On gradient-like flows on manifolds of dimension four and greater

Elena Gurevich

Higher School of Economics, Nizhnii Novgorod

- Introduction

A problem

A flow f^t on a smooth closed manifold M^n is called gradient-like if

- 1. non-wandering set of *f*^{*t*} consists of finite number of hyperbolic equilibria;
- 2. invariant manifolds of equilibria intersect each other only transversally.

Problems:

- connection of dynamics with topology of ambient manifold;
- topological classification.

Morse inequalities

Smale, 1960-1961: any closed manifold admits a gradient-like flow, and the following theorem is true.

Statement

Let f^t be a gradient-like flow on closed M^n , c_i be a number of equilibria of f^t having unstable manifold of dimension i and $\beta_i = \operatorname{rank} H_i(X), i \in \{0, ..., n\}$. Then

Poincare-Hopf formula (1885, 1926):

$$\sum_p ind_F(p) = \chi(M^n)$$

Poincare-Hopf formula

$$\sum_{p} ind_{F}(p) = \chi(M^{n}),$$

in particular, for $M^{2} = \underbrace{T^{2} \sharp \dots \sharp T^{2}}_{g}$ and
the flow f^{t} with $k_{f^{t}}$ saddles and $l_{f^{t}}$ nodes,

$$k_{f^t} - l_{f^t} = 2 - 2g$$

Clarification of carrying manifold topology

We will say that a gradient-like flow f^t belongs to the class $G(M^n)$ whenever the following two conditions hold:

- (a) Morse index (i.e. dimension of unstable manifold) of a saddle equilibrium state of the flow f^t equals either 1 or n-1;
- (b) invariant manifolds of distinct saddle equilibria do not intersect each other.

Clarification of carrying manifold topology

We will say that a gradient-like flow f^t belongs to the class $G(M^n)$ whenever the following two conditions hold:

- (a) Morse index (i.e. dimension of unstable manifold) of a saddle equilibrium state of the flow f^t equals either 1 or n-1;
- (b) invariant manifolds of distinct saddle equilibria do not intersect each other.

Theorem (Bonatti, Grines, Medvedev, Pécou, 2002; Grines, G., Pochinka, 2012)

Let $f^t \in G(M^n)$, $n \ge 2$ and $g_{f^t} = (k_{f^t} - l_{f^t} + 2)/2$. Then M^n is homeomorphic either to the sphere \mathbb{S}_0^n if $g_{f^t} = 0$ or to a connected sum $\mathbb{S}_{g_{f^t}}^n$ of $g_{f^t} > 0$ copies of $\mathbb{S}^{n-1} \times \mathbb{S}^1$.

Clarification of carrying manifold topology

We will say that a gradient-like flow f^t belongs to the class $G(M^n)$ whenever the following two conditions hold:

- (a) Morse index (i.e. dimension of unstable manifold) of a saddle equilibrium state of the flow f^t equals either 1 or n-1;
- (b) invariant manifolds of distinct saddle equilibria do not intersect each other.

Theorem (Bonatti, Grines, Medvedev, Pécou, 2002; Grines, G., Pochinka, 2012)

Let $f^t \in G(M^n)$, $n \ge 2$ and $g_{f^t} = (k_{f^t} - l_{f^t} + 2)/2$. Then M^n is homeomorphic either to the sphere \mathbb{S}_0^n if $g_{f^t} = 0$ or to a connected sum $\mathbb{S}_{g_{f^t}}^n$ of $g_{f^t} > 0$ copies of $\mathbb{S}^{n-1} \times \mathbb{S}^1$.

Theorem (Pilyugin, 1978; Grines, G., Maksimenko, 2021)

Let f^t be gradient-like flow on \mathbb{S}_g^n , $g \ge 0$, $n \ge 4$. If invariant manifolds of distinct saddle equilibria of f^t do not intersect each other, then Morse index of each saddle equilibrium equals either 1 or (n-1), that is $f^t \in G(\mathbb{S}_g^n)$.

Idea of proof

Theorem (Pilyugin, 1978; Grines, G., Maksimenko, 2021)

Let f^t be gradient-like flow on \mathbb{S}_g^n , $g \ge 0$, $n \ge 4$. If invariant manifolds of distinct saddle equilibria of f^t do not intersect each other, then Morse index of each saddle equilibrium equals either 1 or (n-1), that is $f^t \in G(\mathbb{S}_g^n)$.

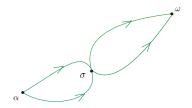


Figure: Closures of invariant manifolds of σ are spheres $S^i = cl W^u_{\sigma} = W^u_{\sigma} \cup \alpha$, $S^{n-i} = cl W^s_{\sigma} = W^s_{\sigma} \cup \omega$, homological to zero on \mathbb{S}^n_g for $i \in \{2, ..., (n-2)\}$

Theorem (Bonatti, Grines, Medvedev, Pécou, 2002; Grines, G., Pochinka, 2012)

Let $f^t \in G(M^n)$, $n \ge 2$ and $g_{f^t} = (k_{f^t} - l_{f^t} + 2)/2$. Then M^n is homeomorphic either to the sphere \mathbb{S}_0^n if $g_{f^t} = 0$ or to a connected sum $\mathbb{S}_{g_{f^t}}^n$ of $g_{f^t} > 0$ copies of $\mathbb{S}^{n-1} \times \mathbb{S}^1$.

Idea of proof:

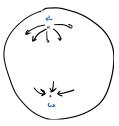


Figure: If non-wandering set of f^t does not contain any saddles then M^n is sphere

Theorem (Bonatti, Grines, Medvedev, Pécou, 2002; Grines, G., Pochinka, 2012)

Let $f^t \in G(M^n)$, $n \ge 2$ and $g_{f^t} = (k_{f^t} - l_{f^t} + 2)/2$. Then M^n is homeomorphic either to the sphere \mathbb{S}_0^n if $g_{f^t} = 0$ or to a connected sum $\mathbb{S}_{g_{f^t}}^n$ of $g_{f^t} > 0$ copies of $\mathbb{S}^{n-1} \times \mathbb{S}^1$.

Idea of proof:

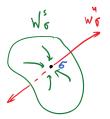


Figure: Suppose non-wandering set of f^t contains a saddle...

Theorem (Bonatti, Grines, Medvedev, Pécou, 2002; Grines, G., Pochinka, 2012)

Let $f^t \in G(M^n)$, $n \ge 2$ and $g_{f^t} = (k_{f^t} - l_{f^t} + 2)/2$. Then M^n is homeomorphic either to the sphere \mathbb{S}_0^n if $g_{f^t} = 0$ or to a connected sum $\mathbb{S}_{g_{f^t}}^n$ of $g_{f^t} > 0$ copies of $\mathbb{S}^{n-1} \times \mathbb{S}^1$.

Idea of proof:

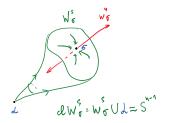


Figure: Suppose non-wandering set of f^t contains a saddle...

Topology of ambient manifold

Idea of proof:

Figure: A trapping $hh A_{\sigma} \cong \mathbb{S}^{n-1} \times [-1,1]$ of clW_{σ}^s

- Topology of ambient manifold

Idea of proof:

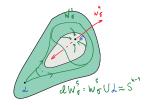


Figure: A trapping $hh A_{\sigma} \cong \mathbb{S}^{n-1} \times [-1,1]$ of clW_{σ}^{s}

Glue two *n*-balls to $M^n \setminus int A_\sigma$, and define on obtained manifold M_1 a flow $f_1^t \in G(M_1)$ such that:

- f_1^t coincides with f^t on $M^n \setminus int A_\sigma$;
- f_1^t has a sink on each ball.

- Topology of ambient manifold

Idea of proof:

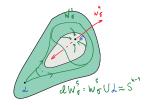


Figure: A trapping $hh A_{\sigma} \cong \mathbb{S}^{n-1} \times [-1,1]$ of clW_{σ}^s

Glue two *n*-balls to $M^n \setminus int A_\sigma$, and define on obtained manifold M_1 a flow $f_1^t \in G(M_1)$ such that:

- f_1^t coincides with f^t on $M^n \setminus int A_\sigma$;
- \blacktriangleright f_1^t has a sink on each ball.

There are two possibility:

- M_1 is disconnect, then $M_1 = M_{11} \cup M_{12}$ and $M^n = M_{11} \sharp M_{12}$;
- ▶ M_1 is connect, then $M = M_1 \sharp \mathbb{S}^{n-1} \times \mathbb{S}^1$ (Medvedev, Umanskii).

Idea of proof

After cutting out all saddles, we get a manifold $M_{k_{ft}}$ and a flow $f_{k_{ft}}^{t}$ with non-wandering set consisting of $(k_{ft} + l_{ft})$ sinks and source. Then $M_{k_{ft}}$ is disjoint union of $(k_{ft} + l_{ft})/2$ spheres, and the number of saddles whose codimension one invariant manifolds cut M^n is $(k_{ft} + l_{ft})/2 - 1$. So, M^n is homeomorphic to $\underbrace{\mathbb{S}^{n-1} \times \mathbb{S}^1 \sharp \dots \sharp \mathbb{S}^{n-1} \times \mathbb{S}^1}_{g}$, where $g = k_{ft} - ((k_{ft} + l_{ft})/2 - 1) =$ $= (k_{ft} - l_{ft} + 2)/2$

is the number of saddles whose invariant manifolds do not cut M^n .

- Topological classification

History

- n = 2: complete classification by Leontovich, Mayer, 1955; Peixoto, 1971; Oshemkov, Sharko, 1998.
- n = 3: classification for Morse-Smale flows with finite number of heteroclinic orbits by Y. L. Umanskii, 1990.

 $n \ge 4$: classification in class $G(S^n)$, Pilyugin, 1978.

- Topological classification

Peixoto graph (phase diagram)

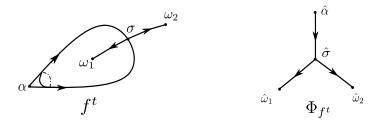


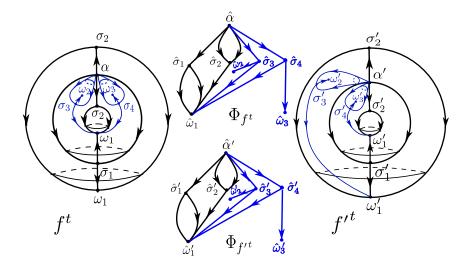
Figure: Phase portrait of a flow $f^t \in G(S^n)$ and its Peixoto graph

Theorem (Pilyugin, 1978)

Flows f^t , $f'^t \in G(S^n)$ are topologically equivalent iff their Peixoto graphs are isomorphic.

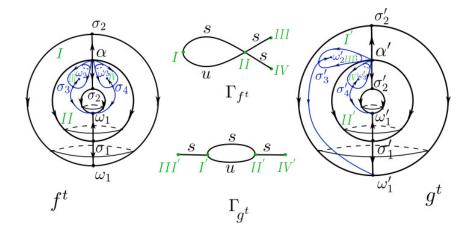
- Topological classification

Non-equivalent flows with isomorphic Peixoto graphs on $\mathbb{S}^{n-1} \times \mathbb{S}^1$



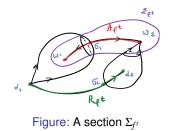
Topological classification

Bicolor graph of Oshemkov, Sharko



- Topological classification

Bicolor graph



Theorem (Grines, G.)

Flows $f', f'' \in G(\mathbb{S}_g^n)$ are topologically equivalent iff their bicolor graphs are isomorphic.

Manifolds

Theorem (Grines, Zhuzhoma, Medvedev, 2017-2021)

Let $f^t \in G(M^n)$, $n \ge 3$, l be a numbers of nodes, k — a number saddles of Morse indices 1, n - 1, and m — a number of saddles of Morse indices 1 < j < n - 1. Then g = (k - l + 2)/2 is non-negative integer and

• if g = 0, m = 0 then $M^n \cong S^n$;

Manifolds

Theorem (Grines, Zhuzhoma, Medvedev, 2017-2021)

Let $f^t \in G(M^n)$, $n \ge 3$, l be a numbers of nodes, k — a number saddles of Morse indices 1, n-1, and m — a number of saddles of Morse indices 1 < j < n-1. Then g = (k-l+2)/2 is non-negative integer and

• if
$$g = 0, m = 0$$
 then $M^n \cong S^n$;

If g > 0, m = 0 then Mⁿ is connected sum Sⁿ_g of g copies of Sⁿ⁻¹ × S¹;

Manifolds

Theorem (Grines, Zhuzhoma, Medvedev, 2017-2021)

Let $f^t \in G(M^n)$, $n \ge 3$, l be a numbers of nodes, k — a number saddles of Morse indices 1, n-1, and m — a number of saddles of Morse indices 1 < j < n-1. Then g = (k-l+2)/2 is non-negative integer and

• if
$$g = 0, m = 0$$
 then $M^n \cong S^n$;

If g > 0, m = 0 then Mⁿ is connected sum Sⁿ_g of g copies of Sⁿ⁻¹ × S¹;

• if g = 0, m > 0 then there exists a number

 $0 < m_0 \le min\{m, (l+k)/2\}$

such that M^n is connected sum $\mathbb{N}_{m_0}^n$ of simply connected manifolds non-homeomorphic to the sphere S^n ;

Manifolds

Theorem (Grines, Zhuzhoma, Medvedev, 2017-2021)

Let $f^t \in G(M^n)$, $n \ge 3$, l be a numbers of nodes, k — a number saddles of Morse indices 1, n - 1, and m — a number of saddles of Morse indices 1 < j < n - 1. Then g = (k - l + 2)/2 is non-negative integer and

• if
$$g = 0, m = 0$$
 then $M^n \cong S^n$;

If g > 0, m = 0 then Mⁿ is connected sum Sⁿ_g of g copies of S^{n−1} × S¹;

• if g = 0, m > 0 then there exists a number

 $0 < m_0 \leq \min\{m, (l+k)/2\}$

such that M^n is connected sum $\mathbb{N}_{m_0}^n$ of simply connected manifolds non-homeomorphic to the sphere S^n ;

• if
$$g > 0, m > 0$$
 then $M^n \cong \mathbb{S}_g^n \sharp \mathbb{N}_{m_0}^n$.

On flows with saddles of indices $2 \le i \le n-2$

Impossibility of classification in combinatorial terms

Exception: flows on complex projective plane

Lemma

Let f^t be gradient-like flows without heteroclinic intersection on complex projective plane $\mathbb{C}P^2$. Then f^t has exactly one saddle σ such that $\dim W^u_{\sigma} = 2$ and $cl W^u_{\sigma}, cl W^s_{\sigma}$ are locally flat.

Theorem (Grines, G., 2021)

Let f^t , f'^t be gradient-like flows without heteroclinic intersection on complex projective plane $\mathbb{C}P^2$. Then f^t , f'^t are topologically equivalent iff their bicolored graphs Γ_{f^t} , $\Gamma_{f'}^t$ are isomorphic.

On flows with saddles of indices $2 \le i \le n-2$

Idea of proof of Lemm

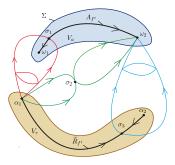


Figure: One-dimensional attractor A_{f^t} and repeller \widetilde{R}_{f^t} of f^t

Lemma

Let f^t , f^{t^t} be gradient-like flows without heteroclinic intersection on complex projective plane $\mathbb{C}P^2$. Then f^t has exactly one saddle σ such that $\dim W^u_{\sigma} = 2$ and $cl W^u_{\sigma}$, $cl W^s_{\sigma}$ are locally flat.