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Control of quantum systems, e.g., individual atoms, molecules is an important direction in
modern quantum technologies [1-5]. In mathematical modeling of such control for a closed
or open (interacting with the environment) quantum system, various numerical optimization
schemes are used including Pontryagin maximum principle, steepest descent, Krotov, Zhu—
Rabitz, Maday—Turinici methods, GRadient Ascent Pulse Engineering (GRAPE), zeroth order
stochastic optimization methods, Chopped Random-Basis (CRAB), etc.; the survey [6] gives a
number of the corresponding bibliographic references and is mainly devoted to Krotov method
for closed quantum systems. An important application of numerical optimization is to help in
theoretical analysis of certain properties of a quantum system, as, e.g., the article 7] shows.

This talk is devoted to controls of some kind of open quantum systems. Typically in
experimental situations controlled systems are open. Environment is often considered as having
deleterious effects on the dynamics. However, it also can be used for controlling the system.
A powerful method of incoherent control was found and studied in [8]. In this case, spectral
density of the environment, i.e., distribution of particles of the environment in their momenta
and internal degrees of freedom, is used as the control function to manipulate the system. This
spectral density is often considered as thermal (Planck distribution), but in general it can be any
non-equilibrium non-negative function, possibly depending on time, of momenta and internal
degrees of freedom of environmental particles. In [8], general method of incoherent control
using this spectral density was obtained, including in combination with coherent control, either
subsequent of simultaneous. The method was developed for any multilevel systems. Numerical
simulations were performed for an explicit example of four level systems using global search
optimization by genetic algorithms. Non-selective quantum measurements were also found to
be a powerful tool for incoherent control [9].

Initially for this incoherent method it was not clear to what degree it allows for manipulating
the system. In [10], a significant advance was achieved where it was shown that combination
of coherent and incoherent controls allows to approximately steer any initial density matrix
to any given target density matrix. This property approximately realizes controllability of
open quantum systems in the set of all density matrices — the strongest possible degree of
quantum state control. This result has several important features. (1) It is obtained with
a physical class of Gorini-Kossakowski-Sudarshan-Lindblad (GKSL) master equations well
known in quantum optics and derived in the weak coupling limit. (2) It was obtained for almost
all values of parameters of this class of master equations and for multi-level quantum systems
of arbitrary dimension. (3) For incoherent controls in this scheme an explicit analytic solution
(not numerical) was obtained. (4) The scheme is robust to variations of the initial state — the
optimal control steers simultaneously all initial states into the target state, thereby physically
realizing all-to-one Kraus maps previously theoretically exploited for quantum control [11].

Based on the articles [8, 10|, the works [12-20] consider one- and two-qubit open quantum
systems driven by coherent and incoherent controls of various classes. Consider N-order density
matrix p, i.e. p € CV*¥ is a Hermitian positive semi-definite matrix, p = p! > 0, with unit
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trace, Trp = 1. Its evolution is determined by the GKSL master equation, where, in general,
coherent control u enters into the Hamiltonian and incoherent control n inters into both the
Hamiltonian (via Lamb shift) and the dissipative superoperator L,

dp(t) i

— = —7 [Hs + eHewna + Vi, P(8)] + eLaio (p(1)), - p(0) = po, (1)
where [A, B] denote the commutator [A, B] = AB — BA of operators A, B; Hg and Heg () are
correspondingly the free and effective Hamiltonians; V) describes interactions between the
quantum system and coherent control. The articles [12 — 18] are devoted to analyzing various
aspects of the one-qubit case, i.e. for N = 2, where Hcg () is absent and € = 1 is considered.
The two-qubit case, i.e. for N = 4, with certain Heg ;) and arbitrary € > 0 is considered in
[19, 20]. The detailed formulations of these quantum systems are given in these articles.

For the system (1), various objective criteria were used under various classes of coherent and
incoherent controls. For example, the articles [12, 15] are devoted to minimal time generation
of a given target density matrix for the one-qubit case using (a) reduction to a sequance of
the problems for minimizing the Hilbert-Schmidt distance between the final and target den-
sity matrices with some fixed final times (two-parameter one-step gradient projection method
(GPM) in the functional space of controls was used) or (b) certain objective function taking into
account the requirements to minimize the distance and final time (finite-dimensional stochas-
tic optimization and machine learning were used). For the two-qubit case, the works [19, 20]
consider the problem of minimizing the Hilbert—Schmidt distance for a given final time via
final-dimensional optimization, where stochastic optimization in [19], GRAPE and one/two-
step GPM (without projection, the two-step version of GPM is Polyak heavy ball method)
were used in [20]. For the one-qubit case, the articles [13, 14| are devoted to maximization
correspondingly of the Hilbert—Schmidt scalar product (i.e. mean) and Uhlmann—Jozsa fidelity
for a given target density matrix, where various numerical optimization methods, Pontryagin
maximum principle, and Gabasov second order necessary condition for optimality were used.
The articles [16-18] are devoted to analyzing reachable and controllability sets of the one-qubit
quantum system under various classes of controls including use of optimization methods. The
results of [12-20] are various including conclusions about the optimization methods’ effective-
ness, structures of optimized controls, reachable and controllability aspects, etc.
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