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Abstract

We present a general method of solving the Cauchy problem for a linear
parabolic partial differential equation of evolution type with variable coef-
ficients and demonstrate it on the equation with derivatives of orders two,
one and zero. The method is based on the Chernoff approximation pro-
cedure applied to a specially constructed shift operator. It is proven that
approximations converge uniformly to the exact solution.
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Problem setting and approach proposed

Consider x ∈ R
1, t ≥ 0 and set the Cauchy problem for a second-order

parabolic partial differential equation
{

u′
t(t, x) = (a(x))2u′′

xx(t, x) + b(x)u′
x(t, x) + c(x)u(t, x) = Hu(t, x),

u(0, x) = u0(x).
(1)

The coefficients a, b, c, u0 above are bounded, uniformly continuous func-
tions R

1 → R
1. This paper is dedicated to deriving of an explicit formula
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that expresses the solution of (1) in terms of a, b, c, u0 assuming that the
operator H is an infinitesimal generator of the C0-semigroup

(

etH
)

t≥0
. This

assumption is a standard one in studies of evolution equations, the class
of equations that considered equation belongs to. According to the general
theory of C0-semigroups [1] this assumption implies that the solution of the
Cauchy problem (1) exists, is bounded and uniformly continuous with re-
spect to x for each t, depends on u0 continuously and can be represented in a
form u(t, x) =

(

etHu0

)

(x). We apply the Chernoff theorem [2] to a specially
constructed family of operators (S(t))t≥0, and express etH in terms of a, b, c
reaching the goal announced. We do not discuss the problem of finding the
class of functions in which the solution is unique under certain assumptions
on functions a, b, c, u0, but keep in mind that e.g. for a heat equation there
are known unbounded solutions.

The formula that provides the solution of (1) is given in theorem 3.

Technique employed

The Chernoff theorem [1, 2] allows to reduce the problem of finding etH to
the problem of finding an appropriate operator-valued function S(t), which
is called the Chernoff function, and then use the Chernoff formula etH =
limn→∞ S(t/n)n. One advantage of that step is that we can define S(t) by an
explicit formula that depends on the coefficients of the operator H . Members
of O.G.Smolyanov’s group employed this technique using integral operators
as Chernoff functions to find solutions to parabolic equations in many cases
during last 15 years, see the pioneering papers [3, 4], overview [5], introduc-
tion to [6] and two more exotic examples [7, 8]. The solutions obtained there
were represented in the form of Feynman formula, i.e. as a limit of a mul-
tiple integral as the multiplicity goes to infinity. The Schrödinger equation
also belongs to the class of evolution equations, and the same way allows to
represent the Cauchy problem solution for it in the form of Feynman and
quasi-Feynman integral formulas, see [9] and references therein.

The specific feature of the research that is now presented is that we use the
shift operators instead of integral operators when constructing the Chernoff
function S(t). For this reason the solution of (1) is now represented via a
new type of formulas that do not include integrals. Our model example,
i.e. the Cauchy problem (1), can be modified in different directions. The
example was chosen rather simple (free of distinctive or complicated details)
intentionally to let the reader focus on the the main contents of the article
i.e. on the presented method.
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Definition 1. Let L(F) be the set of all linear bounded operators in
a Banach space F . Let the operator L:F ⊃ Dom(L) → F be linear and
closed. The function G is called Chernoff-tangent to the operator L iff:

(CT1) G is defined on [0,+∞), takes values in L(F), and the function
t 7−→ G(t)f is continuous for each f ∈ F .

(CT2) G(0) = I, i.e. G(0)f = f for each f ∈ F .
(CT3) There exists such a dense subspace D ⊂ F that for each f ∈ D

there exists a limit

G′(0)f = lim
t→0

G(t)f − f

t
.

(CT4) The closure of the operator (G′(0),D) is equal to (L,Dom(L)).
Remark 1. In the definition of the Chernoff tangency the family (G(t))t≥0

usually does not have a semigroup composition property. However, each C0-
semigroup is Chernoff-tangent to its generator.

Theorem 1 (P.R. Chernoff, 1968). Let F and L(F) be as before.
Suppose that the operator L:F ⊃ Dom(L) → F is linear and closed, and
functionG takes values in L(F). Suppose that these assumptions are fulfilled:

(E) There exists a C0-semigroup (etL)t≥0 with the generator (L,Dom(L)).
(CT) G is Chernoff-tangent to (L,Dom(L)).
(N) There exists such a number ω ∈ R, that ‖G(t)‖ ≤ eωt for all t ≥ 0.
Then for each f ∈ F we have (G(t/n))nf → etLf as n → ∞ with respect

to norm in F uniformly with respect to t ∈ [0, t0] for each t0 > 0.

Main result

Remark 2. The main result of the paper is formula (4) proven in the-
orem 3. It contains limn→∞. After the limit is taken we obtain the exact
solution to Cauchy problem (1). For each fixed n the expression under the
limit sign is an approximation to the solution. With growth of n such ap-
proximations converge to the exact solution uniformly with respect to x ∈ R

1

and t ∈ [0, t0] for each fixed t0 > 0.
Remark 3. Let us denote the set of all (real-valued and defined on

the real line) bounded continuous functions as Cb(R), the set of all bounded
functions with bounded derivatives of all orders as C∞

b (R), and the set of all
bounded, uniformly continuous functions as UCb(R).

Then C∞
b (R) ⊂ UCb(R) ⊂ Cb(R), and with respect to the uniform

(Chebyshev) norm ‖f‖ = supx∈R |f(x)| the first inclusion is dense, and the
last two spaces are Banach spaces.
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Theorem 2. For each x ∈ R, t ≥ 0, f ∈ Cb(R) and ϕ ∈ C∞
b (R) set

(S(t)f)(x) = 1

4
f
(

x+ 2a(x)
√
t
)

+ 1

4
f
(

x− 2a(x)
√
t
)

+ 1

2
f(x+2b(x)t)+tc(x)f(x), (2)

(Hϕ)(x) = (a(x))2ϕ′′(x) + b(x)ϕ′(x) + c(x)ϕ(x). (3)

Then with respect to the norm ‖g‖ = supx∈R |g(x)| the following hold:
I) for each t ≥ 0 and f ∈ Cb(R) we have ‖S(t)f‖ ≤ (1 + ‖c‖t)‖f‖.
II) for each ϕ ∈ C∞

b (R) we have limt→+0 ‖S(t)f − f − tHf‖/t = 0.
III) if tn → t0, tn ≥ 0 and f ∈ UCb(R) then lim

t→t0
‖S(tn)f − S(t0)f‖ = 0

for each t0 ≥ 0.
IV) if a, b, c, f ∈ UCb(R) then S(t)f ∈ UCb(R) for each t ≥ 0.
Proof. Let us write sup instead of supx∈R to make it shorter.
I) ‖S(t)f‖ = sup |1

4
f(x+2a(x)

√
t) + 1

4
f(x+2a(x)

√
t) + 1

2
f(x+2b(x)t) +

tc(x)f(x)| ≤ 1

4
sup |f(x + 2a(x)

√
t)| + 1

4
sup |f(x+ 2a(x)

√
t)| + 1

2
sup |f(x +

2b(x)t)| + t sup |c(x)| sup |f(x)| ≤ 1

4
‖f‖ + 1

4
‖f‖ + 1

2
‖f‖ + t sup |c(x)|‖f‖ =

(1 + ‖c‖t)‖f‖.
II) Let us fix arbitrary x ∈ R in (2). Let us use Taylor’s formula

and expand the first two summands in (2) in powers of
√
t, and the third

summand in powers of t; let us represent remainders in Lagrange’s form:
ϕ(x+2a(x)

√
t) = ϕ(x)+2a(x)

√
tϕ′(x)+ 1

2
ϕ′′(x)(2a(x)

√
t)2+ 1

6
ϕ′′′(ξ1)(2a(x)

√
t)3,

ϕ(x− 2a(x)
√
t) = ϕ(x)− 2a(x)

√
tϕ′(x)+ 1

2
ϕ′′(x)(2a(x)

√
t)2− 1

6
ϕ′′′(ξ2)(2a(x)

√
t)3,

ϕ(x+ 2b(x)t) = ϕ(x) + 2b(x)tϕ′(x) + 1

2
ϕ′′(ξ3)(2b(x)t)

2.

Using this and (2) we write an expression for (S(t)f)(x) and then trans-
form it using (3). Next we majorize sup |(S(t)f)(x)−f(x)− tHf(x)| keeping
in mind that functions a, b are bounded, and derivatives of the function
ϕ ∈ C∞

b (R) are bounded. It leads us to
(S(t)ϕ)(x) = ϕ(x) + t[(a(x))2ϕ′′(x) + b(x)ϕ′(x) + c(x)ϕ(x)] + o(t).
III) The function a is bounded, so x+2a(x)

√
tn → x+2a(x)

√
t0 uniformly

with respect to x. Function f is uniformly continuous, so f(x+2a(x)
√
tn) →

f(x+ 2a(x)
√
t0) uniformly with respect to x. The rest is obvious.

IV) If t ≥ 0 is fixed, then [z 7−→ f(z + 2a(z)
√
t)] ∈ UCb(R) because

a, f ∈ UCb(R). The rest is obvious.
Remark 4. The above proof is true for functions N → R on arbitrary

(finite- or infinite-dimensional) normed space N . We only need to substitute
C∞

b (R), UCb(R), Cb(R) by C∞
b (N,R), UCb(N,R), Cb(N,R) and consider

derivatives in the sense of Fréchet.
Theorem 3. Suppose that functions a, b, c belong to the space UCb(R)

endowed with the norm ‖f‖ = supx∈R |f(x)|. Suppose that operator H is
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defined by equality (3) on the domain C∞
b (R) ⊂ UCb(R), and the closure of

this operator: a) exists; b) is an infinitesimal generator of a C0-semigroup
(etH)t≥0 in UCb(R).

Then for each u0 ∈ UCb(R) there exists a bounded (and uniformly con-
tinuous with respect to x ∈ R for each t ≥ 0) solution u of the Cauchy
problem (1), it depends on u0 continuously and uniformly with respect to
x ∈ R for each t ≥ 0. For each x ∈ R and t ≥ 0 this solution is given by the
formula

u(t, x) =
(

etHu0

)

(x) = lim
n→∞

((

S(t/n)
)n

u0

)

(x), (4)

where S(t/n) is obtained by substitution of t by t/n in the equality (2), and
the n-th power means the composition of n copies of linear bounded operator
S(t/n). The limit (4) for each fixed t > 0 is taken in the space UCb(R) and
appears to be uniform with respect to t ∈ [0, t0] for each t0 > 0.

Proof. Let us check the conditions of the Chernoff theorem. In theorem 1
and definition 1 we set F = UCb(R), G(t) = S(t), L = H , D = C∞

b (R).
Condition (E) is a part of the assumptions of theorem 3, condition (N)
is provided by item I) of theorem 2. Let us check the Chernoff tangency:
(CT1) follows from items IV) and III) of theorem 2, (CT2) is obvious from
formula (2), (CT3) follows from item II) of theorem 2, (CT4) is a part of the
assumptions of theorem 3.

Therefore the statement of theorem 3 is true thanks to the statement of
the Chernoff theorem and standard facts of the C0-semigroup theory (see [1]
or shorter in section 3.4. of [6]).

Discussion

Remark 5. Formula (2) can be rewritten in terms of generalized func-
tions (=distributions) basing on the fact that f(w) =

∫

R
δ(y − w)f(y)dy:

(S(t)f)(x) =
∫

R

[

1

4
δ
(

y − x− 2a(x)
√
t
)

+ 1

4
δ
(

y − x+ 2a(x)
√
t
)

+

+1

2
δ(y − x− 2b(x)t) + tc(x)δ(y − x)

]

f(y)dy.

Employing this equality one can rewrite (4) as a Feynman formula in which
the integral kernel is a distribution (=generalized function).

Remark 6. One can use the presented method to solve equations of the
type (1) not only with ∂/∂x and ∂2/∂x2 but also with derivatives of any
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positive integer order: ∂3/∂x3, ∂4/∂x4 etc. To do this one needs to modify
the formula for S by taking more summands and tuning coefficients, allowing
shifts proportional to t, t1/2, t1/3, t1/4, . . .

Remark 7. It seems challenging to collaborate and compare numerically
the presented method with other novel methods developed to solve parabolic
equations [10, 11, 12]. The hypothesis is that a) our method will be faster on
small times of evolution t because it does not involve numerical integration
or matrix inversion b) our method needs to take more approximation steps
(greater n) for large t as t/n appears in the final formula (4).
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