

One Sobolev type equation in Hilbert spaces of differential forms with stochastic coefficients

D. E. Shafranov¹, O. G. Kitaeva², G. A. Sviridyuk³

Keywords: Sobolev type equations; differential forms; stochastic equations; Nelson – Gliklikh derivative.

MSC2010 codes: 35R60

Our spaces. Let \mathcal{M} – be a smooth compact oriented Riemannian manifold without boundary with local coordinates $x_1, x_2, ..., x_n$. By $H_k = H_k(\mathcal{M}, \Omega)$ we denote the space of smooth differential k-forms k = 0, 1, 2, ..., n. In our consideration, the coefficients of the k-forms are allowed to contain time $t \in [0, +\infty)$, but differentials of time are impossible in the collection of k-forms; i.e., the differential forms have the form with stochastic coefficients

$$\chi_{i_1,i_2,...,i_k}\left(t,x_1,x_2,...,x_n,\omega\right) = \sum_{|i_1,i_2,...,i_k|=k} a_{i_1,i_2,...,i_k}(t,x_{i_1},x_{i_2},...,x_{i_k},\omega) dx_{i_1} \wedge dx_{i_2} \wedge ... \wedge dx_{i_k},$$

where the $a_{i_1,i_2,...,i_k}(t,x_{i_1},x_{i_2},...,x_{i_k},\omega)$ – are coefficients depending, among other variables, on time, and, $|i_1,i_2,...,i_k|$ is a multi-index.

One has the standard inner product

$$(\xi, \varepsilon)_0 = \int_{\mathcal{M}} \xi \wedge *\varepsilon, \quad \xi, \varepsilon \in H_k. \tag{1}$$

on the spaces H_k . Here * is the Hodge operator and \wedge is the operator of exterior multiplication of k-forms.

Completing the space H_k by continuity in the norm $\|\cdot\|_0$ corresponding to the inner product (1), we obtain the space \mathfrak{H}_k^0 . Introducing inner product in the spaces of differentiable or twice differentiable (in the NelsonB–Gliklikh sense) k-forms and completing the space in the norms corresponding to these inner products, we construct the spaces \mathfrak{H}_k^1 and \mathfrak{H}_k^2 , respectively.

For these Hilbert spaces, one has continuous embedding other like $\mathfrak{H}_k^2 \subseteq \mathfrak{H}_k^1 \subseteq \mathfrak{H}_k^0$.

In the spaces constructed, we can use a generalization of the Laplace operator -B— the LaplaceB–Beltrami operator $\Delta u = d\delta + \delta du$, where d – is the operator of exterior differentiation of differential forms and the operator $\delta = *d*$ – is the adjoint of the operator d.

Theorem 1. [2] (Hodge – Kodaira) For the space \mathfrak{H}_k^l , l=0,1,2, one has the following decomposition into the direct sum of subspaces:

$$\mathfrak{H}_{k}^{l} = \mathfrak{H}_{kd}^{l} \oplus \mathfrak{H}_{k\delta}^{l} \oplus \mathfrak{H}_{k\Delta}^{l}, l = 0, 1, 2,$$

where \mathfrak{H}_{kd} is the space of potential forms, $\mathfrak{H}_{k\delta}$ is the space of solenoidal forms, and, \mathfrak{H}_{kd} is the space of harmonic forms.

Corollary 1. Under the assumptions of the theorem, one has the decomposition

$$\mathfrak{H}_k^l = (\mathfrak{H}_{k\Delta}^l)^{\perp} \oplus \mathfrak{H}_{k\Delta}^l, l = 0, 1, 2.$$

¹South Ural State University(NRI), Department of Mathematical Physics Equations, Russia, Chelyabisk City. Email: shafranovde@susu.ru

²South Ural State University(NRI), Department of Mathematical Physics Equations, Russia, Chelyabisk City. Email: kitaevaog@susu.ru

³South Ural State University(NRI), Department of Mathematical Physics Equations, Russia, Chelyabisk City. Email: sviridiukga@susu.ru

We can construct the spaces of random **K**-variables and the spaces of **K**-"noises", defined on the manifold \mathcal{M} . Let $\mathbf{K} = \{\lambda_k\}$ be a sequence such that $\sum_{k=1}^{\infty} \lambda_k^2 < +\infty$. By $\{\varphi_k\}$ and $\{\psi_k\}$ we denote the systems of eigenvectors of the LaplaceB-Beltrami operator orthonormal with respect to the inner products $\langle \cdot, \cdot \rangle_0$ and $\langle \cdot, \cdot \rangle_2$ in these spaces, These systems form bases in the spaces \mathfrak{H}_k^0 and \mathfrak{H}_k^2 . The elements of the spaces $\mathbf{H}_{k\mathbf{K}}^0\mathbf{L}_2$ and $\mathbf{H}_{k\mathbf{K}}^2\mathbf{L}_2$ are vectors $\chi = \sum_{k=1}^{\infty} \lambda_k \xi_k \varphi_k$ and $\kappa = \sum_{k=1}^{\infty} \lambda_k \zeta_k \psi_k$, in which the sequences of random variables $\{\xi_k\} \subset \mathbf{L}_2$ and $\{\zeta_k\} \subset \mathbf{L}_2$ are such that the variances satisfy the inequalities $\mathbf{D}\xi_k \leq const$ and $\mathbf{D}\zeta_k \leq const$. we construct the set of continuous processes $\mathbf{C}(\mathfrak{I}; \mathbf{H}_{k\mathbf{K}}^0\mathbf{L}_2)$.

Equation with relatively operator. Further, let us proceed to the existence and stability of solutions of Ginzburg – Landau equation in the spaces $\mathbf{H}_{k\mathbf{K}}^0\mathbf{L}_2$. To this end, we define operators $L,\ M:\mathbf{H}_{k\mathbf{K}}^0\mathbf{L}_2\to\mathbf{H}_{k\mathbf{K}}^2\mathbf{L}_2$ by the formulas

$$L = \lambda + \Delta, \ M = \nu \Delta - id\Delta^2 \tag{2}$$

Ginzburg – Landau equation are reduce to the equation

$$L \stackrel{\circ}{\chi} = M\chi.$$
 (3)

Lemma 1. For any ν , λ , $d \in \mathbb{R}$ the operator M is strongly (L,0)-radial.

Theorem 2. (i) If $\lambda \notin \{\sigma_k\}$, then the phase space of equation (3) coincides with the space $\mathbf{H}_{k\mathbf{K}}^0\mathbf{L}_2$.

(ii) If $\lambda \in \{\sigma_k\}$, then the phase space of equation (3) is the space $\mathcal{P} = \{\varepsilon \in \mathbf{H}_{k\mathbf{K}}^0 \mathbf{L}_2 : \langle \varepsilon, \varphi_l \rangle = 0, \sigma_l = \lambda\}$.

The relative spectrum of the operator M is representable in the form of two disjoint components $\sigma^L(M) = \sigma^L_+(M) \bigcup \sigma^L_-(M)$, where

$$\sigma_{+}^{L}(M) = \left\{ \mu_{k} = \frac{\nu \sigma_{k} - i d \sigma_{k}^{2}}{\lambda + \sigma_{k}}, \ \sigma_{k} < -\lambda \right\}, \sigma_{-}^{L}(M) = \left\{ \mu_{k} = \frac{\nu \sigma_{k} - i d \sigma_{k}^{2}}{\lambda + \sigma_{k}}, \ \sigma_{k} > -\lambda \right\}. \tag{4}$$

Theorem 3. (i) For any ν , $\lambda \in \mathbb{R}_{-}$ and $d \in \mathbb{R}$ there exists a finite-dimensional unstable and an infinite-dimensional stable invariant space of equation (3) and the solutions of equations (3) have an exponential dichotomy.

(ii) For any $\nu \in \mathbb{R}_{-}$, $\lambda \in \mathbb{R}_{+}$ and $d \in \mathbb{R}$ the phase space of equation (3) coincides with the stable invariant space.

References

- [1] O.G. Kitaeva, D.E. Shafranov, G.A. Sviridyuk. Exponential dichotomies in Barenblatt–Zheltov–Kochina model in spaces of differential forms with "noise". // Bulletin of SUSU. Ser. MathMod,ProgCompSoftw. 2019. Vol. 12. No. 2. P. 47-B–57.
- [2] O.G. Kitaeva, D.E. Shafranov, G.A. Sviridyuk. Degenerate holomorphic semigroups of operators in spaces of k-"noises" on Riemannian manifolds. // Semigroups of Operators II Theory and Applications SOTA 2018. Springer Proc. Math. Stat., Cham: Springer. 2020. Vol. 325. P. 279-B-292.
- [3] D.E. Shafranov, O.G. Kitaeva, G.A. Sviridyuk. Stochastic equations of Sobolev Type with relatively p-radial operators in spaces of differential forms. // Differential equations. 2021. Vol. 57. No. 4. P. 526-B-535.