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A parabolic partial differential equation u′
t(t, x) = Lu(t, x) is considered, where L is a

linear second-order differential operator with time-independent (but dependent on x)
coefficients. We assume that the spatial coordinate x belongs to a finite- or infinite-
dimensional real separable Hilbert space H. The aim of the paper is to prove a formula

that expresses the solution of the Cauchy problem for this equation in terms of ini-
tial condition and coefficients of the operator L. Assuming the existence of a strongly
continuous resolving semigroup for this equation, we construct a representation of this
semigroup using a Feynman formula (i.e. we write it in the form of a limit of a multi-
ple integral over H as the multiplicity of the integral tends to infinity), which gives us
a unique solution to the Cauchy problem in the uniform closure of the set of smooth
cylindrical functions on H. This solution depends continuously on the initial condition.
In the case where the coefficient of the first-derivative term in L is zero, we prove that
the strongly continuous resolving semigroup indeed exists (which implies the existence
of a unique solution to the Cauchy problem in the class mentioned above), and that the
solution to the Cauchy problem depends continuously on the coefficients of the equation.

Keywords: Heat equation; diffusion equation; Hilbert space; Feynman formula; Cauchy
problem solution.

AMS Subject Classification: 35C15, 47D06, 28C20

1. Introduction

Representation of a function in the form of a limit of a multiple integral as multi-
plicity tends to infinity is called a Feynman formula after Feynman, who was the
first34,35 to use them (on the physical level of rigor) to solve the Cauchy prob-
lem for PDEs, see Ref. 2 for contemporary mathematical interpretation. The term
“Feynman formula” in this sense was introduced in 2002 by Smolyanov.69 One can
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find more about the research of Feynman formulas (up to 2009) in Ref. 63. Feyn-
man formulas are closely related to Feynman–Kac formulas and can be used as
approximations to Feynman path integrals; we do not touch this connection, but
one can read about it in Ref. 67.

In this paper, the Cauchy problem for heat (diffusion) equation{
u′t(t, x) = Lu(x, t); t ≥ 0, x ∈ H

u(0, x) = u0(x); x ∈ H
(1.1)

for the special space of functions on a real separable Hilbert space H , is considered.
The operator L in (1.1) has the form

(Lϕ)(x) = g(x)trace[Aϕ′′(x)] + 〈ϕ′(x), AB(x)〉 + C(x)ϕ(x),

where A is a positive trace-class (nuclear) operator in H , B is a vector field, g
and C are real-valued functions (one assumes that A, B, C and g satisfy some
additional technical conditions). The aim of the paper is to express the solution
of (1.1) in terms of A, g,B,C, u0. The Feynman formula that we obtain is the
representation of the solution of (1.1) by a limit of some multiple integrals over H
with respect to specially constructed Gaussian measure on H as the multiplicity
tends to infinity. We make use of the fact that if there exists a C0-semigroup (etL)t≥0

with an infinitesimal generator L, the solution u can be represented in the form
u(t, x) = (etLu0)(x). Then we find etL via the Chernoff theorem (Theorem 2.1).
For the case B = 0 and C ≤ 0, existence of the semigroup for Eq. (1.1) is proved
and so is the Feynman formula; moreover, it is proved that in this case the solution
depends continuously not only on u0, but also on g and C. For the case B �= 0, the
Feynman formula is proved under the assumption of the existence of the semigroup.

Differential equations for functions of an infinite-dimensional argument27,28 arise
in quantum field theory,62,1 string theory,3 theory of stochastic processes37 and
financial mathematics.36

Evolutionary equations (i.e. PDEs in the form u′t(t, x) = · · ·) in infinite-
dimensional spaces have been studied since 1960s by Accardi, Albeverio, Hida,
Khrennikov, Nelson, Shavgulidze, Smolyanov and others. We will only mention the
most recent and relevant (for our study) publications.

There are many papers dedicated to study of diffusion equation in Hilbert space
in different aspects, but without aim of finding exact formula for solution, see
Refs. 4, 5, 24, 25, 26, 32, 43, 45, 50, 54, 71 and references therein.

There is a group of papers where representations of Cauchy problem solution
were obtained with methods similar to what we use. Let us provide some com-
ments on them. In Ref. 15, the Schrödinger equation in Hilbert space is studied.
The equation includes the terms of the second, first and zero order, the coeffi-
cient of the second-order term being constant. The solution to the Cauchy problem
is given by a Feynman–Kac–Ito formula. In Ref. 68, authors describe classes of
polynomial potentials for which infinite-dimensional Schrödinger equations have
solutions that can be represented in terms of sequential Feynman path integrals in

1850025-2

In
fi

n.
 D

im
en

s.
 A

na
l. 

Q
ua

nt
um

. P
ro

ba
b.

 R
el

at
. T

op
. 2

01
8.

21
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

SP
C

 o
n 

01
/0

9/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 20, 2018 13:37 WSPC/S0219-0257 102-IDAQPRT 1850025

Explicit formula for evolution semigroup for diffusion in Hilbert space

the configuration space. In Ref. 28, a solution to a heat equation in Hilbert space
and without the terms of the first and zero order, and with the constant coefficient
of the second-derivative term, is discussed. The solution is given in the form of a
convolution with the Gaussian measure (analogous to the finite dimensional equa-
tion with constant coefficients), the existence of the resolving semigroup is proved.
In Ref. 10, the solution to the same equation is given by a Feynman–Kac formula. In
Ref. 18, the parabolic equation in finite-dimensional space is studied for the case of
variable coefficients. Under the assumption that the resolving semigroup exists for
the Cauchy problem, Feynman and Feynman–Kac formulas were proven in Ref. 18,
giving the solution. In Refs. 14 and 12, nonlinear and semilinear heat-type equa-
tions are studied with the path integral approach, and in Refs. 11 and 13 the same
approach is applied to the wave equation. In Ref. 58 an equation similar to (1.1)
(but with less terms in L and constant coefficients) is studied, and solution to the
Cauchy problem is constructed using finitely-additive measure on Hilbert space;
after that the corresponding Schrödinger equation is solved using the ideas from
Ref. 57. In spaces over the field of p-adic numbers, Feynman and Feynman–Kac for-
mulas for solutions of the Cauchy problem for evolutionary equations are given in
Refs. 66 and 65. In Refs. 52 and 53, Schrödinger and heat equations in R

n are stud-
ied in the case of time-dependent coefficients, and Chernoff-type theorem is proven
for this case. In Refs. 16 and 20, Feynman formulas for perturbed semigroups are
obtained. See also Refs. 21, 61, 49, 59, 57, 19, 39, 64, 46, 40, 9, 47, 38 and references
therein.

Note also that usage of Feynman and Feynman–Kac formulas may include exact
or numerical evaluation of integrals over Gaussian measures on spaces of high or
infinite dimension; some useful approaches to this topic are developed in Refs. 30
and 44.

This paper extends the results of Ref. 55, where the Feynman formula is proved
for the case where the last two terms vanish in the operator L. We also prove and
use several statements that were announced without proofs in Ref. 56.

2. Preliminaries

2.1. Notation and definitions

The symbol H stands for the real separable Hilbert space with the scalar product
〈·, ·〉.

The self-adjoint, positive, non-degenerate (hence injective), linear operator A :
H → H is assumed to be defined everywhere on H . The operator A is assumed to
be of trace class, which means that for every orthonormal basis (ek) in H the sum∑∞

k=1〈Aek, ek〉 = trA is finite; this sum is called the trace of A (it is independent
of the choice of the basis (ek)).

The symbol X below stands for any complex Banach space. The symbol
Lb(X ,X ) stands for space of all linear bounded operators in X , endowed with
the classical operator norm.

1850025-3
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Symbol C(M,N) will mean the set of all continuous functions from M to N ,
where M and N are topological spaces.

A function f : H → R is called cylindrical,27,67 if there exist vectors e1, . . . , en

from H and function fn : Rn → R such that for every x ∈ H the equality f(x) =
fn(〈x, e1〉, . . . , 〈x, en〉) holds. In other words, the function f : H → R is cylindrical
if there exists an n-dimensional subspace Hn ⊂ H and orthogonal projector P :
H → Hn such that f(x) = f(Px) for every x ∈ H . The cylindrical function f can
be imagined as a function, which is first defined on Hn and then continued to the
entire space H in such a way that f(x) = f(x0) if x0 ∈ Hn and x ∈ (x0 + kerP ).

Symbol D = C∞
b,c(H,R) stands for the space of all continuous bounded cylin-

drical functions H → R such that they have Fréchet derivatives22,29 of all positive
integer orders at every point of H , and their Fréchet derivatives of any positive
integer order are bounded and continuous.

If f : H → R is twice Fréchet differentiable, then f ′(x) will stand for the first
Fréchet derivative of f at the point x, and f ′′(x) will denote the second derivative.
Riesz–Fréchet representation theorem allows us to assume f ′(x) ∈ H and f ′′(x) ∈
Lb(H,H) for every x ∈ H .

Symbol Cb(H,R) stands for the Banach space of all bounded continuous func-
tions H → R, endowed with a uniform norm ‖f‖ = supx∈H |f(x)|. It is regarded as
a closed subspace of a complex Banach space Cb(H,C).

Let X = C∞
b,c(H,R) be the closure of the space D in Cb(H,R). It is clear,

that X with the norm ‖f‖ = supx∈H |f(x)| is a Banach space, as it is a closed
linear subspace of the Banach space Cb(H,R). Function f belongs to X if and
only if there is a sequence of functions (fj) ⊂ D such that limj→∞ fj = f , i.e.
limj→∞ supx∈H |f(x) − fj(x)| = 0.

Symbol Cb(H,H) stands for a Banach space of all bounded continuous functions
B : H → H , endowed with the uniform norm ‖B‖ = supx∈H ‖B(x)‖.

Denote DH = {B : H → H | ∃N ∈ N, bk ∈ H,Bk ∈ D : B(x) = B1(x)b1 + · · · +
BN (x)bN}.

Let XH be the closure of DH in Cb(H,H).
If x ∈ H , and R : H → H is linear, trace class, positive, non-degenerate

operator, then symbol µx
R stands for the Gaussian probabilistic measure6,27,42 on

H with expectation x and correlation operator R, i.e. the unique sigma-additive
measure on Borel sigma-algebra in H such that the equality

∫
H
ei〈z,y〉µx

R(dy) =
exp(i〈z, x〉 − 1

2 〈Rz, z〉) holds for every z ∈ H . To make it shorter, we will write µR

instead of µ0
R.

If B : H → H is a vector field, and g : H → R and C : H → R are real-valued
functions, then symbol L defines a differential operator on the space of functions
ϕ : H → R

(Lϕ)(x) := g(x)trAϕ′′(x) + 〈ϕ′(x), AB(x)〉 + C(x)ϕ(x), x ∈ H.

The pair (L,M) defines a linear operator L with the domain M . It will be shown
in Theorem 3.2 that L(D) ⊂ X when A, B, g and C have certain properties. So
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(L,D) is a densely defined (onD) operator L : X ⊃ D → X . Here the earlier defined
spaces D and X are endowed with the uniform norm, induced from Cb(H,R). Let
(L,D1) be the closure of (L,D) in X . This means that

D1 =
{
f ∈ X | ∃(fj) ⊂ D : lim

j→∞
fj = f, ∃ lim

j→∞
Lfj

}
,

and, if f ∈ D1, then, by definition, Lf = limj→∞ Lfj.

If for every fixed first argument t > 0 of the function u : [0,+∞) ×H → R we
have [x → u(t, x)] ∈ D1, then the expression Lu(t, x) means the result of applying
the operator L to the function x → u(t, x) with the fixed t > 0.

Expression (St)t≥0 defines the one-parameter family of linear operators in the
space of functions ϕ : H → R, where S0f = f and St for t > 0 is defined as follows:

(Stϕ)(x) := etC(x)−t 〈AB(x),B(x)〉
g(x)

∫
H

ϕ(x + y)e〈
1

g(x) B(x),y〉µ2tg(x)A(dy).

Remark 2.1. Further, in Theorem 3.1, we will prove that for every t ≥ 0 and for
A, B, g and C having certain properties the following holds (i) St(X) ⊂ X , (ii)
operator St is bounded, and (iii) d

dtStϕ
∣∣
t=0

= Lϕ for all ϕ ∈ D. This will allow us
to use the Chernoff approximation (Theorems 2.1, 2.2) and prove the main result
of this paper, Theorem 3.4.

2.2. Integration in Hilbert space

Lemma 2.1 (Ref. 27, Chap. II, §2, 3◦). If a function ϕ : H → R is cylin-
drical and measurable, i.e. ϕ(x) = ϕn(〈x, e1〉, . . . , 〈x, en〉) for some n ∈ N, some
measurable function ϕn : Rn → R, and some finite orthonormal family of vectors
e1, . . . , en from space H, then∫

H

ϕ(y)µA(dy) =
(

1√
2π

)n 1√
detMQ

∫
Rn

ϕn(z) exp
(
−1

2
〈
M−1

Q z, z
〉

Rn

)
dz,

(2.1)

where Hn = span(e1, . . . , en), and P : H � h → 〈h, e1〉e1 + · · · + 〈h, en〉en ∈ Hn,

Q = PA, Q : Hn → Hn, and MQ is the matrix of the operator Q in basis e1, . . . , en

of the space Hn. If e1, . . . , en is a full set of eigenvectors of the operator Q, and
q1, . . . , qn is the corresponding set of eigenvalues, then∫

H

ϕ(y)µA(dy) =
(

1√
2π

)n 1√∏n
i=1 qi

∫
Rn

ϕn(z1, . . . , zn)

· exp

(
−

n∑
i=1

z2
i

2qi

)
dz1 . . . dzn. (2.2)

Lemma 2.2 (Explicit form of some integrals over Gaussian measure). Let
H be a real separable Hilbert space of finite or infinite dimension, Ã : H → H be a
linear, trace class, symmetric, positive, non-degenerate operator, µ eA be the centered
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Gaussian measure on H with the correlation operator Ã, and G : H → H be a
bounded linear operator. Let w and z be nonzero vectors from H.

Then the following equalities hold :∫
H

〈Gy, y〉µ eA(dy) = tr(ÃG), (2.3)∫
H

e〈z,y〉µ eA(dy) = e
1
2 〈 eAz,z〉, (2.4)∫

H

〈w, y〉e〈z,y〉µ eA(dy) = 〈Ãw, z〉e 1
2 〈 eAz,z〉, (2.5)∫

H

〈Gy, y〉e〈z,y〉µ eA(dy) = (trÃG+ 〈GÃz, Ãz〉)e 1
2 〈 eAz,z〉. (2.6)

Proof. Formulas (2.3) and (2.4) can be found in Ref. 27, Chap. II, §2, 1◦. Formula
(2.5) can be derived from the fact that the function under the integral is cylindrical,
so Lemma 2.1 can be employed. For a proof of (2.6), one can make the change of
variable in the integral, h = y −Aw, then (Ref. 27, Chap. II, §4, 2◦, Theorem 4.2)
we have µ eA(dy) = e−

1
2 〈 eAw,w〉−〈h,w〉µ eA(dh), and the integral reduces to (2.3).

Lemma 2.3 (On a linear change of variable in the integral over Gaussian
measure). Let H be a real separable Hilbert space. Suppose a linear operator A :
H → H is positive, non-degenerate, trace class, and self-adjoint. We will identify
with the symbol µA the centered Gaussian measure on H with the correlational
operator A. Let t > 0; the symbol tA denotes operator, that takes x ∈ H to tAx ∈ H.
Let f : H → R be a continuous integrable function.

Then ∫
H

f(x)µtA(dx) =
∫

H

f(
√
tx)µA(dx). (2.7)

Proof. It uses the uniqueness of the Gaussian measure with a given Fourier trans-
form, and the standard theorem of changing variable in the Lebesgue integral.

Lemma 2.4 (On integrability of a polynomial multiplied by an exponent).
Let H,A, µA be as above, P : R → R be a polynomial, and β ∈ R.

Then function H � x → P (‖x‖)eβ‖x‖ ∈ R is integrable over µA.

Proof. It is easy to construct by relying on Fernique’s theorem,33 which (applied
to this case) says that there exists such α > 0 that

∫
H
eα‖y‖2

µA(dy) < +∞.

2.3. Differentiation in Hilbert space

Proposition 2.1. Let f be a cylindrical real-valued function on H, i.e. there is a
number n ∈ N and a function fn : Rn → R such that for every x ∈ H the equality

1850025-6

In
fi

n.
 D

im
en

s.
 A

na
l. 

Q
ua

nt
um

. P
ro

ba
b.

 R
el

at
. T

op
. 2

01
8.

21
. D

ow
nl

oa
de

d 
fr

om
 w

w
w

.w
or

ld
sc

ie
nt

if
ic

.c
om

by
 W

SP
C

 o
n 

01
/0

9/
19

. R
e-

us
e 

an
d 

di
st

ri
bu

tio
n 

is
 s

tr
ic

tly
 n

ot
 p

er
m

itt
ed

, e
xc

ep
t f

or
 O

pe
n 

A
cc

es
s 

ar
tic

le
s.



December 20, 2018 13:37 WSPC/S0219-0257 102-IDAQPRT 1850025

Explicit formula for evolution semigroup for diffusion in Hilbert space

f(x) = fn(〈x, e1〉, . . . , 〈x, en〉) holds. A set of vectors e1, . . . , en can be considered
orthonormal without loss of generality. Let us complete this set to an orthonormal
basis (ek)k∈N in H.

Then:

(1) Function f is differentiable in the direction h if and only if the function fn is
differentiable in the direction (〈h, e1〉, . . . , 〈h, en〉) ∈ R

n, and

f ′(x)h = 〈h, (∂1f
n(〈x, e1〉, . . . , 〈x, en〉), . . . , ∂nf

n(〈x, e1〉,
. . . , 〈x, en〉), 0, 0, . . .)〉,

where the symbol ∂jf
n defines the partial derivative with respect to the jth

argument of the function fn, and (α1, . . . , αn, 0, 0, . . .) = α1e1 + · · · + αnen. If
the function f has a Fréchet derivative at the point x, then f ′(x) is a vector
whose first n coordinates yield the gradient of the function fn, and the other
coordinates are zero:

f ′(x) = (∂1f
n(〈x, e1〉, . . . , 〈x, en〉), . . . , ∂nf

n(〈x, e1〉, . . . , 〈x, en〉), 0, 0, . . .).
(2.8)

(2) Function f has a Fréchet derivative in H if and only if the function fn has a
Fréchet derivative in R

n.
(3) Let A : H → H be a trace-class operator (i.e. let trA <∞). Then

trAf ′′(x) =
n∑

s=1

n∑
k=1

〈Aes, ek〉(∂k∂sf
n(〈x, e1〉, . . . , 〈x, en〉))

= tr(An(fn)′′(〈x, e1〉, . . . , 〈x, en〉)), (2.9)

where An is the matrix of the operator PA in the basis e1, . . . , en, where P is the
projector to the linear span of the vectors e1, . . . , en.

Proof. It is a straight-forward application of the derivative’s definition.

Proposition 2.2 (See Ref. 7 or other book on infinite-dimensional
analysis). For (n + 1)-times Fréchet differentiable function f : H → R there
is8 a Taylor decomposition

f(x+ h) = f(x) +
1
1!
f ′(x)h+

1
2!
f ′′(x)(h, h) + · · ·

+
1
n!
f (n)(x)(h, . . . , h) +Rn(x, h), (2.10)

where the following estimate holds :

|Rn(x, h)| ≤ ‖h‖n+1

(n+ 1)!
sup

z∈[x,x+h]

‖f (n+1)(z)‖. (2.11)
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2.4. Differential operator on a finite-dimensional space

Lemma 2.5 (Ref. 41, Theorems 4.3.1, 4.3.2. and Corollary 4.3.4). Suppose
for every i = 1, . . . , n and j = 1, . . . , n functions aij : R

n → R, bi : R
n → R,

c : R
n → R from C∞

b (Rn,R) are given, where C∞
b (Rn,R) is the class of all bounded

real-valued functions on Rn, which have bounded partial derivatives of all orders.
Suppose also that c(x) ≤ 0 for all x ∈ Rn.

For u ∈ C∞
b (Rn,R) we define a differential operator T by the formula

(Tu)(x) =
n∑

i=1

n∑
j=1

aij(x)
∂2

∂xi∂xj
u(x) +

n∑
i=1

bi(x)
∂

∂xi
u(x) + c(x)u(x).

Suppose that there exists a constant κ > 0 such that for every ξ = (ξ1, . . . , ξn) ∈
Rn and all x ∈ Rn the ellipticity condition is fulfilled:

∑n
i=1

∑n
j=1 a

ij(x)ξiξj ≥
κ‖ξ‖2. Take an arbitrary constant λ > 0 and function f ∈ C∞

b (Rn,R).
Then:

(1) There is a unique function u ∈ C∞
b (Rn,R), which is a solution of the equation

(Tu)(x) − λu(x) = f(x). (2.12)

(2) For every function v ∈ C∞
b (Rn,R) the following estimate is true

sup
x∈Rn

|(Tv)(x) − λv(x)| ≥ λ sup
x∈Rn

|v(x)|. (2.13)

Note that Eq. (2.12) can have unbounded solutions; this does not contradict the
lemma.

2.5. C0-semigroups and evolution equations

Let X be a complex Banach space.

Definition 2.1. By a C0-semigroup, or a strongly continuous one-parameter semi-
group (Ts)s≥0 of linear bounded operators in X we (following Refs. 31 and 51) mean
the mapping

T : [0,+∞) → Lb(X ,X )

of the non-negative half-line into the space of all bounded linear operators on X ,
which satisfies the following conditions:

(1) ∀ϕ ∈ X : T0ϕ = ϕ.

(2) ∀ t ≥ 0, ∀ s ≥ 0 : Tt+s = Tt ◦ Ts.

(3) ∀ϕ ∈ X function s → Tsϕ is continuous as a mapping [0,+∞) → X .

Definition 2.2. By the generator of a strongly continuous one-parameter semi-
group (Ts)s≥0 of linear bounded operators on X we mean a linear operator
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L : X ⊃ Dom(L) → X given by the formula

Lϕ = lim
s→+0

Tsϕ− ϕ

s

on its domain

Dom(L) =
{
ϕ ∈ X : ∃ lim

s→+0

Tsϕ− ϕ

s

}
,

where the limit is understood in the strong sense, i.e. it is defined in terms of the
norm in the space X .

The use of the symbol L for the generator is related to the fact that the generator
is always a closed operator:

Proposition 2.3 (Theorem 1.4 in Ref. 31, p. 51). The generator of a strongly
continuous semigroup is a closed linear operator with a dense domain. The generator
defines its semigroup uniquely.

Proposition 2.4 (Lemma 1.1 and Definition 1.2. in Ref. 31, pp. 48–49).
The set Dom(L) coincides with the set of those ϕ ∈ X , for which the mapping
s → Tsϕ is differentiable with respect to s at every point s ∈ [0,+∞).

Definition 2.3. (1) The problem of finding a function U : [0,+∞) → X such that
d

dt
U(t) = LU(t); t ≥ 0,

U(0) = U0,

(2.14)

is called the abstract Cauchy problem, associated with the closed linear operator
L : X ⊃ Dom(L) → X and a vector U0 ∈ X .

(2) A function U : [0,+∞) → X is called a classic solution to abstract Cauchy
problem (2.14) if, for every t ≥ 0, the function U has a continuous derivative
U ′ : [0,+∞) → X , U(t) ∈ Dom(L), and (2.14) holds.

(3) A continuous function U : [0,+∞) → X is called a mild solution to abstract
Cauchy problem (2.14) if for every t ≥ 0 we have

∫ t

0 U(s)ds ∈ Dom(L) and
U(t) = L ∫ t

0 U(s)ds+ U0.

Proposition 2.5 (Proposition 6.2 in Ref. 31, p. 145). If the operator
(L,Dom(L)) is a generator of a strongly continuous semigroup (Ts)s≥0, then:

(1) For every U0 ∈ Dom(L) there is a unique classic solution to abstract Cauchy
problem (2.14), which is given by the formula U(t) = T (t)U0.

(2) For every U0 ∈ X there is a unique mild solution to abstract Cauchy problem
(2.14), which is given by the formula U(t) = T (t)U0.

Definition 2.4. Linear operator L : X ⊃ Dom(L) → X in Banach space X is called
dissipative if for every λ > 0 and every x ∈ Dom(L) the estimate ‖Lx−λx‖ ≥ λ‖x‖
holds.
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Proposition 2.6 (On the closability of a densely defined dissipative oper-
ator, Proposition 3.14 in Ref. 31). A linear dissipative operator L : X ⊃
Dom(L) → X in the Banach space X with the domain Dom(L) dense in X is
closable. The closure L : X ⊃ Dom(L) → X is also a dissipative operator.

The main tool for the construction of Feynman formulas for the solutions of the
Cauchy problem is Chernoff’s theorem. For convenience we decompose its conditions
into several blocks and give them separate names, as follows.

Theorem 2.1 (Chernoff, 1968; see Ref. 23 and Theorem 10.7.21 in Ref. 7).
Let X be Banach space, and Lb(X ,X ) be the space of all linear bounded operators in
X endowed with the operator norm. Let L : X ⊃ Dom(L) → X be a linear operator.

Suppose there is a function F such that :

(E) There exists a strongly continuous semigroup (etL)t≥0, and its generator is
(L,Dom(L)).

(CT1) F is defined on [0,+∞), takes values in Lb(X ,X ) and t → F (t)f is contin-
uous for every vector f ∈ X .

(CT2) F (0) = I.
(CT3) There exists a dense subspace D ⊂ X such that for every f ∈ D there exists

a limit F ′(0)f = limt→0(F (t)f − f)/t = Lf .
(CT4) The operator (L,D) has a closure (L,Dom(L)).

(N) There exists ω ∈ R such that ‖F (t)‖ ≤ eωt for all t ≥ 0.

Then for every f ∈ X we have (F (t/n))nf → etLf as n → ∞, and the limit is
uniform with respect to t from every segment [0, t0] for every fixed t0 > 0.

Definition 2.5. In this paper, two mappings F1 and F2 are called Chernoff-
equivalent if there exists a C0-semigroup (etL)t≥0 such that (F1(t/n))nf → etLf ,
(F2(t/n))nf → etLf for every f ∈ X as n → ∞, and the limit is uniform with
respect to t from every segment [0, t0] for every fixed t0 > 0.

Remark 2.2. There are several slightly different definitions of the Chernoff equiv-
alence, see e.g., Refs. 70, 48 and 17. We will just use this one not going into details.
The only thing we need from this definition is that if F satisfies all the conditions
of Chernoff’s theorem, then by Chernoff’s theorem the mapping F is Chernoff-
equivalent to the mapping F1(t) = etL, i.e. the limit of (F (t/n))n as n tends to
infinity yields the C0-semigroup (etL)t≥0.

Definition 2.6. Let us follow Ref. 57 and call a mapping F Chernoff-tangent to
the operator L if it satisfies the conditions (CT1)-(CT4) of Chernoff’s theorem.

Remark 2.3. With these definitions the Chernoff-equivalence of F to (etL)t≥0 fol-
lows from: existence (E) of the C0-semigroup + Chernoff-tangency (CT) + growth
of the norm bound (N).
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Theorem 2.2 (Chernoff-type theorem, Corollary 5.3 from Theorem 5.2 in
Ref. 31). Let X be a Banach space, and Lb(X ,X ) be the space of all linear bounded
operators on X endowed with the operator norm. Suppose there is a function

V : [0,+∞) → Lb(X ,X ),

meeting the condition V0 = I, where I is the identity operator. Suppose there are
numbers M ≥ 1 and ω ∈ R such that ‖(Vt)k‖ ≤ Mekωt for every t ≥ 0 and every
k ∈ N. Suppose the limit

lim
t↓0

Vtϕ− ϕ

t
=: Lϕ

exists for every ϕ ∈ D ⊂ X , where D is a dense subspace of X . Suppose there is a
number λ0 > ω such that (λ0I − L)(D) is a dense subspace of X .

Then the closure L of the operator L is a generator of a strongly continuous
semigroup of operators (Tt)t≥0 given by the formula

Ttϕ = lim
n→∞(V t

n
)nϕ

where the limit exists for every ϕ ∈ X and is uniform with respect to t ∈ [0, t0] for
every t0 > 0. Moreover (Tt)t≥0 satisfies the estimate ‖Tt‖ ≤Meωt for every t ≥ 0.

Theorem 2.3 (Approximation of generator implies approximation of
semigroup, Theorem 4.9 in Ref. 31). Let (eLjt)t≥0 be a sequence of strongly
continuous semigroups of operators in a Banach space X with the generators
(Lj ,Dom(Lj)), which satisfies, for some fixed constants M ≥ 1, w ∈ R, the condi-
tion ‖eLjt‖ ≤ Mewt for all t ≥ 0 and every j ∈ N. Suppose there is a closed linear
operator (L,Dom(L)) on X with a dense domain Dom(L), such that Ljx→ Lx for
every x ∈ Dom(L). Suppose the image of the operator (λ0I − L) is dense in X for
some λ0 > 0.

Then the semigroups (eLjt)t≥0, j ∈ N converge strongly (and uniformly in t ∈
[0, t0] for every fixed t0 > 0) to a strongly continuous semigroup (eLt)t≥0 with the
generator L. In other words, for every x ∈ X there exists limj→∞ eLjtx = eLtx

uniformly in t ∈ [0, t0] for every fixed t0 > 0.

Remark 2.4. Below, the role of X will be played by spaceX , a closed real subspace
of the complex Banach space Cb(H,C). Because all the operators used in this paper
below are real, and (as it will be proven further in Theorems 3.1 and 3.2) X is
invariant with respect to them, the above theorems about X are applicable to X .

3. Main Results

3.1. Properties of spaces D, X, D1

Remark 3.1. It directly follows from the definitions of these spaces that

(i) D ⊂ D1 ⊂ X ⊂ Cb(H,R) ⊂ Cb(H,C);
(ii) D and D1 are dense in X ;
(iii) X is a Banach space.
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Proposition 3.1. If f ∈ D, then f is uniformly continuous.

Proof. It follows from the definition of the space D that the function D � f :
H → R is bounded and its Fréchet derivatives of all orders exist and are bounded.
In particular, there exists

sup
x∈H

‖f ′(x)‖ = M <∞. (3.1)

One can set n = 0 in Taylor’s formula (2.10) to ensure that for every x ∈ H

and every y ∈ H there exists a real number R1(x, y) such that

f(x) − f(y) = R1(x, y), (3.2)

and the estimate holds

|R1(x, y)|
(2.11)

≤ ‖y − x‖1

1!
sup

z∈[x,y]

‖f ′(z)‖
(3.1)

≤ M‖x− y‖. (3.3)

Hence, for each x ∈ H and each y ∈ H we have

|f(x) − f(y)| (3.2)
= ‖R1(x, y)‖

(3.3)

≤ M‖x− y‖, (3.4)

which implies the uniform continuity of f .

Proposition 3.2. If ϕ ∈ X, then ϕ is uniformly continuous.

Proof. Take any given ε > 0. Let us find δ > 0 such that ‖x − y‖ < δ implies
|ϕ(x) − ϕ(y)| < ε.

As ϕ ∈ X , there exists a sequence of functions (fj) ⊂ D converging to ϕ

uniformly. Hence, there exists a number j0 such that (introducing the notation
fj0 = f) we have

‖ϕ− fj0‖ = ‖ϕ− f‖ = sup
x∈H

|ϕ(x) − f(x)| < ε

3
. (3.5)

Moreover, as f ∈ D, Proposition 3.1 implies estimate (3.4) with some M > 0.
Let us set δ = ε

3M and note that ‖x− y‖ < δ. Then

|ϕ(x) − ϕ(y)| ≤ |ϕ(x) − f(x)| + |f(x) − f(y)| + |f(y) − ϕ(y)|
(3.4), (3.5)

<
ε

3
+M

ε

3M
+
ε

3
= ε.

Proposition 3.3. Suppose that a sequence of functions (fj)∞j=1 ⊂ X converges
uniformly to a function f0 ∈ X. Then the family (fj)∞j=0 is equicontinuous.

Proof. Suppose ε > 0 is given. Let us find δ > 0 such that ‖x − y‖ < δ implies
that |ϕ(x) − ϕ(y)| < ε.
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By Proposition 3.2, function fj is uniformly continuous for each j = 0, 1, 2, . . ..
Thus, for each j = 0, 1, 2, . . . there exists δj > 0 such that ‖x− y‖ < δj implies

|fj(x) − fj(y)| < ε

3
. (3.6)

As fj → f0 uniformly, there exists j0 such that for all j > j0

sup
x∈H

|f0(x) − fj(x)| < ε

3
. (3.7)

Let us set δ = min(δ0, δ1, . . . , δj0). Then for j > j0 we have that ‖x − y‖ < δ

implies

|fj(x) − fj(y)| ≤ |fj(x) − f0(x)| + |f0(x) − f0(y)|

+ |f0(y) − fj(y)|
(3.6), (3.7)

<
ε

3
+
ε

3
+
ε

3
= ε.

Now, if 0 ≤ j ≤ j0, then ‖x− y‖ < δ implies estimate (3.6), which is even stronger.

Remark 3.2. A number a ∈ R is called a limit at infinity of a function f : H → R

if limR→+∞ sup‖x‖≥R |f(x) − a| = 0. It is shown in Ref. 55 that if H is infinite-
dimensional, then a non-constant function that belongs to X cannot have a limit
at infinity. E.g., the function x → exp(−‖x‖2) belongs to Cb(H,R) but not to X .

Remark 3.3. Suppose that αk : R → R is a family of infinitely-smooth functions,
uniformly bounded with their first and second derivatives:

sup
p∈{0,1,2}

sup
k∈N

sup
t∈R

∣∣∣∣dpαk(t)
dtp

∣∣∣∣ ≤M ≡ const.

For example: αk(t) = sin(dk(t − tk)), where dk and tk are constants and 0 <

dk ≤ 1. Suppose numerical series
∑∞

k=1 bk converges absolutely. Let (ek)∞k=1 be an
orthonormal basis in H . Then straightforward reasoning shows that function

f(x) =
∞∑

k=1

bkαk(〈x, ek〉)

belongs to the class D1. This statement can be extended to the case αk : R
nk → R.

Remark 3.4. Space D is not separable (it does not have a countable dense subset).
In the case of one-dimensional H it can be shown similar to the standard proof of
the non-separability of Cb(R,R). If dimH > 1, then R1 can be embedded into H
as a linear span of a nonzero vector e ∈ H . Using this, one can embed the set
of cylindrical functions contributing to the non-separability of D in the case of
one-dimensional H , into the space D in the general case.

Remark 3.5. By Remark 3.4 and the inclusion D ⊂ D1 ⊂ X , one can see that D1

and X are not separable too.
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3.2. Family St provides a semigroup with generator L

Theorem 3.1 (On the properties of family (St)t≥0 and its connection to
the operator L). Suppose that g ∈ X, and for every x ∈ H we have g(x) ≥ go ≡
const > 0. Suppose that B ∈ XH and C ∈ X. Suppose that t > 0, and µ2tg(x)A is
the centered Gaussian measure on H with the correlation operator 2tg(x)A.

For t ≥ 0 and ϕ ∈ Cb(H,R) let us define

(Stϕ)(x) := etC(x)−t 〈AB(x),B(x)〉
g(x)

·
∫

H

ϕ(x+ y)e〈
1

g(x) B(x),y〉µ2tg(x)A(dy) for t > 0, and S0ϕ := ϕ.

(3.8)

Then:

(1) If t ≥ 0 and ϕ ∈ Cb(H,R), then Stϕ ∈ Cb(H,R). For every t ≥ 0 the operator
St : Cb(H,R) → Cb(H,R) is linear and bounded; its norm does not exceed

e(
2‖A‖‖B‖2

g0
+‖C‖)t.

(2) If g ∈ D, C ∈ D, B ∈ DH , then the space D for every t ≥ 0 is invariant with
respect to the operator St.

(3) If g ∈ X, C ∈ X, B ∈ XH , then the space X for every t ≥ 0 is invariant with
respect to the operator St.

(4) For every function ϕ ∈ D, for g ∈ X, C ∈ X, B ∈ XH there exists (uniformly
with respect to x ∈ H) a limit

lim
t→0

(Stϕ)(x) − ϕ(x)
t

= g(x)trAϕ′′(x) + 〈ϕ′(x), AB(x)〉 + C(x)ϕ(x)

= (Lϕ)(x).

(5) If ϕ ∈ X, g ∈ X, C ∈ X, B ∈ XH , then the function [0,+∞) � t → Stϕ ∈ X

is continuous, i.e. if t0 ≥ 0, tn ≥ 0 and tn → t0, then supx∈H |(Stnϕ)(x) −
(St0ϕ)(x)| → 0.

Proof. (1) Function ϕ is bounded, so integral (3.8) exists by Lemma 2.4. Suppose
a number t > 0 and a function ϕ ∈ Cb(H,R) are fixed. Recalling Lemma 2.3,
one can see that

∫
H
ϕ(x + y)e〈

1
g(x) B(x),y〉µ2tg(x)A(dy) =

∫
H
ϕ(x +

√
2tg(x)y)

e〈
1

g(x) B(x),
√

2tg(x)y〉µA(dy).
Introducing the notation ‖B‖ = supx∈H ‖B(x)‖, we obtain the estimate

‖Stϕ‖ = sup
x∈H

∣∣∣∣etC(x)− 〈AB(x),B(x)〉
g(x) t

∫
H

ϕ(x+
√

2tg(x)y)

· e〈 1
g(x) B(x),

√
2tg(x)y〉µA(dy)

∣∣∣∣
≤ sup

x∈H

∣∣∣etC(x)− 〈AB(x),B(x)〉
g(x) t

∣∣∣ sup
x∈H

|ϕ(x)|
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· sup
x∈H

∫
H

e

〈q
2t

g(x) B(x),y
〉
µA(dy)

(2.4)
= et(‖C‖+‖ 〈AB(x),B(x)〉

g(x) ‖)‖ϕ‖ sup
x∈H

e
1
2

2t
g(x) 〈AB(x),B(x)〉

〈x1,x2〉≤‖x1‖·‖x2‖≤ e

„
2‖A‖‖B‖2

g0
+‖C‖

«
t‖ϕ‖, (3.9)

which implies that the function x → (Stϕ)(x) is bounded. Let us prove that this
function is continuous. Suppose xj → x, then for every y ∈ H

ϕ
(
xj +

√
2tg(xj)y

)
e

〈q
2t

g(xj )B(xj),y
〉
→ ϕ(x+

√
2tg(x)y)e

〈q
2t

g(x) B(x),y
〉
.

Moreover,∣∣∣∣ϕ(xj +
√

2tg(xj)y
)
e

〈q
2t

g(xj )B(xj),y
〉∣∣∣∣ ≤ ‖ϕ‖e

q
2t
g0

‖B‖‖y‖

and, in a similar way,∣∣∣∣ϕ(xj +
√

2tg(x)y)e
〈q

2t
g(x) B(x),y

〉∣∣∣∣ ≤ ‖ϕ‖e
q

2t
g0

‖B‖‖y‖
.

Lemma 2.4 implies that the function y → e

q
2t
g0

‖B‖‖y‖ is integrable over
the measure µA. Therefore by Lebesgue dominated convergence theorem we

have limj→∞
∫

H
ϕ(xj +

√
2tg(xj)y)e

〈q
2t

g(xj )B(xj),y
〉
µA =

∫
H
ϕ(x +

√
2tg(x)y)

e

〈q
2t

g(x) B(x),y
〉
µA.

Because the functions C,B, g are continuous and g(x) ≥ g0 > 0, we have

e
tC(xj)− 〈AB(xj),B(xj )〉

g(xj ) t → etC(x)− 〈AB(x),B(x)〉
g(x) t. Therefore, (Stϕ)(xj) → (Stϕ)(x).

So we have proved that Stϕ ∈ Cb(H,R). Estimate (3.9) shows that ‖St‖ ≤
e

(
2‖A‖‖B‖2

g0
+‖C‖

)
t.

(2) We fix t > 0 and prove that Stϕ ∈ D.

(i) First of all, if g ∈ D, C ∈ D, B ∈ DH , then the operator St maps the
cylindrical function ϕ into a cylindrical function Stϕ. This follows from the fact
that (3.8) is a cylindrical function of cylindrical functions, which are functions of
finite number of linear functionals of x. Therefore, the number (Stϕ)(x) depends on
x only via a finite number of linear functionals, hence x → (Stϕ)(x) is a cylindrical
function, see (3.11) for the exact formula.

(ii) Let us introduce some notation. As ϕ is cylindrical, then for every x ∈ H

the equality ϕ(x) = ϕn(〈x, e1〉, . . . , 〈x, en〉) holds for some n ∈ N, some function
ϕn : Rn → R and some set of vectors e1, . . . , en of the space H . Functions g, C,
B are also cylindrical, and without loss of generality we can accept that the set
of vectors e1, . . . , en is so large that the following holds: g(x) = gn(〈x, e1〉, . . . ,
〈x, en〉), C(x) = Cn(〈x, e1〉, . . . , 〈x, en〉), B(x) = B1(〈x, e1〉, . . . , 〈x, en〉)e1 + · · · +
Bn(〈x, e1〉, . . . , 〈x, en〉)en.
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At this moment vectors e1, . . . , en can be in arbitrary position with respect to
the eigenvectors of the operator A. Without loss of generality the set e1, . . . , en can
be considered orthonormalized.

Let us introduce the definitions: Ψn : H � h → (〈h, e1〉, . . . , 〈h, en〉) ∈ Rn

— a projector, Hn = span(e1, . . . , en) — a subspace in H , In : Hn � h →
(〈h, e1〉, . . . , 〈h, en〉) ∈ Rn — an isomorphism, Pn : H � h → 〈h, e1〉e1 +
· · · + 〈h, en〉en ∈ Hn — a projector. Next, denote

→
x

n

1= (x1, . . . , xn) ∈ R
n and

→
B

n

1 (
→
x

n

1 ) = (B1(x1, . . . , xn), . . . , Bn(x1, . . . , xn)) ∈ Rn. With these definitions
we have Ψn = InPn and ϕ(x) = ϕn(Ψnx), g(x) = gn(Ψnx), C(x) = Cn(Ψnx),

B(x) =
→
B

n

1 (Ψnx).
Let us introduce the function Φ : Rn → R in the following way:

Φ
( →
x

n

1

)
=

∫
H

ϕn
( →
x

n

1 +
√

2tgn(
→
x

n

1 )Ψn(y)
)
· e

r
2t

gn(
→
x

n
1 )

〈→
B

n

1 (
→
x

n

1 ),Ψn(y)
〉
µA(dy).

(3.10)

Then for every x ∈ H we have

(Stϕ)(x) = Φ(Ψnx) exp

tCn(Ψnx) −
〈
A

→
B

n

1 (Ψnx),
→
B

n

1 (Ψnx)
〉

gn(Ψnx)
t

 . (3.11)

(iii) Now let us prove that Stϕ has bounded Fréchet derivatives of all orders
employing Proposition 2.1. To do this we need to prove that the functions Rn → R

have bounded Fréchet derivatives of all orders. The exponent in (3.11) has this prop-
erty because the exponent is obtained by composition and arithmetical operations
from the functions with this property.

Let us show that Φ has Fréchet derivatives of all orders. The product of differen-
tiable functions under the sign of integral in (3.10) is differentiable, so the problem
is reduced to the verification of the differentiability of the integral. To do this, we
apply Lemma 2.1 and arrive from an integral over H to an integral over R

n in the
expression for Φ (this is possible because the integrand is cylindrical).

Operator A is non-degenerate and symmetric on H , therefore the operator PnA

is non-degenerate and symmetric on Hn, and therefore it can be diagonalized in
some orthonormal basis b1, . . . , bn. Without loss of generality we can assume that
the vectors e1, . . . , en form such a basis. Indeed, changing the basis in the space Hn

will just produce linear non-degenerate change of variables in the functions Rn → R

used to define cylindrical functions H → R. This will give us new functions Rn → R,
but all their properties that we need will be preserved.

The matrix of the operator PnA in Hn coincides with the matrix of the oper-
ator Qn = InPnAI

−1
n in Rn. Next, let q1, . . . , qn be the eigenvalues of the opera-

tor Qn, corresponding to the eigenvectors Ψne1, . . . ,Ψnen. Note, that qi > 0 and
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Explicit formula for evolution semigroup for diffusion in Hilbert space

gn(
→
x

n

1 )≥ g0 ≡ const > 0 for every
→
x

n

1∈ Rn. Then by (2.2) we have

Φ
( →
x

n

1

)
=

(
1√
2π

)n 1√∏n
i=1 qi

∫
Rn

ϕn
( →
x

n

1 +
√

2tgn(
→
x

n

1 )z
)

· e
r

2t

gn(
→
x

n
1 )

〈→
B

n

1 (
→
x

n

1 ),z
〉

exp

(
−

n∑
i=1

z2
i

2qi

)
dz.

Now we introduce a measure ν on Rn given by its density with respect to the
Lebesgue measure: for every measurable set A ⊂ Rn we set

ν(A) :=
(

1√
2π

)n 1√∏n
i=1 qi

∫
A

exp

(
−

n∑
i=1

z2
i

2qi

)
dz.

It follows from the definitions given above that

Φ
( →
x

n

1

)
=

∫
Rn

ϕn
( →
x

n

1 +
√

2tgn
( →
x

n

1

)
z
)
e

r
2t

gn(
→
x

n
1 )

〈→
B

n

1 (
→
x

n

1 ),z
〉
ν(dz). (3.12)

The integrand in (3.12) is a composition of mappings with the continuous
bounded Fréchet derivative. Thus, it has a continuous bounded Fréchet deriva-
tive. The Fréchet derivative of the integrand is uniformly bounded (the estimate
is obtained from the chain rule formula), and (Rn, ν) is locally compact, countable
at infinity, linear normed space with the non-negative Radon measure. Therefore
we can apply Theorem 115 from Ref. 60 on the Fréchet differentiation under the
Lebesgue integral. Repeating this reasoning for every k ∈ N, we conclude that as
the integrand has, everywhere in Rn, continuous Fréchet derivatives of kth order,
then the function Φ has, everywhere in Rn, continuous bounded Fréchet’s deriva-
tives of kth order. So the functions Rn → R in the right-hand side of (3.11) all have
continuous bounded Fréchet’s derivatives of kth order.

Therefore, according to point (2) of Proposition 2.1, the function x → (Stϕ)(x)
also has, for every k ∈ N, Fréchet derivatives of order k, continuous and bounded
everywhere on H . Therefore Stϕ ∈ D.

(3)(i) Now suppose ϕ ∈ X , which means that ϕ ∈ Cb(H,R) and there exists
a sequence (ϕj) ⊂ D such that ϕj(x) → ϕ(x) uniformly with respect to x ∈ H .
Suppose also that g ∈ X , so g ∈ Cb(H,R) and there exists a sequence (gj) ⊂ D

such that gj → g uniformly. It follows from g(x) ≥ g0 ≡ const > 0 for all x ∈ H

that there exists a number j0 ∈ N such that for all j > j0 and for all x ∈ H the
inequality gj(x) ≥ g0

2 holds. Therefore, we will not restrict the generality when
assuming that for the sequence (gj) the inequality gj(x) ≥ g0

2 already holds for all
j ∈ N and for all x ∈ H .

Also suppose C ∈ X , so C ∈ Cb(H,R) and there exists a sequence (Cj) ⊂ D

such that Cj → C uniformly. Finally, suppose B ∈ XH , so B ∈ Cb(H,H) and there
exists a sequence (Bj) ⊂ DH such that Bj → B uniformly. Let t > 0 be fixed as
before.
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Let us denote the operator St constructed with functions gj, Bj , Cj by (Sj)t.
According to (just proven above) item (2) of the theorem, (Sj)tϕj ∈ D for all j ∈ N.
Next, in (ii) and (iii) we will prove that ((Sj)tϕj)(x) → (Stϕ)(x) uniformly with
respect to x ∈ H ; by the definition of the space X this will mean that Stϕ ∈ X .

(ii) First of all let us prove that for every fixed y ∈ H the sequence of functions
x → ϕj(x+

√
2tgj(x)y) converges to the function x → ϕ(x+

√
2tg(x)y) uniformly

with respect to x ∈ H . Indeed, suppose ε > 0 is given. Let us find j∗ ∈ N such that
for all j > j∗ the following estimate holds

sup
x∈H

∣∣∣ϕj

(
x+

√
2tgj(x)y

)
− ϕ

(
x+

√
2tg(x)y

)∣∣∣ ≤ ε. (3.13)

Notice that ϕ,ϕj , g, gj are elements of X by the hypothesis made above, and all
the functions in X are uniformly continuous, according to Proposition 3.2. Accord-
ing to Proposition 3.3, the family of functions {ϕj : j ∈ N} is equicontinuous. Thus,
there exists δ > 0 such that, for all j ∈ N, if ‖x1 − x2‖ < δ, then

|ϕj(x1) − ϕj(x2)| < ε

2
. (3.14)

Function [0,+∞) � a → √
2ta ∈ R is uniformly continuous, so the uniform (with

respect to x ∈ H) convergence gj(x) → g(x) implies the uniform (with respect to
x ∈ H) convergence [H � x → √

2tgj(x) ∈ R] → [H � x → √
2tg(x) ∈ R]. This

shows that for every fixed y ∈ H there exists j1 ∈ N such that for all j > j1 and
all x ∈ H we have ∥∥∥(x+

√
2tgj(x)y

)
− (

x+
√

2tg(x)y
)∥∥∥ < δ. (3.15)

Besides, because ϕj(z) → ϕ(z) uniformly with respect to z ∈ H , there exists a
number j2 such that for all j > j2 and all z ∈ H we have

|ϕj(z) − ϕ(z)| < ε

2
. (3.16)

For each fixed y ∈ H , for all j ∈ N and for all x ∈ H , we have∣∣∣ϕj

(
x+

√
2tgj(x)y

)
− ϕ

(
x+

√
2tg(x)y

)∣∣∣ ≤ ∣∣∣ϕj

(
x+

√
2tgj(x)y

)
−ϕj

(
x+

√
2tg(x)y

)∣∣∣ +
∣∣∣ϕj

(
x+

√
2tg(x)y

)− ϕ
(
x+

√
2tg(x)y

)∣∣∣.
Now, we define j∗ = max(j1, j2). For all j > j∗ the first summand is less than

ε
2 due to (3.14) and (3.15); the easiest way to see that is to set x1 = x+

√
2tgj(x)y

and x2 = x +
√

2tg(x)y. As for the second summand, it is less than ε
2 on account

of (3.16); the easiest way to see that is to set z = x+
√

2tg(x)y.
So, for each fixed y ∈ H we have found a number j∗ ∈ N such that for all j > j∗

and for all x ∈ H the following inequality holds:∣∣∣ϕj

(
x+

√
2tgj(x)y

)
− ϕ

(
x+

√
2tg(x)y

)∣∣∣ < ε

2
+
ε

2
= ε.

By taking supx∈H we obtain the needed estimate (3.13), as the right-hand side
of the inequality above does not depend on x.
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(iii) A reasoning similar to (ii) shows that for fixed y we have e
〈
q

2t
gj(x) Bj(x),y〉 →

e
〈
q

2t
g(x) B(x),y〉 uniformly with respect to x ∈ H ; let us omit the detailed proof.

Uniting this with the results of (ii) and keeping in mind that for fixed y all the
sequences of functions are bounded collectively, we obtain that for each fixed y we
have

ϕj

(
x+

√
2tgj(x)y

)
e

〈q
2t

gj (x)Bj(x),y
〉
→ ϕ

(
x+

√
2tg(x)y

)
e

〈q
2t

g(x) B(x),y
〉

(3.17)

uniformly with respect to x ∈ H.

(iv) For fixed y, functions in (3.17) are bounded, therefore the sequence of
functions Yj : H → R

Yj =
[
y → sup

x∈H

∣∣∣ϕj

(
x+

√
2tgj(x)y

)
e

〈q
2t

gj(x) Bj(x),y
〉

−ϕ
(
x+

√
2tg(x)y

)
e

〈q
2t

g(x) B(x),y
〉∣∣∣]

is well defined. It follows from (iii), that Yj(y) converges to zero pointwise, in
other words for each y. Functions Yj are non-negative and bounded collectively
by an integrable (due to Lemma 2.4) function y → αeβ‖y‖ + γ with appropri-
ate constants α, β and γ. The Lebesgue dominated convergence theorem gives us
that

∫
H Yj(y)µA(dy) → 0. As the number sequence

∫
H Yj(y)µA(dy) converges, it is

bounded. For brevity, let us denote

Ψ(x, y) = ϕ
(
x+

√
2tg(x)y

)
e

〈q
2t

g(x) B(x),y
〉
,

Ψj(x, y) = ϕj

(
x+

√
2tgj(x)y

)
e

〈q
2t

gj(x) Bj(x),y
〉
,

E(x) = exp
(
tC(x) − t

〈AB(x), B(x)〉
g(x)

)
,

Ej(x) = exp
(
tCj(x) − t

〈ABj(x), Bj(x)〉
gj(x)

)
.

A reasoning similar to (ii) shows that Ej(x) → E(x) uniformly with respect to
x ∈ H . We obtain the estimate

‖(Sj)tϕj − Stϕ‖ = sup
x∈H

∣∣∣∣Ej(x)
∫

H

Ψj(x, y)µA(dy) − E(x)
∫

H

Ψ(x, y)µA(dy)
∣∣∣∣

≤ sup
x∈H

∣∣∣∣Ej(x)
∫

H

Ψj(x, y)µA(dy) − Ej(x)
∫

H

Ψ(x, y)µA(dy)
∣∣∣∣

+ sup
x∈H

∣∣∣∣Ej(x)
∫

H

Ψ(x, y)µA(dy) − E(x)
∫

H

Ψ(x, y)µA(dy)
∣∣∣∣
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≤ sup
x∈H

|Ej(x)|
∫

H

Yj(y)µA(dy) + sup
x∈H

|Ej(x) − E(x)|

·
∫

H

Ψ(x, y)µA(dy).

Finally let us note that supx∈H |Ej(x) − E(x)| → 0 and
∫

H
Yj(y)µA(dy) → 0,

and the multipliers of these terms in the above estimate are bounded, which implies
‖(Sj)tϕj − Stϕ‖ → 0.

(4) Suppose ϕ ∈ D, t > 0 and x ∈ H are fixed. Let us consider the integral∫
H

ϕ(x + y)e
〈

1
g(x) B(x),y

〉
µ2tg(x)A(dy).

We will work with the approximation of the function ϕ by its Taylor polynomial
(2.10) of the second order with the center at the point x. Before we start, it is
important to note that the remainder term R(x, y) will not be small, as the vector
y ranges over the whole space H , and vector x is fixed. However as ϕ is three times
Fréchet differentiable on H , for each x ∈ H and each y ∈ H there exists a real
number R(x, y) such that∫

H

ϕ(x+ y)e
〈

1
g(x) B(x),y

〉
µ2tg(x)A(dy)

=
∫

H

{
ϕ(x) + 〈ϕ′(x), y〉 +

1
2!
〈ϕ′′(x)y, y〉 +R(x, y)

}
e

〈
1

g(x) B(x),y
〉
µ2tg(x)A(dy),

and, according to (2.11), the estimate

|R(x, y)| ≤ ‖y‖3

(3)!
sup

z∈[x,x−y]

‖ϕ(3)(z)‖ ≤ 1
3!
‖ϕ′′′‖‖y‖3 (3.18)

holds, where we define ‖ϕ′′′‖ = supz∈H ‖ϕ(3)(z)‖. Also, let us denote ‖g‖ =
supz∈H |g(z)|.

The sum can be integrated termwise as every term can be bounded by a poly-
nomial of ‖y‖, multiplied by an exponent of ‖y‖ and such functions are integrable
due to Lemma 2.4. Let us calculate integrals in the sum and for fixed ϕ evaluate
the decay rate as t→ 0 uniformly with respect to x ∈ H .∫

H

ϕ(x)e
〈

1
g(x) B(x),y

〉
µ2tg(x)A(dy) = ϕ(x)

∫
H

e

〈
1

g(x) B(x),y
〉
µ2tg(x)A(dy)

(set z = B(x)
g(x) and Ã = 2tg(x)A in (2.4))

ϕ(x) exp
(

1
2

〈
2tg(x)A

B(x)
g(x)

,
B(x)
g(x)

〉)
= ϕ(x) exp

( 〈AB(x), B(x)〉
g(x)

t

)

= ϕ(x)
(

1 +
〈AB(x), B(x)〉

g(x)
t+ o(t)

)
= ϕ(x) + ϕ(x)

〈AB(x), B(x)〉
g(x)

t+ o(t).
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Next, let z and Ã be as before, and set w = ϕ′(x) in (2.5).∫
H

〈ϕ′(x), y〉 e

〈
1

g(x) B(x),y
〉
µ2tg(x)A(dy)

(2.5)
=

〈
2tg(x)Aϕ′(x),

1
g(x)

B(x)
〉

· exp
(

1
2

〈
2tg(x)A

1
g(x)

B(x),
1

g(x)
B(x)

〉)
= 2t〈Aϕ′(x), B(x)〉 exp

(
t

g(x)
‖
√
AB(x)‖2

)
= 2t〈Aϕ′(x), B(x)〉 + o(t).

For the term with ϕ′′ we have∫
H

〈ϕ′′(x)y, y〉e
〈

1
g(x) B(x),y

〉
µ2tg(x)A(dy)

(2.6)
= (2tg(x)trAϕ′′(x) + 4t2〈ϕ′′(x)AB(x), AB(x)〉) exp

( 〈AB(x), B(x)〉
g(x)

t

)
= 2tg(x)trAϕ′′(x) + o(t).

Finally,∣∣∣∣∫
H

R(x, y)e
〈

1
g(x) B(x),y

〉
µ2tg(x)A(dy)

∣∣∣∣
(2.7)

≤
∫

H

∣∣R(x,
√

2tg(x)y)
∣∣e〈 1

g(x) B(x),
√

2tg(x)y
〉
µA(dy)

(3.18)

≤
∫

H

1
3!
‖ϕ′′′‖(√2tg(x)

)3‖y‖3e

〈q
2t

g(x) B(x),y
〉
µA(dy)

≤ t
3
2

(√
2

3
‖ϕ′′′‖‖g‖ 3

2

∫
H

‖y‖3e

〈q
2t

g(x) B(x),y
〉
µA(dy)

)
≤ (due to the inequality 〈z, y〉 ≤ ‖z‖‖y‖ and monotonicity

of the exponent function)

t
3
2

(√
2

3
‖ϕ′′′‖‖g‖ 3

2

∫
H

‖y‖3e

∥∥q
2t

g(x) B(x)
∥∥‖y‖

µA(dy)

)
≤ (due to ‖B(x)‖ ≤ B0, g0 ≤ g(x) and monotonicity of the

exponent function)

t
3
2

(√
2

3
‖ϕ′′′‖‖g‖ 3

2

∫
H

‖y‖3e

q
2t
g0

B0‖y‖
µA(dy)

)
= o(t) uniformly with respect to x ∈ H.
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Summing everything up, one can see that∫
H

ϕ(x + y)e
〈

1
g(x) B(x),y

〉
µ2tg(x)A(dy)

= ϕ(x) + t〈ϕ′(x), AB(x)〉 + tg(x)trAϕ′′(x)

− tϕ(x)
〈AB(x), B(x)〉

g(x)
+ o(t),

uniformly with respect to x ∈ H .
Consider the term exp(tC(x) − 〈AB(x),B(x)〉

g(x) t). As ‖C‖, ‖A‖, ‖B‖ are bounded

from infinity and g is bounded from zero, we have etC(x)− 〈AB(x),B(x)〉
g(x) t = 1+ tC(x)−

〈AB(x),B(x)〉
g(x) t + o(t) uniformly with respect to x ∈ H . Therefore, uniformly with

respect to x ∈ H for t→ 0 one obtains

(Stϕ)(x) = etC(x)− 〈AB(x),B(x)〉
g(x) t

∫
H

ϕ(x+ y)e
〈

1
g(x) B(x),y

〉
µ2tg(x)A(dy)

= ϕ(x) + t〈ϕ′(x), AB(x)〉 + tg(x)trAϕ′′(x) + tC(x)ϕ(x) + o(t).

This implies that uniformly with respect to x ∈ H

lim
t→0

(Stϕ)(x) − ϕ(x)
t

= g(x)trAϕ′′(x) + 〈ϕ′(x), AB(x)〉 + C(x)ϕ(x) = (Lϕ)(x).

(5)(i) First let us consider the case t0 �= 0. If tn → t0, then 2tng(x) → 2t0g(x)
uniformly with respect to x ∈ H . Because the function z → √

z is uniformly
continuous, it follows that

√
2tng(x) →

√
2t0g(x) uniformly with respect to x ∈ H .

According to Proposition 3.2, the function ϕ is uniformly continuous. Therefore,
for every fixed y ∈ H ϕ(x+

√
2tng(x)y) → ϕ(x+

√
2t0g(x)y) uniformly with respect

to x ∈ H .
Next, for every y∈H the sequence 〈 1

g(x)B(x),
√

2tng(x)y〉 converges to

〈 1
g(x)B(x),

√
2t0g(x)y〉 uniformly with respect to x ∈ H because of the linear-

ity of the scalar product. Since the number sequence tn converges, it is bounded;
besides, g(x) ≥ g0 ≡ const > 0 and functions x → g(x) and x → ‖B(x)‖ are
bounded. Therefore, there exists a constant K > 0 such that for fixed y ∈ H for all
k = 0, 1, 2, 3, . . . and all x ∈ H the inequality |〈 1

g(x)B(x),
√

2tkg(x)y〉| ≤ K holds.
Function z → ez is uniformly continuous with respect to z ∈ [−K,K], therefore for

every y ∈ H we have the convergence e〈
1

g(x) B(x),
√

2tng(x)y〉 → e〈
1

g(x) B(x),
√

2t0g(x)y〉,
uniformly with respect to x ∈ H .

The product of two collectively bounded uniformly converging sequences is a
sequence, uniformly converging to the product of the limits of these sequences.
Therefore, from the two last paragraphs, it follows that for every y ∈ H we have

ϕ(x +
√

2tng(x)y)e
〈 1

g(x) B(x),
√

2tng(x)y〉 → ϕ(x +
√

2t0g(x)y)e
〈 1

g(x) B(x),
√

2t0g(x)y〉

(3.19)

uniformly with respect to x ∈ H .
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Explicit formula for evolution semigroup for diffusion in Hilbert space

Since for fixed y the functions from (3.19) are bounded, the sequence of the
number functions is well defined

Yn =
[
y → sup

x∈H

∣∣∣ϕ(x+
√

2tng(x)y
)
e

〈q
2tn
g(x) B(x),y

〉
−ϕ

(
x+

√
2t0g(x)y

)
e

〈q
2t0
g(x) B(x),y

〉∣∣∣].
According to above results, Yn(y) converges to zero pointwise, i.e. for every y.
Functions Yn are bounded by an integrable function (see Lemma 2.4), therefore, by
the Lebesgue dominated convergence theorem, we have

∫
H
Yn(y)µA(dy) → 0.

Finally, C ∈X,B ∈XH , and therefore supx∈H |C(x)| <∞, supx∈H ‖B(x)‖<∞.

United with g(x) ≥ g0 this implies etnC(x)− 〈AB(x),B(x)〉
g(x) tn → et0C(x)− 〈AB(x),B(x)〉

g(x) t0

uniformly with respect to x ∈ H .
So, the sequence Stnϕ(x) is a product of two collectively bounded uniformly con-

verging sequences; thus it converges to the product of the limits of these sequences,
i.e. to St0ϕ(x).

(ii) Now let us consider the case t0 = 0. Recall that S0 = I, so we need for each
fixed ϕ prove that if tn → 0 then Stnϕ → ϕ, i.e. ‖Stnϕ − ϕ‖ → 0. Without loss of
generality we can assume that 0 < tn ≤ 1.

(iia) Let us first consider the case ϕ ∈ D. Then by item (4) of the present
theorem Stϕ = ϕ+ tLϕ+ o(t), so tn → 0 implies Stnϕ→ ϕ.

(iib) Now suppose that ϕ ∈ X, so there exists a sequence (ϕk) ⊂ D such that
‖ϕk − ϕ‖ → 0. Item (1) of the present theorem implies that there exists such a
constant ω ≥ 1 such that for all t ∈ [0, 1] we have ‖St‖ ≤ ω. Now for arbitrary
ε > 0 we apply “ε/3-method” based on the estimate

‖Stnϕ− ϕ‖ ≤ ‖Stnϕ− Stnϕk‖ + ‖Stnϕk − ϕk‖ + ‖ϕk − ϕ‖.
We can select such k that ‖ϕk − ϕ‖ < ε/(3ω). For fixed k we can thanks to (iia)
find such a number n0 that for all n > n0 one has ‖Stnϕk − ϕk‖ < ε/3. So for all
n > n0 we see that

‖Stnϕ− ϕ‖ ≤ ‖Stn‖ · ‖ϕ− ϕk‖ + ‖Stnϕk − ϕk‖ + ‖ϕk − ϕ‖
< ω

ε

3ω
+
ε

3
+

ε

3ω
≤ ε.

Theorem 3.2 (On the properties of the operator L). Suppose for each x ∈ H

the inequalities g(x) ≥ go ≡ const > 0 and C(x) ≤ 0 hold. As C ∈ X, there exists a
sequence (Cj) ⊂ D converging to C uniformly; let us additionally require that this
sequence can be selected in such a way that Cj(x) ≤ 0 for all j ∈ N and all x ∈ H.
The operator L : D → X is defined by the equation

(Lϕ)(x) = g(x)trAϕ′′(x) + 〈ϕ′(x), AB(x)〉 + C(x)ϕ(x).

Symbol I stands for the identity operator.
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Then:

(1) If g ∈ D, C ∈ D, B ∈ DH and ϕ ∈ D, then Lϕ ∈ D. If g ∈ X, C ∈ X, B ∈ XH

and ϕ ∈ D, then Lϕ ∈ X.

(2) If g ∈ D, C ∈ D, B ∈ DH , then for each λ > 0 the operator λI−L is surjective
on D, therefore (λI − L)(D) = D is a dense subspace in X.

(3) If g ∈ D, C ∈ D, B ∈ DH , then the operator (L,D) is dissipative and closable.
(4) If g ∈ X, C ∈ X, B = 0, then for each λ > 0 the space (λI − L)(D) is dense

in X.
(5) If g ∈ X, C ∈ X, B ∈ XH , then the operator (L,D) is dissipative and has the

closure (L,D1). This operator is also dissipative.

Proof. (1) First part of the statement is obvious: the result of the applying a
differential operator with smooth cylindrical coefficients to a smooth cylindrical
function is a smooth cylindrical function. As it follows from the chain rule, all
the derivatives are bounded. Let the coefficients of the operator L be uniform
limits g,B,C of cylindrical functions gj , Bj , Cj . We denote the operator L that
corresponds to the functions gj , Bj , Cj as Lj. Then, as j → ∞ the sequence Ljϕ

converges uniformly to Lϕ, therefore Lϕ ∈ X , because Ljϕ ∈ D as we proved
above.

(2) Suppose g ∈ D, B ∈ DH , C ∈ D. Recall that all these functions are
cylindrical and thus they are closely related to functions on Rn; this will be the
core idea of the proof that follows.

Let us fix λ > 0, choose arbitrary function ϕ ∈ D and then show, that there
exists a function f ∈ D satisfying the equation

λf(x) − g(x)trAf ′′(x) − 〈f ′(x), AB(x)〉 − C(x)f(x) = ϕ(x). (3.20)

Let the vectors e1, . . . , en be such that for every x ∈ H we have

C(x) = Cn(〈x, e1〉, . . . , 〈x, en〉), B(x) =
n∑

k=1

Bn
k (〈x, e1〉, . . . , 〈x, en〉)ek, (3.21)

ϕ(x) = ϕn(〈x, e1〉, . . . , 〈x, en〉) and g(x) = gn(〈x, e1〉, . . . , 〈x, en〉), (3.22)

where ϕn : Rn → R, gn : Rn → R, Cn : Rn → R and Bn
k : Rn → R are continu-

ously differentiable functions, bounded along with all the derivatives. Let us find a
solution of Eq. (3.20) in the form

f(x) = fn(〈x, e1〉, . . . , 〈x, en〉), (3.23)

where fn : Rn → R is a continuously differentiable function, bounded along with
all its derivatives.

According to item (1) of Proposition 2.1

f ′(x) =
n∑

s=1

∂sf
n(〈x, e1〉, . . . , 〈x, en〉)es.
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Explicit formula for evolution semigroup for diffusion in Hilbert space

Using (3.21) we obtain that

〈f ′(x), AB(x)〉

=

〈
n∑

s=1

∂sf
n(〈x, e1〉, . . . , 〈x, en〉)es, A

n∑
k=1

Bn
k (〈x, e1〉, . . . , 〈x, en〉)ek

〉

=
n∑

s=1

(
n∑

k=1

Bn
k (〈x, e1〉, . . . , 〈x, en〉)〈Aes, ek〉

)
∂sf

n(〈x, e1〉, . . . , 〈x, en〉).

(3.24)

One can see, by taking into account (2.9), (3.22), (3.21), (3.23) and (3.24), that
Eq. (3.20) for the unknown function f of form (3.23) is equivalent to the equation
for an unknown function fn:

gn(x1, . . . , xn)
n∑

s=1

n∑
k=1

〈Aes, ek〉∂k∂sf
n(x1, . . . , xn)

+

(
n∑

s=1

(
n∑

k=1

Bn
k (x1, . . . , xn)〈Aes, ek〉

)
∂sf

n(x1, . . . , xn)

)
+Cn(x1, . . . , xn)fn(x1, . . . , xn) − λfn(x1, . . . , xn)

= −ϕn(x1, . . . , xn), (3.25)

where we denote xj = 〈x, ej〉.
Equation (3.25) is a finite-dimensional PDE. Note that gn(x1, . . . , xn) ≥ g0 ≡

const > 0. The quadratic form given by the n × n-matrix (〈Aes, ek〉) is positively
defined because the operator A is positive and non-degenerate. So the differential
operator in Eq. (3.25) is elliptic, and (3.25) has form (2.12), i.e.

Lnfn(x1, . . . , xn) − λfn(x1, . . . , xn) = −ϕ(x1, . . . , xn).

Functions gn, Cn and Bn
k used to construct the coefficiences of the operator Ln,

and the function ϕn are bounded along with all the derivatives. (Note that Ln is not
the nth power of the operator L.) Therefore, we can apply item (1) of Lemma 2.5
to Eq. (3.25), so (3.25) has the solution fn, continuous and bounded along with all
the derivatives. Function f defined by Eq. (3.23) belongs to D according to item
(2) of Proposition 2.1.

Thus, for every λ > 0 the operator λI − L is surjective in D, because in
the preimage of the function ϕ ∈ D there is at least the function f(x) =
fn(〈x, e1〉, . . . , 〈x, en〉), where fn : Rn → R is the solution of Eq. (3.25).

(3) Suppose g ∈ D,C ∈ D,B ∈ DH . Let us prove that the operator L is
dissipative. Let f ∈ D and λ > 0 be fixed.

As in the proof of item (2) of this theorem, the value of the function Lf

at the point x ∈ H is equal to the value of the function Lnfn at the point
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(〈x, e1〉, . . . , 〈x, en〉) ∈ R
n. Again, the operator A is positive, and the function g sat-

isfies the inequality g(x) ≥ g0 ≡ const > 0, so we can apply item (2) of Lemma 2.5
to the finite-dimensional operator. This gives us that the finite-dimensional oper-
ator is dissipative, which implies that the operator L is dissipative too. This idea
can be expressed in a more formal way:

‖Lf − λf‖ = sup
x∈H

|g(x)tr(Af ′′(x)) + 〈f ′(x), AB(x)〉 + C(x)f(x) − λf(x)|

= sup
(x1,...,xn)∈Rn

∣∣∣∣∣gn(x1, . . . , xn)
n∑

s=1

n∑
k=1

〈Aes, ek〉∂k∂sf
n(x1, . . . , xn)

+
n∑

s=1

(
n∑

k=1

Bn
k (x1, . . . , xn)〈Aes, ek〉

)
∂sf

n(x1, . . . , xn)

+Cn(x1, . . . , xn)fn(x1, . . . , xn) − λfn(x1, . . . , xn)

∣∣∣∣∣
(2.13)

≥ λ sup
(x1,...,xn)∈Rn

|fn(x1, . . . , xn)| = λ sup
x∈H

|f(x)| = λ‖f‖,

where xj = 〈x, ej〉. The inequality

‖Lf − λf‖ ≥ λ‖f‖ (3.26)

means that the operator L is dissipative.
Finally, according to Proposition 2.6, the closability of L follows from the fact

L is dissipative and densely defined.
(4) (i) Suppose g ∈ X and C ∈ X , i.e. there exists sequences (gj) ⊂ D and

(Cj) ⊂ D such that ‖g − gj‖ → 0 and ‖C − Cj‖ → 0. Suppose that B(x) = 0 for
each x ∈ H . The images of the operators (λI −L) and (L− λI) are equal. As D is
dense in X , it is enough to show that the image of the operator (L−λI) is dense in
D, then it will be dense in X . Let the number λ > 0 and function ψ ∈ D be fixed.
We will approximate f by the values of the operator (L− λI).

Since gj → g and, for every x ∈ H , the estimate g(x) ≥ g0 holds, it follows that
there is a number j′0 such that for every x ∈ H and all j > j′0 we have

gj(x) ≥ g0
2
. (3.27)

We denote the operator L corresponding to the functions gj and Cj by the
symbol Lj . Note that Cj(x) ≤ 0 and gj(x) ≥ g0

2 , so we can apply item (2) of this
theorem to the operator Lj . Item (2) says that image of the operator (Lj − λI) is
equal to D, so for every j > j′0 there exists a function fj ∈ D such that

Ljfj − λfj = ψ. (3.28)

The goal is to prove that Lfj − λfj → ψ as j → ∞. This will imply that the
image of the operator (λI − L) is dense in D.
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(ii) Let us prepare several estimates. First, since Cj → C, there is a number j0
such that for every j > j0

‖Cj‖ ≤ 2‖C‖. (3.29)

Second, it follows from (3.28) and (3.26) that for every j > j′0 we have

λ‖fj‖
(3.26)

≤ ‖Ljfj − λfj‖ (3.28)
= ‖ψ‖,

i.e. for every j > j′0

‖fj‖ ≤ ‖ψ‖
λ
. (3.30)

Finally, expressing the term tr(Af ′′
j ) by the use of the equation

ψ = Ljfj − λfj = gjtr(Af ′′
j ) + (Cj − λ)fj ,

we find that for every j > max(j0, j′0)

‖tr(Af ′′
j ‖ =

∥∥∥∥ψ + (λ− Cj)fj

gj

∥∥∥∥ (3.30), (3.29), (3.27)

≤ ‖ψ‖ + (λ+ 2‖C‖)‖ψ‖/λ
g0/2

. (3.31)

(iii) Now let us prove that if j → ∞, then Lfj − λfj → ψ. Indeed, for every
j > max(j0, j′0) one obtains

‖Lfj − λfj − ψ‖ (3.28)
= ‖Lfj − λfj − (Ljfj − λfj)‖
= ‖(g − gj)tr(Af ′′

j ) + (C − Cj)fj‖
(3.31), (3.30)

≤ ‖(g − gj)‖‖ψ‖ + (λ+ 2‖C‖)‖ψ‖/λ
g0/2

+ ‖(C − Cj)‖‖ψ‖
λ

→ 0,

because ‖(g − gj)‖ → 0 and ‖(C − Cj)‖ → 0. Item (4) is proven.
(5) Let the coefficients of the operator L be uniform limits g,B,C of the contin-

uously differentiable cylindrical functions gj , Bj , Cj . As gj → g and, for all x ∈ H ,
we have g(x) ≥ g0, it follows that there exists a number j0 such that for all x ∈ H

and all j > j0 we have gj(x) ≥ g0
2 . Also recall that Cj(x) ≤ 0. This all allows us to

use item (3) of this theorem.
According to (3.26), for every function ϕ ∈ D and every λ > 0 we have

‖gjtr(Aϕ′′) + 〈ϕ′, ABj〉 + Cjϕ− λϕ‖ ≥ λ‖ϕ‖.
Taking the limit as j → ∞, we obtain the estimate ‖Lϕ− λϕ‖ ≥ λ‖ϕ‖, which

means that L is dissipative. According to Proposition 2.6, the dissipative operator
(L,D) with the domain D dense in X is closable. Let us denote its closure with
(L,D1). Note that by Proposition 2.6 the closure also is a dissipative operator.

The constructions above were built to prove the following result:
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Theorem 3.3 (On the connection between the family (St)t≥0 and the
semigroup with the generator L). Suppose that g ∈ X, B ∈ XH , C ∈ X, and
for every x ∈ H we have g(x) ≥ g0 ≡ const > 0 and C(x) ≤ 0. As C ∈ X, there
exists a sequence (Cj) ⊂ D, converging to C uniformly; let us additionally claim
that this sequence can be selected in such a way that Cj(x) ≤ 0 for all j ∈ N and
all x ∈ H. Then the following holds :

(1) If the closure (L,D1) of the operator (L,D) is a generator of a strongly contin-
uous semigroup (etL)t≥0 of linear continuous operators on the space X, then

etLϕ = lim
n→∞(S t

n
)nϕ, (3.32)

where limit exists for every ϕ ∈ X and is uniform with respect to t ∈ [0, t0] for
every t0 > 0.

(2) If B = 0, then the operator (L,D1) is a generator of a strongly continuous
semigroup (eLt)t≥0 of linear continuous operators on the space X. Moreover
for every t ≥ 0 we have ‖eLt‖ ≤ 1, i.e. the semigroup (eLt)t≥0 is contractive.

(3) Suppose B = 0, and for all j ∈ N the functions gj ∈ X, Bj ∈ XH and Cj ∈ X

are given. Suppose Bj = 0 for all j ∈ N. Suppose there exists a number ε0 > 0
such that for all j ∈ N and all x ∈ H we have gj(x) ≥ ε0 and Cj(x) ≤ 0. Let us
denote by the symbol Lj the operator L, which corresponds to the functions gj ,

Bj and Cj , and the operator L corresponding to the functions g, B and C will
be denoted by L0. Suppose also that gj(x) → g(x) and Cj(x) → C(x), uniformly
with respect to x ∈ H.

Then the (existing by item (2)) strongly continuous semigroups (eLjt)t≥0

converge strongly (and uniformly with respect to t ∈ [0, t0] for every fixed t0 > 0)
to the (existing by item (2)) strongly continuous semigroup (eL0t)t≥0 with the
generator L0. In other words for every t0 > 0 and every ϕ ∈ X there exists a
limit

lim
j→∞

(eLjtϕ)(x) = (eL0tϕ)(x), (3.33)

uniformly with respect to x ∈ H and t ∈ [0, t0].

Proof. (1) Recall Theorem 2.1 and set F (t) = St, ω = 2‖A‖‖B‖2

g0
+ ‖C‖, X = X ,

D = D, F ′(0) = L, G = L. One can see that according to items (1), (4) and (5)
of Theorem 3.1 and item (5) of Theorem 3.2 all the conditions of Theorem 2.1 are
fulfilled.

(2) Note that C(x) ≤ 0, so supx∈H eC(x) ≤ 1 and for B = 0 one obtains the
estimate ‖St‖ ≤ 1. Conditions of Theorem 2.2 are fulfilled if one sets X = X , D =
D, L = L, Vt = St, M = 1, ω = 0. Indeed, according to item (1) of Theorem 3.1,
for all t ≥ 0 the estimate ‖St‖ ≤ eωt = 1 holds true, therefore ‖(St)k‖ ≤ 1 · · · 1 = 1.
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Other conditions of Theorem 2.2 follow from item (4) of Theorem 3.1 and items (4)
and (5) of Theorem 3.2.

(3) Recall Theorem 2.3, and set X = X , D = D, L = L0, Ln = Lj. One
can see that item (2) of this theorem and items (4) and (5) of Theorem 3.2 imply
all the conditions of Theorem 2.3, except for the following one: if ϕ ∈ D, then
limj→∞ Ljϕ = L0ϕ. A simple check shows that this condition is also fulfilled.

3.3. Feynman formula solves the Cauchy problem

We want to find a function u : [0,+∞)×H → R satisfying the following conditions
(we call them Cauchy problem for the parabolic differential equation):{

u′t(t, x) = Lu(x, t); t ≥ 0, x ∈ H,

u(0, x) = u0(x); x ∈ H.
(3.34)

To this Cauchy problem, we relate the so-called abstract Cauchy problem (see
Definition 2.3), which we define as the following system of conditions upon the
function U : [0,+∞) → X : 

d

dt
U(t) = LU(t); t ≥ 0,

U(0) = u0,

(3.35)

Remark 3.6. Problem (3.34) can be considered as problem (3.35) in the following
sense. Function u : (t, x) → u(t, x) of two variables (t, x) can be considered as a
function u : t → [x → u(t, x)] of one variable t, with values in the space of functions
of variable x. Then

u(t, x) = (U(t))(x), t ≥ 0, x ∈ H.

Using this correspondence, we start from Definition 2.3 and define the solution of
problem (3.34).

Definition 3.1. We call a function u : [0,+∞) × H → R a strong solution of
problem (3.34) if it satisfies the following conditions:

u(t, ·) ∈ D1; t ≥ 0,

function t → u(t, ·) is continuous; t ≥ 0,

Uniformly for x ∈ H ∃ lim
ε→0

u(t+ ε, x) − u(t, x)
ε

= u′t(t, x); t ≥ 0,

u′t(t, ·) ∈ X ; t ≥ 0,

Function t → u′t(t, ·) is continuous; t ≥ 0,

u′t(t, x) = Lu(x, t); t ≥ 0, x ∈ H,

u(0, x) = u0(x); x ∈ H.

(3.36)
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Definition 3.2. We call a function u : [0,+∞)×H → R a mild solution of problem
(3.34) if it satisfies the following conditions:

u(t, ·) ∈ X ; t ≥ 0,

Function t → u(t, ·) is continuous; t ≥ 0,∫ t

0

u(s, ·)ds ∈ D1; t ≥ 0,

u(t, x) = L

∫ t

0

u(s, x)ds+ u0(x); t ≥ 0, x ∈ H,

u0 ∈ X.

(3.37)

Definition 3.3. Let us use the symbol C([0,+∞), X) for the class of all functions
u : [0,+∞) ×H → R such that for every t ≥ 0 the function x → u(t, x) belongs to
the class X , and the mapping t → u(t, ·) ∈ X is continuous for every t ≥ 0.

Finally, let us state and prove the main result of the paper. We use definitions
and notation from Sec. 2.1.

Theorem 3.4 (On the solution of the Cauchy problem for a parabolic
differential equation in Hilbert space). Suppose g ∈ X,C ∈ X,B ∈ XH.
Suppose there is a number g0 > 0 such that for all x ∈ H we have g(x) ≥ g0 and
C(x) ≤ 0. As C ∈ X, there exists a sequence (Cj) ⊂ D, converging to C uniformly;
let us additionally require that this sequence can be selected in such a way that
Cj(x) ≤ 0 for all j ∈ N and all x ∈ H.

Then the following holds :

(1) If there exists a strongly continuous semigroup with the generator L, then for
every u0 ∈ D1 there exists a solution u of problem (3.36), unique in the class
C([0,+∞), X). The solution depends continuously on u0, and is given by the
formula u(t, x) = limn→∞((S t

n
)nu0)(x), where the limit is uniform with respect

to t ∈ [0, t0] for every t0 > 0.
(2) If there exists a strongly continuous semigroup with the generator L, then for

every u0 ∈ X there exists a solution u of problem (3.37), unique in the class
C([0,+∞), X). It depends continuously on u0, and is given by the formula
u(t, x) = limn→∞((S t

n
)nu0)(x), where the limit is uniform with respect to t ∈

[0, t0] for every t0 > 0.
(3) If B = 0, then there exists a strongly continuous semigroup with the generator

L. The formula u(t, x) = limn→∞((S t
n
)nu0)(x) becomes simpler than in the

case B �= 0. Namely, for B = 0 we have

u(t, x) = lim
n→∞

∫
H

∫
H

· · ·
∫

H

∫
H︸ ︷︷ ︸

n

e
t
n (C(x)+

Pn−1
k=1 C(yk))u0(y1)µ

y2
2t
n g(y2)A

(dy1)

·µy3
2t
n g(y3)A

(dy2) · · ·µyn
2t
n g(yn)A

(dyn−1)µx
2t
n g(x)A(dyn). (3.38)
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In this case the solution u for all t > 0 satisfies the estimate supx∈H

|u(t, x)| ≤ supx∈H |u0(x)|.
(4) Let B = 0, and let the functions gj ∈ X, Bj ∈ XH and Cj ∈ X be given for

all j ∈ N. Let Bj = 0 for all j ∈ N. Suppose there exists ε0 > 0 such that
gj(x) ≥ ε0 and Cj(x) ≤ 0 for all j ∈ N and all x ∈ H. Let us use the symbol
Lj for the operator L that corresponds to the functions gj , Bj and Cj , and
the symbol L0 for the operator L that corresponds to the functions g, B and
C. Suppose also that gj(x) → g(x) and Cj(x) → C(x), uniformly with respect
to x ∈ H. We denote as uj the solution of problems (3.36) and (3.37) for the
operator Lj. For solution of problems (3.36) and (3.37) with the operator L, we
use the symbol u.

Then uj(t, x) converges to u(t, x) as j → ∞, uniformly with respect x ∈ H and
uniformly with respect to t ∈ [0, t0] for every fixed t0 > 0.

Remark 3.7. Note that if B = 0, then solution depends continuously on the data
of the Cauchy problem: the coefficients of the equation (item (4)) and the initial
condition (items (1) and (2)).

Remark 3.8. Analogous theorems for C- or R
n-valued functions u can be formu-

lated mutatis mutandis. The result will hold true due to the theorem above and
the linearity of L and St. The only additional condition will be that the coefficients
of the equation must be real-valued. The same remark is applicable to all the key
theorems of this paper.

Proof of the Theorem 3.4.

(1) Suppose that there exists a strongly continuous semigroup with the generator
L. Then by item (1) of Proposition 2.5 we obtain the existence of a strong
solution (Definition 2.3) to Cauchy problem (3.35), and the solution is unique
in the class C([0,+∞), X). By item (1) of Theorem 3.3 the semigroup is given
in the form described. Using the relation between problems (3.34) and (3.35)
explained in Remark 3.6, we obtain the solution for problem (3.36). The solution
is unique in the class C([0,+∞), X), as follows from Remark 3.6.

(2) The proof is similar to that in item (1). The only difference is that in Proposi-
tion 2.5 we use item (2) instead of item (1).

(3) The existence of the sought semigroup follows from item (2) of Theorem 3.3.
The estimate for the supremum of the absolute value of the solution follows
from the fact that the semigroup is contractive.

Let us explain how the equality u(t, x) = limn→∞((S t
n
)nu0)(x) implies for-

mula (3.38). For a continuous bounded function ψ : H → R and a point x ∈ H ,
the following change of variables rule in the integral is correct:∫

H

ψ(y)µA(dy) =
∫

H

ψ(y − x)µx
A(dy).
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Applying this rule, and changing A to 2tg(x)A, we come to the equality

(Stϕ)(x) = etC(x)

∫
H

ϕ(x+ y)µ2tg(x)A(dy)

= etC(x)

∫
H

ϕ(x+ (y − x))µx
2tg(x)A(dy) = etC(x)

∫
H

ϕ(y)µx
2tg(x)A(dy).

For n = 2 in formula (3.38) we get the expression

((S t
2
)2ϕ)(x) = (S t

2
(S t

2
ϕ))(x)

=
∫

H

(∫
H

e
t
2 (C(x)+C(y1))ϕ(y1)µ

y2
2t
2 g(y2)A

(dy1)
)
µx

2t
2 g(x)A(dy2).

In the same way expressions for n > 2 are derived. Thus, the formula (3.38) is
proven.

(4) The proof follows immediately from item (3) of Theorem 3.3.

Acknowledgments

The author is grateful to O.G. Smolyanov for setting the problem (in particular, for
defining the space X) and attention to the work; to V.I. Bogachev, O.G. Smolyanov
and E.T. Shavgulidze for help with the calculation of integral (2.6); to T.A. Sha-
poshnikova for acquainting the author with the book (Ref. 41), from which the
key Lemma 2.5 was taken from; to A.V. Halyavin for reading and commenting on
the manuscript; to A.A. Olokhtonov for help with the editing; to the referee of the
IDAQP journal for helpful remarks; to S. Mazzucchi for interesting references which
were added in the last moment before publication and made the paper better. This
research was supported by the Basic Research Program at the HSE in 2018, and
also by grant 14-41-00044 in the Nizhny Novgorod University.

References

1. L. Accardi, Y. G. Lu and I. Volovich, Quantum Theory and Its Stochastic Limit
(Springer, 2002).

2. S. Albeverio, R. Høegh-Krohn and S. Mazzucchi, Mathematical Theory of Feynman
Path Integrals (Springer, 2008).

3. S. Albeverio, J. Jost, S. Paycha and S. Scarlatti, A Mathematical Introduction to
String Theory, London Mathematical Society Lecture Note Series, Vol. 225 (Cam-
bridge University Press, 2011).
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of Brownian motion in tubular neighborhoods of an embedded Riemannian manifold,
J. Funct. Anal. 206 (2004) 253–500.

62. B. Simon, Functional Integration and Quantum Physics (Academic Press, 1979).
63. O. G. Smolyanov, Feynman formulae for evolutionary equations, in Trends in Stochas-

tic Analysis, London Mathematical Society Lecture Notes Series, Vol. 353 (Cambridge
University Press, 2009), pp. 283–302.

64. M. O. Smolyanova, Hilbert Supports of Measures on Locally Convex Spaces, Russ. J.
Math. Phys. 22 (2015) 550–552.

65. O. G. Smolyanov and N. N. Shamarov, Hamiltonian Feynman formulas for equations
containing the Vladimirov operator with variable coefficients, Dokl. Math. 84 (2011)
689–694.

66. O. G. Smolyanov, N. N. Shamarov and M. Kpekpassi, Feynman-Kac and Feynman
formulas for infinite-dimensional equations with Vladimirov operator, Dokl. Math. 83
(2011) 389–393.

67. O. G. Smolyanov and E. T. Shavgulidze, Continual integrals (URSS, Moscow, Russia,
2015), Vol. 36 (in Russian).

68. O. G. Smolyanov and E. T. Shavgulidze, Infinite-dimensional Schrödinger equations
with polynomial potentials and Feynman path integrals, Dokl. Math. 73 (2006) 334–
339.

69. O. G. Smolyanov, A. G. Tokarev and A. Truman, Hamiltonian Feynman path integrals
via the Chernoff formula, J. Math. Phys. 43 (2002) 5161–5171.
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