How to obtain $\exp (-i t H)$ for arbitrary self-adjoint H if for each $t>0$ you know $\exp (-t H)$ or $\exp (t H)$ or even less
 I. D. Remizov ${ }^{1}$

Keywords: Schrödinger equation, approximation of C_{0}-group, Chernoff product formula, Chernoff tangency

MSC2010 codes: 81Q05, 47D08, 35C15, 35J10, 35K05
Answer to the question from the title. Consider Hilbert space \mathcal{F} over the field \mathbb{C} and (unbounded in interesting cases) densely defined self-adjoint operator H in \mathcal{F}. The main result of the talk is my formula

$$
\begin{equation*}
R(t)=\exp (i a(S(t)-I)) \tag{1}
\end{equation*}
$$

where a is a non-zero real number and $(S(t))_{t \geq 0}$ is a family of self-adjoint bounded linear operators that is Chernoff-tangent to H. Omitting some minor details one can say that Chernofftangency means that

$$
\begin{equation*}
S(t) f=f+t H f+o(t) \text { as } t \rightarrow+0 \tag{2}
\end{equation*}
$$

for all f from $D \subset \mathcal{F}$ where D is a core of H. Then thanks to the Chernoff theorem [1] we have the following approximations that hold in the strong operator topology

$$
\begin{equation*}
\exp (\text { ait } H)=\lim _{n \rightarrow \infty} R(t / n)^{n}=\lim _{n \rightarrow \infty} \exp (i a n(S(t / n)-I)) \tag{3}
\end{equation*}
$$

where in the exponent there is a bounded linear operator $\operatorname{ian}(S(t / n)-I)$ so exponent is welldefined by a power series $\exp (\operatorname{ian}(S(t / n)-I))=\sum_{k=0}^{\infty} \frac{(\operatorname{ian})^{k}}{k!}(S(t / n)-I)^{k}$. This approach was introduced in [2] with exact definitions, full proofs and comments.

For example, if $\exp (t H)$ exists and you have any explicit formula for it then you can set $a=-1$ and $S(t)=\exp (t H)$ will be Chernoff-tangent to H, so in the strong operator topology we obtain the limit expression

$$
\begin{equation*}
\exp (-i t H)=\lim _{n \rightarrow \infty} \exp \left(-i n\left(e^{\frac{t}{n} H}-I\right)\right) \tag{4}
\end{equation*}
$$

Similarly, if $\exp (-t H)$ exists and you have any explicit formula for it then you can set $a=1$ and $S(t)=\exp (-t H)$ will be Chernoff-tangent to $-H$, so in the strong operator topology we obtain the limit expression

$$
\begin{equation*}
\exp (-i t H)=\lim _{n \rightarrow \infty} \exp \left(i n\left(e^{-\frac{t}{n} H}-I\right)\right) \tag{5}
\end{equation*}
$$

If e.g. $H=\Delta$ is the Laplacian then formula (4) means that we solve the heat equation $u_{t}^{\prime}=\Delta u$ obtaining solution $u(t)=e^{t \Delta} u_{0}$, then mix this solution with the imaginary unit i via formula (1) and obtain the solution of the Schrödinger equation $i \psi_{t}^{\prime}=\Delta \psi$ given by $\psi(t)=e^{-i t \Delta} u_{0}$ where $e^{-i t \Delta}$ is given by (4). This example is elementary but the formula (1) is universal and it works for all self-adjoint operators H, which can contain derivatives of arbitrary high order and variable coefficients.

What to do if $\exp (t H)$ and $\exp (-t H)$ are both not known. This situation is more difficult, but still formula (1) is helpful. The way is to find such $S(t)$ that $S(t)^{*}=S(t)$ and $S(t) f=f+t H f+o(t)$ or $S(t) f=f-t H f+o(t)$ as $t \rightarrow+0$ and apply formula (3). Construction of such $S(t)$ is much more simpler than constructing $\exp (t H)$ or $\exp (-t H)$ because S does not need to hold the composition property: it is ok when $S\left(t_{1}+t_{2}\right) \neq S\left(t_{1}\right) S\left(t_{2}\right)$. Moreover, if $S_{1}(t) f=f+t H_{1} f+o(t)$ and $S_{2}(t) f=f+t H_{2} f+o(t)$ then $S_{1}(t)+S_{2}(t)-I$ is self-adjoint and

[^0]Chernoff-tangent to $H_{1}+H_{2}$. This gives a lot of freedom and allows to find representations for sulutions of rather complicated Schrödinger equations. As far as I know now (4 April 2021) this approach was used at least by V.Zh.Sakbaev, M.S.Businov, D.V.Grishin\&A.V.Smirnov and can be found in the overview [1] by Ya.A.Butko. You are welcome to use it also. The only problem is that representations for $\exp (-i t H)$ provided by (3) are rather lengthy.

Example 1. Solution to one-dimensional Schrödinger equation with derivatives of arbitrary high order and variable coefficients.

Theorem 1. (see in [3] with full proof) Fix arbitrary $K \in \mathbb{N}$. Suppose that for $k=0,1, \ldots, K$ functions $a_{k}: \mathbb{R} \rightarrow \mathbb{R}$ are given. Suppose that for each $k=1, \ldots, K$ function a_{k} belongs to space $C_{b}^{2 k}(\mathbb{R})$ of all bounded functions $\mathbb{R} \rightarrow \mathbb{R}$ with bounded derivatives up to ($2 k$)-th order. Suppose that function $a_{0}: \mathbb{R} \rightarrow \mathbb{R}$ is measurable and belongs to space $L_{2}^{\text {loc }}(\mathbb{R})$, i.e. $\int_{-R}^{R}\left|a_{0}(x)\right|^{2} d x<\infty$ for each real number $R>0$. Define

$$
(\mathcal{H} \varphi)(x)=a_{0}(x) \varphi(x)+\sum_{k=1}^{K} \frac{d^{k}}{d x^{k}}\left(a_{k}(x) \frac{d^{k}}{d x^{k}} \varphi(x)\right)
$$

for each φ from the space $C_{0}^{\infty}(\mathbb{R})$ of all functions $\varphi: \mathbb{R} \rightarrow \mathbb{R}$ wich are bounded together with their derivatives of all orders and have compact support (are zero outside of some closed interval). We also use the following condition for coefficients $a_{k}, k=0,1, \ldots, K$: operator \mathcal{H} defined on $C_{0}^{\infty}(\mathbb{R})$ is essentially self-adjoint in $L_{2}(\mathbb{R})$, i.e. the operator $\left(\mathcal{H}, C_{0}^{\infty}(\mathbb{R})\right)$ is closable and its closure - let us denote it as $(\mathcal{H}, D(\mathcal{H}))$ - is a self-adjoint operator.

Suppose that function $w: \mathbb{R} \rightarrow \mathbb{R}$ is continuous, bounded, differentiable at zero and $w(0)=$ $0, w^{\prime}(0)=1$ (examples include: $w(x)=\arctan (x), w(x)=\sin (x), w(x)=\tanh (x)=\left(e^{x}-\right.$ $\left.e^{-x}\right) /\left(e^{x}+e^{-x}\right)$, etc). For each $t \geq 0, k=1,2, \ldots, K$, each $x \in \mathbb{R}$, and each $f \in L_{2}(\mathbb{R})$ define:

$$
\begin{gathered}
\left(B_{a_{k}} f\right)(x)=a_{k}(x) f(x), \\
(A(t) f)(x)=f(x+t), \quad\left(A(t)^{*} f\right)(x)=f(x-t), \\
F_{k}(t)=\left(A\left(t^{1 / 2 k}\right)-I\right)^{k} B_{a_{k}}\left(I-A\left(t^{1 / 2 k}\right)^{*}\right)^{k}, \quad F_{0}(t) f(x)=w\left(t a_{0}(x)\right) f(x), \\
F(t)=\sum_{k=0}^{K} F_{k}(t), \quad S(t)=I+F(t)=I+\sum_{k=0}^{K} F_{k}(t),
\end{gathered}
$$

where I is the identity operator ($I f=f$), and expression such as Z^{k} means the composition $Z Z \ldots Z$ of k copies of linear bounded operator Z.

THEN for each initial condition $\psi_{0} \in L_{2}(\mathbb{R})$ the Cauchy problem

$$
\left\{\begin{array}{l}
\psi_{t}^{\prime}(t)=-i \mathcal{H} \psi(t) \\
\psi(0)=\psi_{0}
\end{array}\right.
$$

and has a unique (in sense of $L_{2}(\mathbb{R})$) solution $\psi(t)$ that depends on ψ_{0} continuously with respect to norm in $L_{2}(\mathbb{R})$, and for all $t \geq 0$ and almoust all $x \in \mathbb{R}$ can be expressed in the form

$$
\psi(t, x)=\left(e^{-i t \mathcal{H}} \psi_{0}\right)(x)=\left(\lim _{n \rightarrow \infty} \lim _{j \rightarrow+\infty} \sum_{q=0}^{j} \frac{(-i n)^{q}}{q!}\left(\sum_{k=0}^{K} F_{k}(t / n)\right)^{q} \psi_{0}\right)(x) .
$$

Here linear bounded operators $F_{0}(t), \ldots, F_{K}(t)$ are defined above in conditions of the theorem for all $t \geq 0$ (hence $F_{0}(t / n), \ldots, F_{K}(t / n)$ are defined for all $t \geq 0$ and all $n \in \mathbb{N}$), and the power q in $\left(\sum_{k=0}^{K} F_{k}(t / n)\right)^{q}$ stands for a composition of q copies of linear bounded operator $\sum_{k=0}^{K} F_{k}(t / n)$.

Example 2. Solution to multi-dimensional Schrödinger equation with Laplacian and measurable locally square integrable potential.

Theorem 2. (see in [3] with full proof) Suppose that function $V: \mathbb{R}^{d} \rightarrow \mathbb{R}$ belongs to the space $L_{2}^{\text {loc }}\left(\mathbb{R}^{d}\right)$, i.e. V is measurable and $\int_{\|x\| \leq R} V(x)^{2} d x<\infty$ for each $R>0$, where $\|x\|=\left(x_{1}^{2}+\cdots+x_{d}^{2}\right)^{1 / 2}$. Suppose that $a \in \mathbb{R}, a \neq 0$. Suppose that function $w: \mathbb{R} \rightarrow \mathbb{R}$ is bounded, continuous, differentiable at zero and $w(0)=0, w^{\prime}(0)=1$; for example, one can take $w(x)=\sin (x), w(x)=\arctan (x), w(x)=\tanh (x)=\left(e^{x}-e^{-x}\right) /\left(e^{x}+e^{-x}\right)$ etc. Suppose that for each $j=1, \ldots, d$ constant vector $e_{j} \in \mathbb{R}^{d}$ has 1 at position j and has 0 at other $d-1$ positions. For each function $f \in L_{2}\left(\mathbb{R}^{d}\right)$, each smooth function $\varphi: \mathbb{R}^{d} \rightarrow \mathbb{C}$ and each $x \in \mathbb{R}, t \geq 0$ define

$$
\begin{gather*}
(W(t) f)(x)=\frac{1}{2 d} \sum_{j=1}^{d}\left[f\left(x+\sqrt{d} \sqrt{t} e_{j}\right)+f\left(x-\sqrt{d} \sqrt{t} e_{j}\right)-2 f(x)\right]+w(-t V(x)) f(x), \tag{6}\\
(H \varphi)(x)=\frac{1}{2} \Delta \varphi(x)-V(x) \varphi(x) .
\end{gather*}
$$

Suppose also that at least one of these two conditions is satisfied:
A) if we use the symbol $C_{0}^{\infty}\left(\mathbb{R}^{d}\right)$ for the set of all infinitely smooth functions $\mathbb{R}^{d} \rightarrow \mathbb{R}$ with compact support then the closure of the operator $\left(H, C_{0}^{\infty}\left(\mathbb{R}^{d}\right)\right)$ is a self-adjoint operator in $L_{2}\left(\mathbb{R}^{d}\right)$;
B) $V(x) \geq 0$ for all $x \in \mathbb{R}^{d}$.

Consider Cauchy problem for Schrödinger equation

$$
\begin{cases}\psi_{t}^{\prime}(t, x)=i a H \psi(t, x), & t \in \mathbb{R}^{1}, x \in \mathbb{R}^{d}, \tag{7}\\ \psi(0, x)=\psi_{0}(x), & x \in \mathbb{R}^{d} .\end{cases}
$$

where the Hamiltonian is equal to $-a H$.
THEN for each $t \geq 0$ and $\psi_{0} \in L_{2}\left(\mathbb{R}^{d}\right)$ Cauchy problem (7) have the unique (in $L_{2}\left(\mathbb{R}^{d}\right)$) solution $\psi(t, x)=\left(e^{i a t H} \psi_{0}\right)(x)$, that continuously, with respect to norm in $L_{2}\left(\mathbb{R}^{d}\right)$, depends (for fixed t) on ψ_{0}. For almost all $x \in \mathbb{R}^{d}$ and all $t \geq 0$ this solution satisfies the formula

$$
\psi(t, x)=\left(\lim _{n \rightarrow+\infty} \lim _{j \rightarrow+\infty} \sum_{k=0}^{j} \frac{(i a n)^{k}}{k!} W(t / n)^{k} \psi_{0}\right)(x)
$$

where $W(t / n)$ is obtained by substitution of t with t / n in (6), and $W(t / n)^{k}$ is a composition of k copies of linear bounded operator $W(t / n)$.

Acknowledgements. Author is partially supported by Laboratory of Dynamical Systems and Applications NRU HSE, of the Ministry of science and higher education of the RF grant ag. No 075-15-2019-1931.

References

[1] Ya. A. Butko. The Method of Chernoff Approximation. // In book: Semigroups of Operators - Theory and Applications - Springer International Publishing, 2020.
[2] I. D. Remizov. Quasi-Feynman formulas - a method of obtaining the evolution operator for the Schrödinger equation. // Journal of Functional Analysis, 270:12 (2016), 4540-4557
[3] I. D. Remizov. Formulas that represent Cauchy problem solution for momentum and position Schroödinger equation. // Potential Analysis, 52 (2020), 339-370

[^0]: ${ }^{1}$ HSE University, Russian Federation, Nizhny Novgorod city. Email: ivremizov@yandex.ru

