Topology of ambient manifolds of nonsingular flows with three nontwisted orbits

Danila D. Shubin

The research was conducted in collaboration with Olga Pochinka

・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・
・

Studied objects: *nonsingular Morse-Smale flows (NMS flows)*, i. e. Morse-Smale flows without fixed points and with three limit cycles.

Definition

The flow f^t is called *Morse-Smale flow* if

- non-wandering set Ω(f^t) consists of finite number of hyperbolic fixed points and periodic orbits
- stable and unstable manifolds of fixed points and periodic orbits intersect transversally

General theory of dynamical systems implies that ambient manifold M^n is the union of stable and unstable manifolds of periodic orbits.

It is easy to see, that in case of two orbits the ambient manifold of NMS-flow is lens space.

Definition

The 3-manifold is called *lens space* if it consists of two solid tori V_1, V_2 and $V_1 \cap V_2 = \partial V_1 = \partial V_2$.

Examples of lens spaces: \mathbb{S}^3 , $\mathbb{S}^2 \times \mathbb{S}^1$, $\mathbb{R}P^3$

Рис.: Two not topologically equivalent flows on $\mathbb{S}^2\times\mathbb{S}^1$

In the paper¹ the topology on NMS-flows with 2 and 3 periodic orbits was studied.

Theorem

Let M^3_+ be prime orientable manifold which is ambient manifold for some NMS-flows with 2 or 3 nontwisted periodic orbits, then M^3_+ is a lens space.

Definition

 $\mathit{n}\text{-manifold}$ is called prime if it cannot be expressed as a connected sum of two $\mathit{n}\text{-manifolds}$ other than \mathbb{S}^3

Definition

A periodic orbit of a flow is called nontwisted if its tabular neighbourhood is homeomorphic to solid torus $\mathbb{D}^2\times\mathbb{S}^1$

¹B. Campos, A. Cordero, J. Martínez Alfaro, P. Vindel. NMS flows on three-dimensional manifolds with one saddle periodic orbit. Acta Mathematica Sinica. 20 (2004), no. 1, 47–56.

Definition

 $\mathit{n}\text{-manifold}$ is called prime if it cannot be expressed as a connected sum of two $\mathit{n}\text{-manifolds}$ other than \mathbb{S}^3

Definition

n-manifold is called *irreducible* if any embedded (n - 1)-sphere bounds an embedded *n*-ball.

Theorem

If 3-manifold is irreducible, then it is prime.

But the result by Campos is wrong! We can give countably many counterexamples:

Theorem

There are countably many pairwise non homeomorphic orientable prime 3-manifolds, which admit NMS-flow with 3 periodic orbits and non homeomorphic to any lens space.

We will construct examples by taking suspension over a surface diffeomorphism with three periodic orbit:

Definition

Consider diffeomorphism $f: S \to S$ and construct a diffeomorphism $F: S \times \mathbb{R}^1 \to S \times \mathbb{R}^1$ defined by the formula:

$$F(x,r)=(f(x),r-1).$$

Let $\bar{b}^t(x,r) = (x, r+t)$ be the flow on $S \times \mathbb{R}^1$ and $\Pi_f = (S \times \mathbb{R}^1)/\langle F \rangle$ be quotient space. Let $p_f \colon S \times \mathbb{R}^1 \to \Pi_f$ be natural projection and $b_f^t = p_f \bar{b}^t p_f^{-1}$ be the flow on Π_f . The flow b_f^t is called *suspension over diffeomorpism* f.

A D > 4 目 > 4 目 > 4 目 > 5 4 回 > 3 Q Q

So, now it is enough to find appropriate diffeomorphisms.

In the paper² diffeomorhisms of orientable surfaces with 3 periodic orbits are considered.

Let g denote genus of the surface, then the diffeomorpism has following periodic data:

•
$$m_{\omega} = 1; m_{\sigma} = 2g; m_{\alpha} = 1; g > 0$$

And, vice versa, there is a gradient-like diffeomorpism of surface with genus g for any set of periodic data listed above.

²T. Medvedev, E. Nozdrinova, and O. Pochinka, On Periodic Data of Diffeomorphisms with One Saddle Orbit, Top. Proc. 54:(2019) pp:=49-68.

Рис.:
$$m_{\omega} = 1, m_{\sigma} = 4, m_{\alpha} = 1, g = 2$$

▲□▶ ▲圖▶ ▲臣▶ ▲臣▶

æ

Рис.:
$$m_{\omega} = 1, m_{\sigma} = 3, m_{\alpha} = 2, g = 1$$

◆□▶ ◆圖▶ ◆臣▶ ◆臣▶

臣

Рис.: $m_{\omega} = 2, m_{\sigma} = 5, m_{\alpha} = 1, g = 2$

æ

Theorem If 3-manifold is irreducible, then it is prime.

Proposition (Proposition 1.6³)

If covering space of manifold M is irreducible, then M is irreducible. It is easy to show, that any M_{f_g} is covered by \mathbb{R}^3 , since any closed surface is covered either by \mathbb{R}^2 or 2-dimentional hyperbolic space. So, M_{f_g} is irreducible, thus it is prime.

³Hatcher A. Notes on basic 3-manifold topology. – 2007. 🗇 🗧 👘 📳 🖉 👁 👁

Show, that M_{f_g} are really counterexamples!

Proposition $(^4)$

Any lens space admits universal covering by \mathbb{S}^3 .

As we have shown, any M_{f_g} is covered by \mathbb{R}^3 . Since the universal covering space is unique for any manifold, M_{f_g} is

not homeomorphic to a lens space.

Any gradient-like flow is topologically conjugated to diffeomorphism of the form $\phi_g \xi_g^1$, where ϕ_g is periodic, coincides with f_g on nonwandering set and its period is a period of saddle separatricies and ξ_g^1 is unit-time shift of gradient-like flow. So, f_g and ϕ_g are homotopic.

Proposition (5)

If maps a, b: $S \rightarrow S$ are homotopis, then M_a and M_b are homeomorphic.

So, further we will consider M_{ϕ_g} instead of M_{f_g} .

Definition

A model Seifert fibering of $\mathbb{S}^1 \times \mathbb{D}^2$ is a decomposition of $\mathbb{S}^1 \times \mathbb{D}^2$ into disjoint circles, called fibers, constructed as follows. Starting with $[0,1] \times \mathbb{D}^2$ decomposed into the segments $[0,1] \times \{x\}$, identify the disks $\{0\} \times \mathbb{D}^2$ and $\{1\} \times \mathbb{D}^2$ via a $2\pi p/q$ rotation, for $p/q \in \mathbb{Q}$ with p and q relatively prime.

Definition

A Seifert fibering of a 3 manifold M is a decomposition of M into disjoint circles, the fibers, such that each fiber has a neighborhood diffeomorphic, preserving fibers, to a neighborhood of a fiber in some model Seifert fibering of $\mathbb{S}^1 \times \mathbb{D}^2$. A Seifert manifold is one which possesses a Seifert fibering.

The number q in the previous definition is called *multiplicity* if a fiber.

For the diffeomorphism with periodic data

 $m_{\omega} = 1$; $m_{\sigma} = 2g$; $m_{\alpha} = 1$; g > 0 period of saddle separatricies is 4g. So, the multiplicities of the fibers corresponding to periodic orbits are 4g, 4g, 2 and 1 for the remaining fibers.

Obviously, multiplicity is invariant under the Seivert fibering's isomorphism (homeomorphism which preserves fibers).

According to the classical theorem (Theorem 2.3)⁶ if Seifert manifold has universal covering space \mathbb{R}^3 , then all its Seifert fiberings are isomorphic. So, we conclude, that manifolds $M_{\phi g}$ are non homeomorphic for different g

⁶Hatcher A. Notes on basic 3-manifold topology. – 2007. B + () + () + ()

Theorem

There are countably many pairwise non homeomorphic orientable prime 3-manifolds, which admit NMS-flow with 3 periodic orbits and non homeomorphic to any lens space.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへぐ

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 善臣 - のへで