \circ \hat{A}_3$ двумерного тора является градиентно-подобным диффеоморфизмом, неблуждающее множество которого ($p_2(\frac{1}{2},\frac{1}{2})$, $p_2(0,0)$, $p_2(0,\frac{1}{2})$ и $p_2(\frac{1}{2},0)$) включено в множество неподвижных точек возмущаемого автоморфизма.

Теорема 2

Отображение $f_{\varepsilon,A}$, где $A \in \{A_1(m) = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}, m = 2n \ (n \in \mathbb{N})\}$, при $\varepsilon \in (-1,0) \cup (0,1)$ представляет собой диффеоморфизм Морса-Смейла, блуждающее множество которого содержит в точности m гетероклинических орбит.

Рассмотрим возмущение $f_{\varepsilon,A_1(m)}$ негиперболического алгебраического автоморфизма двумерного тора, индуцированного матрицей $A_1(m) = \begin{pmatrix} 1 & m \\ 0 & 1 \end{pmatrix}$ при m = 2l $(l \in \mathbb{N})$ и $-1 < \varepsilon < 0$. Каждая параллель тора является множеством, инвариантным относительно отображения $\hat{A}_1(m)$. Ограничение отображения $\hat{A}_1(m)$ на каждую параллель тора действует как поворот на некоторый угол α на окружности.

В дальнейшем для краткости будем писать f_{ε} вместо $f_{\varepsilon,A_1(m)}$ и A вместо $A_1(m)$.

Шаг 1.

Непосредственной проверкой убеждаемся, что неблуждающее множество диффеоморфизма f_{ε} конечно, гиперболично и состоит из 4-х неподвижных точек: 1 стоковая – $p_2(\frac{1}{2}, \frac{1}{2})$, 1 источниковая – $p_2(0, 0)$, и 2 седловые – $p_2(0, \frac{1}{2})$ и $p_2(\frac{1}{2}, 0)$.

Шаг 2.

Для исследования поведения устойчивого и неустойчивого многообразий седловой точки $p_2(0, \frac{1}{2})$ рассмотрим такое накрывающее для f_{ε} отображение g_{ε} в области $\mathbb{R} \times [0, 1]$, что точки вида $(k, \frac{1}{2})$ ($k \in \mathbb{Z}$) являются седловыми неподвижными точками диффеоморфизма g_{ε} , а точки вида $(k + \frac{1}{2}, \frac{1}{2})$ ($k \in \mathbb{Z}$) являются источниковыми неподвижными точками диффеоморфизма g_{ε} .

Рассмотрим седловую точку с координатами $(0, \frac{1}{2})$ и обозначим её через $\bar{\sigma}_1$.

Используя теорему Адамара-Перрона, можно рассмотреть локальное поведение устойчивого и неустойчивого многообразия точки $\bar{\sigma}_1$ в некоторой малой её окрестности. Зная действие накрывающего отображения g_{ε} , доказывается, что устойчивое многообразие седла $\bar{\sigma}_1$ идёт из источников.

Выберем фундаментальную область на неустойчивом многообразие точки $\bar{\sigma}_1$. Рассматривая итерации фундаментальной области, методом математической индукции доказывается, что неустойчивое многообразие седла $\bar{\sigma}_1$ выглядит как график некоторой строго возрастающей функции такой, что при $x \to +\infty \ y \to 1$, а при $x \to -\infty \ y \to 0$.

Шаг З.

Для исследования поведения устойчивого и неустойчивого многообразий седловой точки $p_2(\frac{1}{2},\frac{1}{2})$ рассмотрим такое накрывающее для f_{ε} отображение h_{ε} в области $\mathbb{R} \times [0,1]$, что точки вида $(k + \frac{1}{2}, 0)$ ($k \in \mathbb{Z}$) являются седловыми неподвижными точками диффеоморфизма h_{ε} , а точки вида (k,0) ($k \in \mathbb{Z}$) являются стоковыми неподвижными точками диффеоморфизма g_{ε} .

Рассмотрим седловую точку с координатами $(\frac{1}{2}, 0)$ и обозначим её через $\bar{\sigma}_2$.

Аналогично доказывается, что неустойчивое многообразие седла $\bar{\sigma}_2$ идёт в стоки, а устойчивое представляет собой график некоторой строго убывающей функции такой, что при $x \to -\infty \ y \to \frac{1}{2}$.

Далее рассматривается точка $\bar{\sigma}'_2(\frac{1}{2},0)$, конгруэнтная точке $\bar{\sigma}_2$ относительно проекции p_2 , и накрывающее отображение такое, что точка $\bar{\sigma}'_2$ является седловой неподвижной точкой.

Аналогично доказывается, что неустойчивое многообразие седла $\bar{\sigma}'_2$ идёт в стоки, а устойчивое представляет собой график некоторой строго убывающей функции такой, что при $x \to +\infty \ y \to \frac{1}{2}$.

Шаг 4.

В области $\mathbb{R} \times [0,1]$ рассматривается пересечение неустойчивого многообразия точки $\bar{\sigma}_1$ с устойчивыми многообразиями точек, конгруэнтных точкам $\bar{\sigma}_2$ относительно проекции p_2 .

Обозначим через I_k устойчивое многообразие точки $(k + \frac{1}{2}, 0)$ относительно отображения h_{ε} . Точку пересечения неустойчивого многообразия точки $\bar{\sigma}_1$ относительно отображения g_{ε} с многообразием I_k обозначим через N_k . Под действием отображения g_{ε} точка N_k итерируется в точку, лежащую на многообразии $I_{k-\frac{m}{2}}$. Таким образом, в области $\mathbb{R} \times [0, \frac{1}{2}]$ содержится $\frac{m}{2}$ орбит, которые при проекции на двумерный тор будут представлять $\frac{m}{2}$ гетероклинических орбит.

Используя свойства накрывающего пространства и естественной проекции, доказывается, что любая замкнутая кривая, образованная пересечением устойчивого и неустойчивого многообразий седловых точек, заключенная между двумя соседними точками одной гетероклинической орбиты, принадлежит классу петель $< \frac{m}{2}, 0 >$.

Шаг 5.

Используя доказанные свойства накрывающих отображений, доказываем, что устойчивое и неустойчивое многообразия различных седловых точек пересекаются трансверсально.

Шаг б.

Аналогично доказывается, что в области $\mathbb{R} \times [\frac{1}{2}, 1]$ многообразия пересекаются трансверсально, образуя $\frac{m}{2}$ гетероклинических. При этом замкнутые кривые на торе, образованные пересечением устойчивого и неустойчивого многообразия различных седловых точек, заключенных между двумя соседними точками одной гетероклинической орбиты, принадлежат классу петель $< \frac{m}{2}, 0 >$.

Шаг 7.

Используя изученные свойства накрывающих отображений, доказывается, что отображение f_{ε} является диффеоморфизмом Морса-Смейла, блуждающее множество которого содержит в точности m гетероклинических орбит.