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for a Diffusion Equation in a Hilbert Space

by a Feynman Formula
I. D. Remizov
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Abstract. The Cauchy problem for a class of diffusion equations in a Hilbert space is studied.
It is proved that the Cauchy problem in well posed in the class of uniform limits of infinitely
smooth bounded cylindrical functions on the Hilbert space, and the solution is presented
in the form of the so-called Feynman formula, i.e., a limit of multiple integrals against a
gaussian measure as the multiplicity tends to infinity. It is also proved that the solution of
the Cauchy problem depends continuously on the diffusion coefficient. A process reducing
an approximate solution of an infinite-dimensional diffusion equation to finding a multiple
integral of a real function of finitely many real variables is indicated.

DOI 10.1134/S1061920812030089

1. INTRODUCTION

The main result of the present paper claims that the Cauchy problem

{
u′t(t, x) = g(x) tr (Au′′xx(t, x)) ; t � 0, x ∈ H,

u(0, x) = u0(x); x ∈ H.
(1)

has a solution (which is unique in some class of function) given by

u(t, x)= lim
n→∞

∫
H

∫
H

. . .

∫
H

n times

u0(y1)μ
y2
2t
n g(y2)A

(dy1)μ
y3
2t
n g(y3)A

(dy2) . . . μ
yn
2t
n g(yn)A

(dyn−1)μ
x
2t
n g(x)A(dyn), (2)

and this solution continuously depends (in the uniform norm) on the functions g and u0. Here H
stands for a real separable Hilbert space, A is a linear positive trace-class selfadjoint operator on
H, u : [0,+∞) × H → R is the desired function, u0 : H → R and g : H → R are given functions
(with g(x) � g0 ≡ const > 0 for every x ∈ H), μx

(2t/n)g(x)A is the Gaussian measure on H with the

mean x and the correlation operator (2t/n)g(x)A. For details, see Theorem 4.

Relations of the form (2) in which some function is represented as a limit of a multiple integral
as the multiplicity tends to infinity are referred to as Feynman formulas (see [21, 22]). The term
“Feynman formula” was introduced in this context by Smolyanov [26]. For a survey of current
results concerning Feynman formulas, see [27].

The paper is organized as follows. Section 2 contains the main notation, definitions, and auxiliary
facts. In Sec. 3 we discuss properties of the operators used in the setting and the solution of
problem (1), and the main theorem is proved in Sec. 4. In the final section we discuss the size of
classes in which we seek solutions of the Cauchy problem.

2. NOTATION, DEFINITIONS, AND PRELIMINARIES

Let H denote a separable Hilbert space over R with the inner product 〈·, ·〉. Denote by Cb(H,R)
the Banach space of all bounded continuous functions H → R equipped with the uniform norm
‖f‖ = supx∈H |f(x)|. Recall that a function f : H → R is said to be cylindrical if there are vectors
e1, . . . , en in H and a function fn : Rn → R such that f(x) = fn(〈x, e1, 〉 , . . . , 〈x, en, 〉) for every
x ∈ H. Let D = C∞

b,c(H,R) denote the space of all bounded cylindrical functions H → R which are
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SOLUTION OF A CAUCHY PROBLEM FOR A DIFFUSION EQUATION 361

infinitely Fréchet differentiable at any point of H and whose Fréchet derivatives of any order are
bounded (and continuous).

If f : H → R, then f ′′(x) stands for the second-order Fréchet derivative of f evaluated at x. and
A : H → H a linear trace-class1selfadjoint positive nondegenerate operator with the domain H.
Introduce the differential operator ΔA by the rule (ΔAf)(x) := trAf ′′(x). Let X = C∞

b,c(H,R) be

the closure of D in Cb(H,R). For any function g ∈ X bounded away from zero (i.e., g(x) � g0 ≡
const > 0), introduce the operator gΔA by the rule (gΔAf) (x) := g(x)(ΔAf)(x) = g(x) trAf ′′(x).

For a function u : [0,+∞)×H → R we pose the Cauchy problem for the diffusion equation (1).
The abstract Cauchy problem for a function U : [0,+∞) → X of the form

{
(d/dt)U(t) = gΔAU(t); t � 0,

U(0) = u0,
(3)

where gΔA stands for the closure of the unbounded differential operator gΔA and (gΔAf)(x) =
g(x) tr(Af ′′(x)) is closely related to (1). Following [23], by a strong solution of problem (3) we mean
a function U : [0,+∞) → X such that

U ∈ C1([0,+∞),X), U(t) ∈ D1; t � 0, (d/dt)U(t) = gΔAU(t); t � 0, U(0) = u0, (4)

where D1 = {f ∈ X : ∃(fj) ⊂ D : limj→∞ fj = f,∃ limj→∞ trA(fj)
′′} stands for the space of

functions f ∈ X uniformly approximable by cylindrical functions fj ∈ D for which the sequence
trA(fj)

′′ converges uniformly. By a mild solution of problem (3) we mean a function U : [0,+∞) →
X such that

U ∈ C([0,+∞),X),

∫ t

0

U(s)ds ∈ D1; t � 0, U(t) = gΔA

∫ t

0

U(s)ds+ u0; t � 0. (5)

Problem (1) is reduced to (3) as follows. A function u : (t, x) �→ u(t, x) of (t, x) is treated as a
function u : t �→ [x �→ u(t, x)] of t with the range in some function space of the argument x. Then
u(t, x) = (U(t))(x), t � 0, x ∈ H. The terms “strong solution” and “mild solution” of problem (1)
are now transferred from solutions of problem (3) using this correspondence.

The following theorem is used below.

Theorem 1 (Chernoff product formula, see, e.g., [23, Th. III,5.2]). Let X be a real Banach
space and let Lb(X,X) be the space of all bounded linear operators on X equipped with the operator
norm. Let a function S : [0,+∞) → Lb(X,X) be given such that S0 = I, where I stands for the
identity operator, let ‖(St)

m‖ be bounded for some constant M for any t � 0 and m ∈ N , and
let the strong limit limt↓0 t−1(Stϕ− ϕ) =: Lϕ exist for any ϕ ∈ D ⊂ X, where D and (λ0I −
L)(D) are dense subspaces of X for some λ0 > 0. Then the closure L of L is an infinitesimal
generator of some bounded strongly continuous operator semigroup (Tt)t�0 given by the formula
Ttϕ = limn→∞(St/n)

nϕ, where the limit exists for any ϕ ∈ X and is uniform with respect to
t ∈ [0, t0] for any t0 > 0.

Let x ∈ H and B : H → H a linear operator. By the symbol μx
B we denote the Gaussian

probability measure on a Borel sigma algebra in H with the mean x and the correlation operator B.
Let (Stϕ)(x) :=

∫
H
ϕ(x+ y)μ2tg(x)A(dy) for t > 0 and S0ϕ := ϕ for ϕ ∈ X.

The objective of the paper is to prove, using Theorem 1, that the solution of the Cauchy problem
(1) is given by the Feynman formula (2). We develop and strengthen results of [15] obtained there
for the simplest diffusion equation with a variable coefficient at the higher derivative, namely, we
consider here an infinite-dimensional case and prove the existence of a solving semigroup. We also
discuss the reduction of an approximate evaluation of integrals over an infinite-dimensional space

1For the definition and properties of trace-class operators in a Hilbert space, see, e.g., G. J. Murphy, C∗-Algebras

and Operator Theory (Academic Press, Inc., Boston, MA, 1990), § 2.4.
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362 REMIZOV

in the Feynman formula to evaluation of integrals over finite-dimensional spaces and the size of
function classes in use.

Recall some notation, definitions, and facts needed below. Unless otherwise stated, the sym-
bol X stands for an abstract real Banach space. We use the apparatus of strongly continuous
one-parameter semigroups of bounded linear operators in Banach spaces and their infinitesimal
generators; for the definitions and the main properties, we use the book [23]. For a closed linear
operator L, we refer to the problem

{
(d/dt)F (t) = LF (t); t � 0,

F (0) = F0,
(6)

for a function F : [0,+∞) → X as the abstract Cauchy problem associated with the closed linear
operator L : X ⊃ Dom(L) → X and the vector F0 ∈ X. A function F : [0,+∞) → X is said to be
a classical solution of the abstract Cauchy problem (6) if the function F has continuous derivative
F ′ : [0,+∞) → X in the strong operator topology for every t � 0, F (t) ∈ Dom(L) for every t � 0,
and (6) holds; a strongly continuous function F : [0,+∞) → X is referred to as a mild solution of

(6) if
∫ t

0
F (s)ds ∈ Dom(L) and F (t) = L

∫ t

0
F (s)ds+F0 for every t � 0. Recall that, if an operator

(L,Dom(L)) is the infinitesimal generator of a strongly continuous semigroup (Ts)s�0, then, for

every F0 ∈ Dom(L), there is a unique classical solution of (6) given by the formula F (t) = T (t)F0

and, for every F0 ∈ X, there is a unique mild solution of (6) given by the formula F (t) = T (t)F0

(see [23, II, Proposition 6.2]).

A strongly continuous operator semigroup (Tt)t�0 is said to be contractive (or a contraction
semigroup) if ‖Tt‖ � 1 for every t � 0. A linear operator L : X ⊃ Dom(L) → X on a Banach
space X is said to be dissipative if ‖Lx− λx‖ � λ‖x‖ for every λ > 0 and any x ∈ Dom(L). Recall
[23, II, Proposition 3.14] that a linear dissipative operator L : X ⊃ Dom(L) → X on a Banach
space X whose domain Dom(L) is dense in X admits the closure, L : X ⊃ Dom(L) → X, which
is also dissipative. By the Lumer–Phillips theorem (see, e.g., [23, Th. II.3.15]), the closure L of a
dissipative operator (L,Dom(L)) on a Banach space X is an infinitesimal generator of a contraction
semigroup if and only if the image of the operator λI − L is dense in X for some (and hence for
any) λ > 0.

Let (eLnt)t�0 be strongly continuous operator semigroups on a Banach space X with infinitesimal

generators (Ln,Dom(Ln)) satisfying the stability condition ‖eLnt‖ � Mewt for constants M � 1,
w ∈ R, and all t � 0 and n ∈ N. Let there be a densely defined operator (L,Dom(L)) on X such
that Lnx → Lx for all x in a core D of L such that the image of the operator (λ0I − L) is dense

in X for some λ0 > 0. Then the semigroups (eLnt)t�0, n ∈ N converge strongly (and uniformly

with respect to t ∈ [0, t0] for any t0 > 0) to a strongly continuous semigroup (etL)t�0 with the

infinitesimal generator L [23, Th. III.4.9].
We also need some fundamentals concerning Fréchet differentiation in Banach and Hilbert spaces

(for details, see [8]. In particular, the second Fréchet derivative of a function f : H → R is regarded
as a mapping f ′′ : H → Lb(H,H). For n + 1 times Frćhet differentiable function f , we have the
Taylor expansion

f(x+ h) = f(x) + (1/1!)f ′(x)h+ (1/2!)f ′′(x)(h, h) + · · ·+ (1/n!)f (n)(x)(h, . . . , h) +Rn(x, h), (7)

where Rn(x, h) ∈ conv{(n + 1)!
−1
f (n+1)(x+ θh)(h, . . . , h) : θ ∈ (0, 1)} ⊂ R, and therefore

|Rn(x, h)| � (‖h‖n+1/(n+ 1)!) sup
z∈[x,x+h]

‖f (n+1)(z)‖. (8)

The following statement is used below.

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 19 No. 3 2012



SOLUTION OF A CAUCHY PROBLEM FOR A DIFFUSION EQUATION 363

Proposition 1. Let f be a cylindrical real-valued function on H and let (ek)k∈N be an or-
thonormal basis in H such that f does not depend on the coefficients 〈f, ek〉 with k > n for
some n ∈ N. The the function f has a derivative in a direction h if and only if the function
fn has a derivative in the direction (〈h, e1〉, . . . , 〈h, en〉) ∈ R

n, and f ′(x)h = 〈h, (∂1fn(〈x, e1〉, . . . ,
〈x, en〉), . . . , ∂nfn(〈x, e1〉, . . . , 〈x, en〉), 0, 0, 0, . . . )〉, where the symbol ∂jf

n stands for the partial
derivative with respect to the jth argument of the function fn : Rn → R. If the function f has
Fréchet derivative at x, then

f ′(x) = (∂1f
n(〈x, e1〉, . . . , 〈x, en〉), . . . , ∂nfn(〈x, e1〉, . . . , 〈x, en〉), 0, 0, 0, . . . )T , (9)

and f has Fréchet derivative on H if and only if fn has Fréchet derivative on R
n. If A : H → H

is a trace-class operator, then

trAf ′′(x) =
n∑

s=1

n∑
k=1

〈Aes, ek〉
(
∂k∂sf

n(〈x, e1〉, . . . , 〈x, en〉)
)
.

The proof is straightforward.

We also need some definitions and facts concerning Gaussian probability measures on a Hilbert
space [SS]. Recall the definitions of measurable sets and of measures on H. A set B ⊂ H is said
to be cylindrical if there are an n-dimensional linear subspace Hn ⊂ H and a Borel set Bn ⊂ B
such that B = P−1(Bn), where P : H → Hn stands for the orthogonal projection. For a fixed
n-dimensional subspace Hn ⊂ H, the family {P−1(Bn) : Bn is a Borel set in Hn} is a σ-algebra
in H. If H is infinite-dimensional, then the family of cylindrical sets in H forms an algebra (rather
than a σ-algebra, because, e.g., if (ek) is a basis in H, then the countable intersection of the sets
{x : 0 < 〈x, ek〉 < 1} is not a cylindrical set). We refer to this set algebra as the cylinder algebra and
to the smallest σ-algebra containing all cylinders as the cylindrical σ-algebra. Since H is separable,
the cylindrical σ-algebra on H coincides with the Borel one.

By a cylindrical measure μ on H we mean a real finitely additive set function defined on the
algebra of all cylindrical sets in H and such that, for every finite-dimensional linear subspace
Hn ⊂ H for the orthogonal projection P : H → Hn, the restriction of the measure μ to the σ-
algebra {P−1(Bn) : Bn is a Borel subset of Hn} is a countably-additive measure.

For any finite-dimensional subspace Hn ⊂ H, the restriction of a cylindrical measure to the
σ-algebra {P−1(Bn) : Bn is a Borel subset of Hn} is a countably additive measure. Therefore, for
the Borel cylindrical functions, the Lebesgue integral against a cylindrical measure has a definite
meaning.

By the Fourier transform of a cylindrical measure μ on H we mean a function μ̃ : H → C,
μ̃(z) :=

∫
H
ei〈z,y〉μ(dy). As is well known [9, p. 16], a cylindrical measure is defined by its Fourier

transform uniquely. For a real separable Hilbert space H, a cylindrical measure μx
A defined on the

cylinder algebra is referred to as a nondegenerate Gaussian measure if the Fourier transform of μx
A

is of the form μ̃x
A(z) = exp

(
i
〈
z, x

〉 − 1
2

〈
Az, z

〉)
, where x ∈ H is the so-called expectation of μx

A
and A : H → H is the so-called correlation operator of μx

A. If x = 0, then the measure is said to be
centered, and we write μ0

A = μA.

The correlation operators of the Gaussian measures used below are selfadjoint positive trace-class
operators. By [4, Ch. II, §2, 3◦]), if a function ϕ : H → R is cylindrical, continuous, and bounded,
if e1, . . . , en is a full family of eigenvectors of an operator C, and c1, . . . , cn are the corresponding
eigenvalues, then

∫
H

ϕ(y)μA(dy) = (2π)−n/2(

n∏
i=1

ci)
−1/2

∫
Rn

ϕn(z1, . . . , zn) exp
(−

n∑
i=1

z2i /(2ci)
)
dz1 . . . dzn. (10)

By [4, Ch. II, §2, 1◦], if H is a real separable Hilbert space, A : H → H is a trace-class symmetric
positive-definite linear operator, μA is a centered Gaussian measure on H with the correlation

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 19 No. 3 2012



364 REMIZOV

operator A, and B : H → H is a bounded linear operator, then

∫
H

〈By, y〉μA(dy) = tr(AB), (11)

∫
H

(〈By, y〉)2μA(dy) = (tr(AB))2 + 2 tr(AB)2. (12)

Lemma 1. Let H be a real separable Hilbert space. Let A : H → H be a positive, trace-class, self-
adjoint linear operator. Let μA be a centered Gaussian measure on H with the correlation operator
A. Let f : H → R be a continuous bounded function. Then

∫
H

f(x)μtA(dx) =

∫
H

f(
√
tx)μA(dx). (13)

The proof uses the uniqueness of a measure having a given Fourier transform and the standard
theorem concerning the change of measure, in a Lebesgue integral, caused by a measurable mapping.

Finally, recall the following result (see [6, Th. 4.3.1 and 4.3.2, and Corollary 4.3.4].

Lemma 2. Let aij : Rn → R, i, j = 1, . . . , n, be a function in C∞
b (Rn,R) (the space of bounded

real function on R
n having the bounded derivatives of all orders). Let the ellipticity condition∑n

i,j=1 a
ij(x)ξiξj � κ‖ξ‖2 hold for some κ > 0 and every ξ = (ξ1, . . . , ξn) ∈ R

n and x ∈ R
n.

Let a constant λ > 0 and a function f ∈ C∞
b (Rn,R) be chosen. Then there is a unique function

u ∈ C∞
b (Rn,R) which is a solution of the equation

n∑
i=1

n∑
j=1

aij(x)
∂2

∂xi∂xj
u(x)− λu(x) = f(x), (14)

and every function v ∈ C∞
b (Rn,R) satisfies the bound

sup
x∈Rn

∣∣∣∣∣∣
n∑

i=1

n∑
j=1

aij(x)
∂2

∂xi∂xj
v(x) − λv(x)

∣∣∣∣∣∣ � λ sup
x∈Rn

|v(x)|. (15)

3. FAMILIES OF OPERATORS AND THEIR PROPERTIES

Theorem 2. Let g ∈ X be such that g(x) � go ≡ const > 0 for every x ∈ H, and let g be a
uniform limit of smooth cylindrical functions in D. Let t > 0 and μ2t g(x)A a centered Gaussian
measure on H with the correlation operator 2t g(x)A. For t � 0 and ϕ ∈ Cb(H,R), write

(Stϕ)(x) :=

∫
H

ϕ(x+ y)μ2tg(x)A(dy) as t > 0 and S0ϕ := ϕ. (16)

Then Stϕ ∈ Cb(H,R) for t � 0 and ϕ ∈ Cb(H,R) St : Cb(H,R) → Cb(H,R) is a bounded linear
operator for any t � 0 with unit norm. If g ∈ D (g ∈ X), then D (X, respectively) is St-invariant
for any t � 0. The representation

∫
H
ϕ(x + y)μ2tg(x)A(dy) = ϕ(x) + tg(x) tr(Aϕ′′(x)) + t2r(x, t),

where supx∈H |r(x, t)| � 1
6
supz∈H ‖ϕ(4)(z)‖(supz∈H |g(z)|)2((trA)2 +2 trA2), holds for any ϕ ∈ D

and every t > 0, and, finally, limt→0 supx∈H

∣∣t−1(Stϕ)(x) − ϕ(x) − (gΔAϕ)(x)
∣∣ = 0 for every

function ϕ ∈ D.

Proof. The integral (16) exists in the Lebesgue sense because the function is bounded and
continuous and the (probability) measure is bounded. Let a number t > 0 and a function ϕ ∈

RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 19 No. 3 2012



SOLUTION OF A CAUCHY PROBLEM FOR A DIFFUSION EQUATION 365

Cb(H,R) be chosen. By Lemma 1,
∫
H
ϕ(x+y)μ2tg(x)A(dy) =

∫
H
ϕ(x+

√
2tg(x)y)μA(dy). It follows

from the bound

‖Stϕ‖ = sup
x∈H

∣∣∣∣
∫
H

ϕ(x+
√

2tg(x)y)μA(dy)

∣∣∣∣ � sup
x∈H

|ϕ(x)| · μA(H) = ‖ϕ‖ · 1 (17)

that the function Stϕ is bounded. We claim that the function Stϕ is continuous. Let xj → x.

Then ϕ(xj +
√

2tg(xj)y) → ϕ(x +
√
2tg(x)y) for any y ∈ H. Moreover, |ϕ(xj +

√
2tg(xj)y)| �

‖ϕ‖ ≡ const and |ϕ(x +
√

2tg(x)y)| � ‖ϕ‖ ≡ const. Therefore, by the dominated convergence

theorem, limj→∞
∫
H
ϕ(xj +

√
2tg(xj)y)μA =

∫
H
ϕ(x +

√
2tg(x)y)μA, i.e., (Stϕ)(xj) → (Stϕ)(x).

Thus, Stϕ ∈ Cb(H,R). The operator St is obviously linear. If 1 is regarded as a constant function
on H, then St1 = 1, and hence ‖St‖ � 1. The bound (17) shows that ‖St‖ � 1.

To prove that D (X) is St-invariant, choose a t > 0. If g ∈ D, then the operator St takes a cylin-
drical function to a cylindrical one. Indeed, if ϕ is cylindrical, then ϕ(x) = ϕn(〈x, e1〉, . . . , 〈x, en〉)
for every x ∈ H and for some n ∈ N, some function ϕn : Rn → R, and some e1, . . . , en in H. Simi-
larly, since the function g is cylindrical by assumption, we have g(x) = gm(〈x, en+1〉, . . . , 〈x, en+m〉)
for every x ∈ H and for some m ∈ N, some function gm : Rm → R, and some en+1, . . . , en+m in H.
By Lemma 1, ∫

H

ϕ(x+ y)μ2tg(x)A(dy) =

∫
H

ϕ(x+
√

2tg(x)y)μA(dy). (18)

Write

Φ(x1, . . . , xn+m)=

∫
H

ϕn
(
x1 +

√
2tgm(xn+1, . . . , xn+m)〈y, e1〉,

. . . , xn +
√

2tgm(xn+1, . . . , xn+m)〈y, en〉
)
μA(dy).

then (Stϕ)(x) = Φ(〈x, e1〉, . . . , 〈x, en+m〉) for every x ∈ H, which means that Stϕ is cylindrical.
We claim now that, if ϕ is cylindrical and has bounded Fréchet derivative of all orders, then so is

Stϕ. Let us apply Proposition 1. We claim first that Φ has Fréchet derivatives of all orders. To this
end, we pass in the expression for Φ from the integral overH to the integral over Rn (Since ϕ is cylin-
drical). Introduce the following notation: Ψn : H � h �→ (

〈
h, e1

〉
, . . . ,

〈
h, en

〉
) ∈ R

n is a projection,
Hn = span(e1, . . . , en) is the related subspace of H, In : Hn � h �→ (〈h, e1〉 , . . . , 〈h, en〉) ∈ R

n is an
isomorphism, Pn : H � h �→ 〈h, e1〉e1+ · · ·+〈h, en〉en ∈ Hn is the projection in H. Then Ψn = InPn

and ϕ(x) = ϕn(Ψnx). Moreover, write
→
x
n

1 = (x1, . . . , xn) ∈ R
n and

→
x
m

n+1 = (xn+1, . . . , xm) ∈ R
m.

Since A is nondegenerate and symmetric on H, it follows that PnA is nondegenerate and sym-
metric on Hn, and therefore it can be diagonalized in some basis. We may assume without loss
of generality that e1, . . . , en is this basis (because the change of a basis in Hn modifies ϕn only).
The matrix of the operator PnA on Hn coincides with the matrix of Cn = InPnAI

−1
n on R

n. Let
c1, . . . , cn -be the eigenvalues of Cn corresponding to the eigenvectors Ψne1, . . . ,Ψnen. Note that

ci > 0 and gm
(→
x
m

n+1

)
� g0 ≡ const > 0 for every

→
x
m

n+1 ∈ R
m. By (10),

Φ
(→
x
n

1 ,
→
x
m

n+1

)
=

∫
H

ϕn
(→
x
n

1 +

√
2tgm

(→
x
m

n+1

)
Ψn(y)

)
μA(dy)

= (2π)−n/2
( n∏

i=1

ci

)−1/2 ∫
Rn

ϕn
(→
x
n

1 +

√
2tgm

(→
x
m

n+1

)
z
)
exp

(
−

n∑
i=1

z2i /(2ci)
)
dz.

Introduce a measure ν on R
n given by a density with respect to the Lebesgue measure as follows:

set

ν(A) := (2π)−n/2
( n∏

i=1

ci

)−1/2 ∫
A
exp

(
−

n∑
i=1

z2i /(2ci)
)
dz
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for every measure set A ⊂ R
n. It follows from this definition that

Φ
(→
x
n

1 ,
→
x
m

n+1

)
=

∫
Rn

ϕn
(→
x
n

1 +

√
2tgm

(→
x
m

n+1

)
z
)
ν(dz).

The integrand is a composition of mappings with bounded continuous Fréchet derivative, and
therefore has the same property. The Fréchet derivative of the integrand is uniformly bounded,
while (Rn, ν) is a locally compact and countable at infinity normed linear space equipped with
a nonnegative Radon measure, and therefore we can apply Theorem 115 in [13] on the Fréchet
differentiation under the sign of a Lebesgue integral. Repeating this argument for everyk ∈ N, we
conclude that, since the integrand has continuous bounded Fréchet derivatives of order k everywhere
on R

n+m, it follows that the function Φ has the same property on R
n+m. By Proposition 1, the

function Stϕ has continuous bounded Fréchet derivatives of order k on H for every k ∈ N, and
therefore Stϕ ∈ D.

Suppose now that ϕ ∈ X, i.e, ϕ ∈ Cb(H,R) and there is a sequence (ϕj) ⊂ D such that ϕj → ϕ
uniformly. Let g ∈ X, i.e., g ∈ Cb(H,R) and there is a sequence (gj) ⊂ D such that gj → g
uniformly. Choose a t > 0. Denote the operator St constructed from gj by the symbol (Sj)t. As
was proved above, (Sj)tϕj ∈ D for every j ∈ N. We claim that ((Sj)tϕj)(x) → (Stϕ)(x) uniformly
with respect to x ∈ H, and therefore Stϕ ∈ X.

Any function in D has bounded first derivative, and therefore is uniformly continuous by (7).
Therefore, all functions in X are uniformly continuous, including ϕ. Since a �→ √

a is uniformly

continuous, it follows that so is the function z �→ ϕ(z +
√
2tzy). Further, for any chosen y, we have

the convergence ϕj

(
x+

√
2tgj(x)y

) → ϕ
(
x+

√
2tg(x)y

)
, which is uniform with respect to x ∈ H.

There is an index j0 such that
∣∣ϕj

(
x+

√
2tgj(x)y

)− ϕ
(
x+

√
2tg(x)y

)∣∣ � ‖ϕj‖+ ‖ϕ‖ � 2‖ϕ‖+ 1
for every x ∈ H, y ∈ H and j � j0. Therefore, the following sequence of numerical functions
is well defined, namely, Yj =

[
y �→ supx∈H

∣∣ϕj

(
x +

√
2tgj(x)y

) − ϕ
(
x +

√
2tg(x)y

)∣∣]. As was
proved above, Yj(y) converges to 0 pointwise. The functions Yj are jointly bounded, and therefore∫
H
Yj(y)μA(dy) → 0 by the dominated convergence theorem. To sum up,

∥∥(Sj)tϕj − Stϕ
∥∥ = sup

x∈H

∣∣ ∫
H

ϕj

(
x+

√
2tgj(x)y

)− ϕ
(
x+

√
2tg(x)y

)
μA(dy)

∣∣

�
∫
H

sup
x∈H

∣∣ϕj

(
x+

√
2tgj(x)y

)− ϕ
(
x+

√
2tg(x)y

)∣∣μA(dy) =

∫
H

Yj(y)μA(dy → 0.

Choose some t > 0 and x ∈ H and consider the integral
∫
H
ϕ(x+ y)μ2tg(x)A(dy).

We approximate the integrand by its Taylor polynomial of order three centered at x. Let us
stipulate that the remainder term R(x, y) is not small, since the vector y ranges the entire space
H, and the vector x is chosen. However, since ϕ is four times continuously Fréchet differentiable
on H, it follows that the function R(x, y) such that

∫
H

ϕ(x+ y)μ2tg(x)A(dy) =

∫
H

{
ϕ(x) + 〈ϕ′(x), y〉+ 1

2!
〈ϕ′′(x)y, y〉

+
1

3!
ϕ′′′(x)(y, y, y) +R(x, y)

}
μ2tg(x)A(dy)

is defined on H ×H everywhere and, by (8), satisfies the bound

|R(x, y)| � ‖y‖4
(4)!

sup
z∈[x,x−y]

∥∥ϕ(4)(z)
∥∥ � 1

4!
aϕ‖y‖4, (19)

where we write aϕ = supz∈H ‖ϕ(4)(z)‖ and ag = supz∈H |g(z)|.
RUSSIAN JOURNAL OF MATHEMATICAL PHYSICS Vol. 19 No. 3 2012



SOLUTION OF A CAUCHY PROBLEM FOR A DIFFUSION EQUATION 367

The sum can be integrated termwise, because every summand is dominated by a polynomial
with respect to the variable y, which the polynomials are integrable with respect to any Gaussian
measure with trace-class correlation operator ([4, p. 68]).

The integrals against the symmetric measure μ2tg(x)A of functions 〈ϕ′(x), y〉 and
(1/3!)ϕ′′′(x)(y, y, y) that are odd with respect to y vanish. The number ϕ(x) does not depend
on y and μ2tg(x)A is a probability measure, and therefore the integral of ϕ(x) is equal to ϕ(x). By

(11),
∫
H
(1/2!)

〈
ϕ′′(x)y, y

〉
μ2tg(x)A(dy) = (1/2) tr(2tg(x)Aϕ′′(x)) = t g(x) tr(Aϕ′′(x)). Finally,

∣∣∣∣
∫
H

R(x, y)μ2tg(x)A(dy)

∣∣∣∣
(18)
�

∫
H

∣∣∣R(x,√2tg(x)y)
∣∣∣μA(dy)

(12)
�

∫
H

1

4!
aϕ

(√
2tg(x)

)4

‖y‖4μA(dy)

� (1/6)t2aϕa
2
g

∫
H

‖y‖4μA(dy)
(19)
=

1

6
[aϕa

2
g((trA)

2 + 2 trA2)]t2.

This implies that limt→0 supx∈H

∣∣t−1((Stϕ)(x)−ϕ(x))−(gΔAϕ)(x)
∣∣=limt→0 t supx∈H |r(x, t)|=0.

Theorem 3. Let g ∈ X, let g be bounded and bounded away from zero, and let g be the uniform
limit of smooth cylindrical functions in D. Then gΔAϕ ∈ D for g ∈ D and ϕ ∈ D and gΔAϕ ∈ X
for g ∈ X and ϕ ∈ D. Moreover, the operator λI − gΔA, where I stands for the identity operator,
is surjective on D for any λ > 0 if g ∈ D (in particular, (λI − gΔA)(D) = D is then dense in X),
and, if g ∈ X, then the operator (gΔA,D) is dissipative and closable, and the closure of (ΔA,D)
is (ΔA,D1), which is also dissipative.

Proof. Let ϕ ∈ D, i.e., ϕ(x) = ϕn(〈x, e1〉, . . . , 〈x, en〉) for some orthonormal family e1, . . . , en
in H and for some function ϕn : Rn → R with bounded derivatives of all orders (see Proposition 1).
This proposition implies the equation

(ΔAϕ)(x) = trAϕ′′(x) =
n∑

s=1

n∑
k=1

〈Aes, ek〉
(
∂k∂sϕ

n(〈x, e1〉, . . . , 〈x, en〉)
)
. (20)

The function on the right-hand side of (20) is cylindrical, and the corresponding function on R
n is

a finite sun of functions each of which has bounded derivatives of all orders (together with ϕn). By
Proposition 1, ΔAϕ ∈ D.

Since D is a function algebra, it contains products of its elements. If g ∈ X, there is a sequence
(gj) ⊂ D such that ‖g − gj‖ → 0; we have ‖gΔAϕ − gjΔAϕ‖ � ‖ΔAϕ‖ · ‖g − gj‖ → 0, and hence
gΔAϕ ∈ X.

Let g ∈ D. Choose a λ > 0, consider an arbitrary function ϕ ∈ D, and show that there is a
function f ∈ D solving the equation

λf(x)− g(x) trAf ′′(x) = ϕ(x). (21)

Let vectors e1, . . . , en be such that

ϕ(x) = ϕn(〈x, e1〉, . . . , 〈x, en〉) and g(x) = gn(〈x, e1〉, . . . , 〈x, en〉) (22)

for any x ∈ H, where ϕn : R
n → R and gn : R

n → R are smooth functions bounded together with
all their derivatives. We seek a solution of (21) in the form

f(x) = fn(〈x, e1〉, . . . , 〈x, en〉), (23)

where fn : Rn → R is a smooth function bounded together with all its derivatives.
By (20), (22), and (23), equation (21) for the function f of the above form is equivalent to the

following equation for the function fn:

gn(x1, . . . , xn)

n∑
s=1

n∑
k=1

〈Aes, ek〉∂k∂sfn(x1, . . . , xn)− λfn(x1, . . . , xn) = −ϕn(x1, . . . , xn), (24)
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where xj stands for 〈x, ej〉.
Equation (24) is a finite-dimensional partial differential equation. Note that gn(x1, . . . , xn) �

g0 ≡ const > 0. Moreover, the quadratic form given by the n × n matrix (〈Aes, ek〉) is positive
definite because A is positive. Therefore, the operator in (24) is elliptic, and equation (24) is of
the form (14). The functions gn and ϕn are bounded together with all their derivatives. Hence,
Lemma 2 can be applied to equation (24), and therefore equation (24) has a continuous solution
fn which is bounded together with all its derivatives. By Proposition 1, the function f defined by
(23) is in D.

Thus, for any λ > 0, the operator λI − gΔA is surjective on D, because the preimage of a
function ϕ ∈ D contains at least the function f(x) = fn(〈x, e1〉, . . . , 〈x, en〉), where fn : Rn → R is
a solution of equation (24).

Suppose now that g ∈ D. We claim that gΔA is dissipative. Let f ∈ D and λ > 0. As
above, f and g are cylindrical functions if and only if f(x) = fn(〈x, e1〉, . . . , 〈x, en〉) and g(x) =
gn(〈x, e1〉, . . . , 〈x, en〉), where fn : Rn → R and gn : Rn → R are smooth functions bounded together
with all their derivatives.

As above, the value of a function obtained by applying gΔA to f at a point x ∈ H is equal to
the value of the function obtained by applying the above finite-dimensional second-order elliptic
differential operator to fn at the point (〈x, e1〉, . . . , 〈x, en〉) ∈ Rn. The operator A is positive
definite, and the function g satisfies the inequality g(x) � g0 ≡ const > 0, and therefore Lemma 2
can be applied to the finite-dimensional operator, which turns out to be dissipative, and thus the
operator gΔA is dissipative as well. Formally,

‖gΔAf − λf‖ = sup
x∈H

|g(x) tr(Af ′′(x))− λf(x)|

sup
(x1,...,xn)∈Rn

∣∣∣gn(x1, . . . , xn)
n∑

s=1

n∑
k=1

〈Aes, ek〉∂k∂sfn(x1, . . . , xn)− λfn(x1, . . . , xn)
∣∣∣

(15)
� λ sup

(x1,...,xn)∈Rn

|fn(x1, . . . , xn)| = λ sup
x∈H

|f(x)| = λ‖f‖,
where xj stands for 〈x, ej〉. The inequality

‖gΔAf − λf‖ � λ‖f‖ (25)

thus obtained means that gΔA is dissipative.
Next, by [23, Proposition II.3.14], it follows from the density of the domain of gΔA and its

dissipativity that gΔA is closable. By setting g(x) ≡ 1, we see that the operator (ΔA,D) is also
dissipative and closable. It follows from the definition of the space D1 that the closure of (ΔA,D)
has the domain D1.

Let g ∈ X, and let (gj) ⊂ D be a sequence such that ‖g− gj‖ → 0. The images of the operators
(λI − gΔA) and (gΔA − λI) coincide. It suffices to prove that the image of (gΔA − λI) is dense
in D (then it is dense in X as well). Choose a λ > 0 and a function ψ ∈ D, which we intend to
approximate by values of the operator (gΔA − λI). Since the image of (gjΔA − λI) is D, for any
j ∈ N there is a function fj ∈ D such that

gjΔAfj − λfj = ψ. (26)

We claim that, if j → ∞, then gΔAfj − λfj → ψ. To this end, we shall prove first that, for chosen
λ, ψ, and g, the number set

(
supx∈H

∣∣trAf ′′
j (x)

∣∣)
j∈N

is bounded. Since g(x) � g0 ≡ const > 0 and

gj → g, there is an index j0 such that

gj(x) � g0/2 for j > j0. (27)

This gives the following bound which holds for j > j0:

sup
x∈H

∣∣trAf ′′
j (x)

∣∣ (26)= sup
x∈H

|ψ(x) + λfj(x)|
gj(x)

(27)
� 2

g0

(
sup
x∈H

|ψ(x)| + λ sup
x∈H

|fj(x)|
)

(25)
� 2

g0
(‖ψ‖ + ‖gjΔAfj − λfj‖)

(26)
=

4

g0
‖ψ‖.
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Writing C = max
(
‖ trAf ′′

1 ‖, . . . , ‖ trAf ′′
j0
‖, 4

g0
‖ψ‖

)
, we see that

sup
j∈N

sup
x∈H

∣∣trAf ′′
j (x)

∣∣ � C ≡ const. (28)

It remains to show that, if j → ∞, then gΔAfj − λfj → ψ. However, the following bound holds:

‖gΔAfj − λfj − ψ‖ = ‖gΔAfj − gjΔAfj + (gjΔAfj − λfj − ψ)‖
(26)
=

∥∥(g − gj) trAf
′′
j + 0

∥∥ � ‖g − gj‖ · ‖ trAf ′′
j ‖

(28)
� ‖g − gj‖ · C,

where ‖g − gj‖ → 0 as j → ∞.

Let g ∈ X, and let (gj) ⊂ D be as above. Then, as was proved above, in accordance with (33),
the inequality ‖gjΔAf −λf‖ � λ‖ϕ‖ holds for any function ϕ ∈ D and every λ > 0. Passing to the
limit as j → ∞, we obtain ‖gΔAϕ− λϕ‖ � λ‖ϕ‖, which means that gΔA is a dissipative operator.
By [23, Proposition II.3.14], the densely defined (on D) dissipative operator (gΔA,D) in X admits
the closure (gΔA,Dom(gΔA)), which is also dissipative.

We claim that Dom(gΔA) = D1. Indeed, let f ∈ Dom(gΔA). This means that there is a sequence
(fj) ⊂ D such that fj → f and the sequence gΔAfj converges. However, since the bound g0 �
g(x) � ‖g‖ holds for any x ∈ H, it follows that the sequence gΔAfj converges if and only if the

sequence ΔAfj converges, which holds if and only if f ∈ Dom(ΔA). It immediately follows from the

definition of the space D1 that Dom(ΔA) = D1. It remains to note that gΔAf = g limj→∞ ΔAfj =

limj→∞ gΔAfj = gΔAf , and therefore gΔA = gΔA.

4. FEYNMAN FORMULA SOLVES THE CAUCHY PROBLEM

Theorem 4. The Cauchy problem (1) has a unique strong solution for every u0 ∈ D1, the
Cauchy problem (1) has a unique mild solution for every u0 ∈ X, these solutions are norm continu-
ous (for the norm in X), uniformly continuous with respect to t ∈ [0, t0] for any t0 > 0, continuously
depend on u0 and g, satisfy the bound supx∈H |u(t, x)| � supx∈H |u0(x)| for any t � 0, and are
given by

u(t, x)= lim
n→∞

∫
H

∫
H

. . .

∫
H

∫
H

n

u0(y1)μ
y2
2t
n g(y2)A

(dy1)μ
y3
2t
n g(y3)A

(dy2) . . . μ
yn
2t
n g(yn)A

(dyn−1)μ
x
2t
n g(x)A(dyn).

(29)

Proof. Let us verify the validity of the conditions of Theorem 1 for the operator family (St)t�0

and the operator gΔA. First, S0 = I by the very definition of the family (St)t�0. Second, by
Theorem 2, we have ‖St‖ = 1 for any t � 0, and therefore ‖(St)

m‖ � ‖St‖ · . . . · ‖St‖ = 1 · . . . · 1 = 1

for any m ∈ N. Third, by the same theorem, the strong limit limt→0
Stϕ−ϕ

t = gΔAϕ exists in X for
every function ϕ ∈ D. Fourth, the space D is automatically dense in its closure X. Moreover, by
Theorem 3, for every λ > 0, the space (λI − gΔA)(D) is dense in X. Therefore, by Theorem 1, the
closure of (gΔA,D) (coinciding with the operator (gΔA,D1) by Theorem 3) generates a strongly

continuous semigroup etgΔA defined for every ϕ ∈ X by the rule etgΔAϕ = limn→∞
(
St/n

)n
ϕ, and

the limit is uniform with respect to t ∈ [0, t0] for any chosen t0. Note that, by Theorem 3, the

Lumer–Phillips theorem [23, Th. II.3.15] can be applied to the semigroup etgΔA , and hence etgΔA

is a contraction semigroup.
Let us now introduce a function U : [0,+∞) → X by the rule (U(t))(x) = u(t, x). If we set

(U0)(x) = u0(x), then problem (1) with u0 ∈ D1 becomes equivalent to problem (3) with u0 ∈ D1

and problem (1) with u0 ∈ X to problem (3) with u0 ∈ X. It follows from what was proved above,
from definitions after formula (6), and from Proposition II.6.2 in [23] that, for every U0 ∈ D1, there

is a unique solution of the Cauchy problem (3) given by the formula U(t) = etgΔAu0, and, for every
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U0 ∈ X, there is a unique solution of the Cauchy problem (5) given by the formula U(t) = etgΔAu0.

Since the operator semigroup etgΔA is strongly continuous, it follows that, by Proposition I.1.2

in [23], the function t �→ etgΔAϕ(x) is differentiable with respect to t at every point t � 0 uniformly
with respect to x ∈ H for every function ϕ ∈ D1.

Thus, the Cauchy problem (6) has a unique solution for every u0 ∈ D1, which is given by

the formula u(x, t) = (etgΔAu0)(x) = limn→∞
((
St/n

)n
u0

)
(x), and the Cauchy problem (7) has

a unique solution for every u0 ∈ X, which is given by the formula u(x, t) = (etgΔAu0)(x) =

limn→∞
((
St/n

)n
u0

)
(x).

Let us explain how the formula u(x, t) = limn→∞
((
St/n

)n
u0

)
(x) leads to formula (37). The

change of variable
∫
H
ψ(y)μA(dy) =

∫
H
ψ(y−x)μx

A(dy) holds for every continuous bounded function
ψ : H → R and every point x ∈ H. Applying this rule and replacing A by 2t g(x)A, we obtain

(Stϕ)(x) =

∫
H

ϕ(x+ y)μ2tg(x)A(dy) =

∫
H

ϕ(x+ (y − x))μx
2tg(x)A(dy) =

∫
H

ϕ(y)μx
2tg(x)A(dy).

Therefore, the expression whose limit is taken in (37) for n = 2 is

((
St/2

)2
ϕ
)
(x) =

(
St/2

(
St/2ϕ

))
(x) =

∫
H

(∫
H

ϕ(y1)μ
y2
2t
2 g(y2)A

(dy1)

)
μx

2t
2 g(x)A(dy2).

The expressions for n > 2 can be obtained in a similar way. This proves formula (37).

Since the semigroup operators in the semigroup etgΔA are continuous, it follows that the solution
u strongly continuously (in X) depends on u0. The bound supx∈H |u(t, x)| � supx∈H |u0(x)| holds
because etgΔA is a contraction semigroup.

It remains to show that the solution continuously depends on g. Let (gj) ⊂ X and gj → g. Then
we automatically have gj(x) � const > 0 beginning with some index j0. As was proved above, the

operators gjΔA are infinitesimal generators of the semigroups etgjΔA . Since gjΔAϕ → gΔAϕ for

any ϕ ∈ D, we can apply Theorem III.4.9 in [23] and conclude that the semigroups etgjΔA converge
strongly (and uniformly with respect to t ∈ [0, t0] for any chosen t0 > 0) to a strongly continuous

semigroup etgΔA with the infinitesimal generator gΔA, i.e., for every function ϕ ∈ X we have

limj→∞ etgjΔAϕ = etgΔAϕ uniformly with respect to t ∈ [0, t0] for any chosen t0 > 0. Therefore,
the solution of the Cauchy problem (6) corresponding to gj converges as j → ∞ to the solution of
the Cauchy problem (6) corresponding to g uniformly with respect to x ∈ H and uniformly with
respect to t ∈ [0, t0] for any chosen t0 > 0.

Remark 1. The functions u0 and g belong to the space X, and therefore can be approximated
uniformly by cylindrical functions. Substituting cylindrical approximations (u0)j and gj into the
Feynman formula (29) (instead of the functions u0 and g themselves), then the integrands become
cylindrical functions, and therefore the integral over the infinite-dimensional space H can then be
replaced by the integral over a finite-dimensional subspace of H by (17). The passage to the limit
as j → +∞ and n → +∞ gives the function u(t, x) again. This means that we obtain a sequence
of cylindrical functions uniformly approximating the function u, and the functions in the sequence
can be obtained as integrals of finite multiplicity over finite-dimensional spaces.

5. HOW LARGE ARE FUNCTION CLASSES D1 AND X?

Proposition 2. Let αk : R → R be a family of infinitely smooth functions that are uniformly
bounded together with their first and second derivatives, supp∈{0,1,2} supk∈N supt∈R

∣∣dpαk(t)/dt
p
∣∣ �

M ≡ const . For example, the functions αk(t) = sin(dk(t−tk)) and αk(t) = exp
(−dk(t−tk)2), where

dk and tk are constants, 0 < dk � 1, satisfy these conditions. Let a number series
∑∞

k=1 bk converge
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absolutely. Let (ek)
∞
k=1 be an orthonormal basis in H. Then the function f(x) =

∑∞
k=1 bkαk(〈x, ek〉)

belongs to the class D1.

Proof. The sequence of cylindrical functions fj(x) =
∑j

k=1 bkαk(〈x, ek〉) converges uniformly
to f . By Proposition 1, the sequence trAf ′′

j (x) is of the form

trAf ′′
j (x) =

j∑
k=1

〈Aek, ek〉bkα′′(〈x, ek〉),

and it converges as j → ∞ to the function
∑∞

k=1〈Aek, ek〉bkα′′(〈x, ek〉), because
∣∣∣

n2∑
k=n1

〈Aek, ek〉bkα′′(〈x, ek〉)
∣∣∣ � ‖A‖M

n2∑
k=n1

|bk|,

and the series
∑∞

k=1 bk converges absolutely.

Proposition 3. A nonconstant function in X cannot have any limit at infinity. In particular,
the function x �→ exp(−‖x‖2) belongs to Cb(H,R) but not to X.

Proof. Let f ∈ D. Then there is an n-dimensional subspace Hn ⊂ H such that f(x) = f(Px)
for every x ∈ H, where P : H → Hn is the orthogonal projection. Since f �= const, there is a number
ε0 > 0 and points x1, x2 ∈ Hn such that |f(x1) − f(x2)| > ε0. Then |f(x1 + y)− f(x2 + y)| > ε0
for every y ∈ kerP , and, in particular, for ‖x1 + y‖ � R and ‖x2 + y‖ � R, which contradicts the
existence of a limit of f at infinity.

Suppose now that f ∈ X. Then there is a sequence of functions (fj) ⊂ D which converges
uniformly to f . There is an index j such that ‖f − fj‖ < ε0

8
. Therefore, |fj(x1) − fj(x2)| > 3ε0

4

and |fj(x1 + y)− fj(x2 + y)| > 3ε0
4

for every y ∈ kerP and for two points x1, x2 of the space Hn

constructed from the function fj . Since ‖f−fj‖ < ε0
8 , it follows that |f(x1+y)−f(x2+y)| > ε0/2,

which contradicts the existence of a limit at infinity.

Remark 2. Recall that, by the proof of Theorem 2, any function f ∈ X is uniformly continuous.
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