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Consider the Cauchy problem for the Schrödinger equation in the complex space L2(R
1),

⎧
⎨

⎩

ψ′
t(t, x) =

1

4
iψ′′

xx(t, x)− iV (x)ψ(t, x) = iHψ(t, x), t ∈ R
1, x ∈ R

1,

ψ(0, x) = ψ0(x), x ∈ R
1.

(1)

The function V is assumed to be real-valued, bounded, and measurable. Then the self-adjoint
operator H given by the formula (Hf)(x) = (1/4)f ′′(x)− V (x)f(x) acts on L2(R

1), and its domain
Dom(H) is the Sobolev space W (2, 2) of functions in L2(R) whose first and second generalized
(Sobolev) derivatives lie in L2(R).

This problem often serves as a model example in many situations and can be solved in many ways.
That is why it is natural to use the problem to demonstrate a new technique for solving the Schrödinger
equation, because there will be as few as possible unstudied details specific to the problem (in contrast
to [1], [2]). We will use the standard technique of C0 semigroups [3] and (implicitly) a somewhat less
known Chernoff theorem [3]–[5]. The solution of the Cauchy problem is constructed in [6], [7], and other
papers in the form of the limit of a multiple integral whose multiplicity tends to infinity. Feynman was the
first to use similar formulas in 1948 at the physical level of rigor, and hence such expressions are referred
to as Feynman formulas [8]–[10]. Theorem 1 and the notion of Chernoff tangency (see below for the
precise statements), which were obtained in [11] in 2014, permit extending the class of approximation
formulas to include quasi-Feynman formulas. Both Feynman and quasi-Feynman formulas contain
integrals of arbitrarily large multiplicity.

In the present note, Theorem 1 is used to obtain a new type of formula. The novelty is that the
translation operator is used instead of the integral operator, so that the solution formula for the Cauchy
problem (1) does not contain integrals at all.

Definition 1 ([11])). Let F be a Banach space, and let L (F) be the space of linear bounded operators
on F . Given a function G : [0,+∞) → L (F) (or, which is the same, a family (G(t))t≥0) and a closed
linear operator L : Dom(L) → F with domain Dom(L) ⊂ F , one says that the function G is Chernoff
tangent to the operator L if the following conditions hold:

(CT1) The function G is strongly continuous (that is, continuous in the strong operator topology
on L (F)); i.e., the function t �→ G(t)f ∈ F is continuous on [0,+∞) for each f ∈ F .

(CT2) G(0) = I; i.e., G(0)f = f for each f ∈ F .
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(CT3) There exists a dense linear manifold D ⊂ F such that, for each f ∈ D, the limit

lim
t→0

G(t)f − f

t
,

denoted by G′(0)f , exists.

(CT4) The operator (G′(0),D) is closable, and the closure is equal to (L,Dom(L)).

Remark 1. The family (G(t))t≥0 in the definition of Chernoff tangency is not required to be a semigroup.
However, each C0 semigroup is Chernoff tangent to its own generator.

Theorem 1 (a special case of what was proved in [11]). Let F be a complex Hilbert space, and let
Dom(H) ⊂ F be a dense linear manifold. Assume that the operator H : Dom(H) → F is linear
and self-adjoint. Let S be a function Chernoff tangent to H , and let (S(t))∗ = S(t) for each t ≥ 0.
Set R(t) = exp[i(S(t)− I)]. (This is well defined, because the exponent contains linear bounded
operators on F for each t ≥ 0.)

Then the function R is Chernoff equivalent to the semigroup (eitH)t≥0, and the following
relations hold for each f ∈ F , where the limits are taken in the norm on F :

eitHf = lim
n→∞

lim
k→∞

k∑

m=0

m∑

q=0

(−1)m−q(in)m

q!(m− q)!

(

S

(
t

n

))q

f, (2)

eitHf = lim
n→∞

lim
k→∞

k∑

q=0

k!(k − in)k−q(in)q

q!(k − q)!kk

(

S

(
t

n

))q

f. (3)

Theorem 2. Let V : R → R be a bounded measurable function. For each f ∈ L2(R), each smooth
compactly supported function ϕ : R → R, and all x ∈ R and t ≥ 0, set

(S(t)f)(x) =
1

4
[f(x+

√
t) + 2f(x) + f(x−

√
t)]− arctan[tV (x)]f(x),

(Hϕ)(x) =
1

4
ϕ′′(x)− V (x)ϕ(x).

(4)

Then

1. ‖S(t)‖ ≤ 1 + π/2 for each t ≥ 0.

2. S(t) = S(t)∗ for each t ≥ 0.

3. S is Chernoff tangent to H .

Proof. Set

(A(t)f)(x) = f(x+
√
t), (B(t)f)(x) = f(x−

√
t), (C(t)f)(x) = arctan(tV (x))f(x).

Clearly, ‖A(t)‖ = ‖B(t)‖ = 1 and ‖C(t)‖ ≤ π/2. Then

S(t) =
1

4
[A(t) + 2I +B(t)]− C(t), (5)

and hence the estimate

‖S(t)‖ =

∥
∥
∥
∥
[A(t) + 2I +B(t)]

4
− C(t)

∥
∥
∥
∥ ≤ (1 + 2 + 1)

4
+

π

2
= 1 +

π

2

is true for each t ≥ 0. It follows from this estimate that S(t) ∈ L (L2(R)); i.e.,

S : [0,+∞) → L (L2(R)),

which completes the proof of item 1.
To prove item 2, it suffices to note that A(t)∗ = B(t), B(t)∗ = A(t), I∗ = I, and C(t)∗ = C(t).
Now let us verify that all four conditions for Chernoff tangency hold for S and H .
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(CT1) Take an f ∈ L2(R). Let us separately prove the continuity of the mappings t �→ A(t)f ,
t �→ B(t)f , and t �→ C(t)f .

(i) Let t0 ≥ 0, tn ≥ 0, and tn → t0. First, note that

‖A(t0)f −A(tn)f‖2 =
ˆ
R

(f(x+
√
t0 )− f(x+

√
tn ))

2 dx =

ˆ
R

(f(y)− f(y +
√
tn −

√
t0 ))

2 dy,

and hence we can assume without loss in generality that t0 = 0. Further, note that A(0)f = f . Let
an ε > 0 be given. Find an N such that ‖f −A(tn)f‖ < ε for all n > N . The set D of all compactly
supported uniformly continuous functions is dense in L2(R), and hence there exists a function g ∈ D
such that ‖f − g‖ < ε/3. Then

‖f −A(tn)f‖ ≤ ‖f − g‖+ ‖g −A(tn)g‖+ ‖A(tn)(f − g)‖ <
ε

3
+ ‖g −A(tn)g‖+ 1 · ε

3
.

Let us show that ‖g −A(tn)g‖ ≤ ε/3 for sufficiently large n. Indeed, g is compactly supported; assume
that it is zero everywhere outside some interval [−M,M ]. Since g is uniformly continuous, it follows
that there exists a δ > 0 such that |g(x1)− g(x2)| < ε(3

√
2M )−1 for |x1 − x2| < δ. Since tn → 0, we

see that there exists an N such that, for
√
tn < δ for all n > N . Then the estimate

‖g −A(tn)g‖ =

(ˆ
R

|g(x)− g(x +
√
tn )|2 dx

)1/2

≤
(ˆ M

−M

(
ε

3
√
2M

)2

dx

)1/2

=
ε

3

holds for all n > N . Thus, the function t �→ A(t)f is continuous.

(ii) The continuity of the function t �→ B(t)f can be proved in a similar way.

(iii) The maximum (over z ∈ R) absolute value of the derivative of the function z �→ arctan(z) is equal
to unity, and so |arctan(z1)− arctan(z2)| ≤ |z1 − z2|. Hence

‖C(t0)f − C(tn)f‖ =

(ˆ
R

|arctan(t0V (x))− arctan(tnV (x))|2|f(x)|2 dx
)1/2

≤ |t0 − tn| · ‖V f‖.

Thus, the function t �→ C(t)f is continuous. It follows from (i), (ii), and (iii) that the function t �→ S(t)f
is continuous as well (as a linear combination of continuous functions), which completes the proof
of (CT1).

(CT2) is obvious from the computation

S(0) =
A(0) + 2I +B(0)

4
− C(0) =

I + 2I + I

4
− 0 = I.

We will verify (CT3) by taking the set of all compactly supported infinitely smooth functions for D.
Let f be such a function. Then we can write Taylor’s formula with Lagrange remainder,

f(x+
√
t) = f(x) +

√
tf ′(x) +

1

2
f ′′(x)t+

1

6
f ′′′(ξ1)t

√
t, ξ1 ∈ [x, x+

√
t ]

f(x−
√
t) = f(x)−

√
tf ′(x) +

1

2
f ′′(x)t− 1

6
f ′′′(ξ2)t

√
t, ξ2 ∈ [x−

√
t, x]

f(x+
√
t) + 2f(x) + f(x−

√
t)

4
= f(x) +

1

4
f ′′(x)t+ r(t, x),

where r(t, x) = (1/6)f ′′′(ξ1)t
√
t− (1/6)f ′′′(ξ2)t

√
t = o(t) in L2(R). Indeed, let f be zero everywhere

outside [−M,M ], and let supx∈[−M,M ] |f ′′′(x)| = K. Then

‖r(t, · )‖ ≤ 2

6
t
√
t

(ˆ M

−M
K2 dx

)1/2

=
K
√
2M

3
t3/2 = o(t).
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The first derivative of the function z �→ arctan(z) is equal to unity at zero, and the maximum (over
z ∈ R) absolute value of the second derivative is less than unity (more precisely, it is equal to 3

√
3/8),

and hence

arctan(tV (x)) = 0 + tV (x) + h(t, x)t2, |h(t, x)| < 1

2
< 1,

arctan(tV (x))f(x) = tV (x)f(x) + h(t, x)f(x)t2, ‖h(t, · )f‖ ≤ ‖f‖.
Recall that

(S(t)f)(x) =
1

4
[f(x+

√
t) + 2f(x) + f(x−

√
t)]− arctan(tV (x))f(x);

thus, for given f ∈ D, one has

S(t)f = f +
1

4
f ′′t− V ft+ o(t) = (I + tH)f + o(t)

in L2(R).
(CT4) follows from the general theory of differential operators on L2(R). Here the set Dom(H) is the
Sobolev space W (2, 2) of functions in L2(R) whose first and second derivatives lie in L2(R).

Theorem 3. For each ψ0 ∈ L2(R), the Cauchy problem (1) has a unique solution in L2(R), which
almost everywhere satisfies the relations

ψ(t, x) =

(

lim
n→∞

lim
k→∞

k∑

m=0

m∑

q=0

(−1)m−q(in)m

q! (m− q)!

(

S

(
t

n

))q

ψ0

)

(x), (6)

ψ(t, x) =

(

lim
n→∞

lim
k→∞

k∑

q=0

k!(k − in)k−q(in)q

q! (k − q)! kk

(

S

(
t

n

))q

ψ0

)

(x), (7)

where the continuous linear operator S(t) is defined in (4) and (S(t/n))q is the qth power of
a linear operator.

Proof. It suffices to apply Theorems 1 and 2 and the standard assertion on the representability of the
solution of the Cauchy problem (1) in the form

ψ(t, x) = (eitHψ0)(x).

Remark 2. We have shown that the solution is given by a formula of a new type. It is neither
a Feynman nor a quasi-Feynman formula; the formula is somewhat like a multiple weighted infinite
sum of translations of the initial condition with respect to the space variable. It is of interest to verify
whether these sums can be interpreted as Riemann integral sums.

Remark 3. The function arctan can be replaced by a different smooth function g that vanishes at zero
and whose first derivative is nonzero at zero. Obviously, the solution formula for the Cauchy problem
will then be different. The boundedness of g and its derivative simplifies the proof, but if we drop these
conditions, then the proof remains valid with some modifications.

Remark 4. By appropriately choosing the coefficients of S, one can solve equations with derivatives of
arbitrary even order in a similar way.
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