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Abstract

Chernoff approximations to strongly continuous one-parameter semigroups
give solutions to a wide class of differential equations. This paper studies
the rate of convergence of the Chernoff approximations. We provide simple
natural examples for which the convergence is arbitrary fast, is arbitrary
slow, and holds in the strong operator topology but does not hold in the
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1. Introduction

This paper is devoted to one of the most applicable branch of mod-
ern functional analysis, namely to C0-semigroups and their approximations.
Three standard textbooks on the topic are [8, 13, 5]; of course, this list is
incomplete, but each of these books contains more than enough information
on necessary background for the paper. In the paper we do not use any deep
results from the C0-semigroup theory and keep all our reasoning very simple
and accessible to a broad mathematical audience. We believe that all the
text can be understood by everyone who had even an introductive course on
functional analysis.

Why is this paper interesting and important. It appeared that
our elementary approach allows us to prove the main theorem 3.1 that de-
velops the result of the famous Chernoff theorem [3] on approximations of
C0-semigroups. With this new theorem it is possible to find out what one
needs to do in order to obtain the so-called fast convergent Chernoff approx-
imations, and what the speed of the convergence can be. These approxima-
tions of C0-semigroups provide approximate solutions to the Cauchy problem
for a large class of partial differential equations (PDEs), namely linear evo-
lution equations with variable coefficients, such as parabolic or Schrödinger
equations. This gives a flexible and powerful tool for construction of new
numerical methods for solving the Cauchy problem for PDEs. In overview
[2] one can find many classes of equations for which solution methods based
on the Chernoff approximations have been developed, see [12, 23] for most
recent applications, see also [15, 16, 17, 18, 19, 20, 21, 22].
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Our theorem 3.1 allows us to prove estimates on the speed of convergence
for all of these methods. Moreover, this gives a clue how one can construct
Chernoff approximations with faster speed of convergence than other known
examples. This is why the results presented in the paper are interesting and
important.

Preliminaries. Let us recall some relevant notation, definitions, and
facts following [5].

Definition 1.1. Let F be a Banach space over the field R or C. Let L (F)
be the set of all bounded linear operators in F . Suppose we have a mapping
V : [0,+∞) → L (F), i.e. V (t) is a bounded linear operator V (t) : F → F
for each t ≥ 0. The mapping V , or equivalently the family (V (t))t≥0, is called
a strongly continuous one-parameter semigroup of linear bounded operators
(or just a C0-semigroup) iff it satisfies the following three conditions:

1) V (0) is the identity operator I, i.e. V (0)ϕ = ϕ for each ϕ ∈ F ;
2) V maps the addition of numbers in [0,+∞) into the composition of

operators in L (F), i.e. for all t ≥ 0 and all s ≥ 0 we have V (t + s) =
V (t)◦V (s), where for each ϕ ∈ F the notation (A◦B)(ϕ) = A(B(ϕ)) = ABϕ
is used;

3) V is continuous with respect to the strong operator topology in L (F),
i.e. for all ϕ ∈ F the function t 7−→ V (t)ϕ, [0,+∞) → F is continuous.

Remark 1.1. The definition of a C0-group (V (t))t∈R is obtained by the
substituting [0,+∞) with R in the definition above.

Definition 1.2. Let (V (t))t≥0 be a C0-semigroup in Banach space F . Its in-
finitesimal generator (or just generator) is defined as the operator L : D(L) →
F with the domain

D(L) =

{

ϕ ∈ F : there exists a limit lim
t→+0

V (t)ϕ− ϕ

t

}

⊂ F ,

and

Lϕ = lim
t→+0

V (t)ϕ− ϕ

t
.

Very often the notation V (t) = etL is used.
If (V (t))t∈R is a C0-group, then its generator L is defined in the same

way:

D(L) =

{

ϕ ∈ F : there exists a limit lim
t→0

V (t)ϕ− ϕ

t

}

⊂ F ,
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Lϕ = lim
t→0

V (t)ϕ− ϕ

t
.

Remark 1.2. It is known that for each C0-semigroup (V (t))t≥0 in Banach
space F , the setD(L) is a dense linear subspace of F [5]. Moreover, (L,D(L))
is a closed linear operator that uniquely defines the semigroup (V (t))t≥0. Un-
der condition V (0) = I it is clear that f ∈ D(L) iff the derivative d

dt
V (t)f

∣

∣

t=0
exists, which is the right derivative in case of a C0-semigroup and two-sided
(traditional) derivative in case of a C0-group.

Definition 1.3. For a linear operator A : D(A) → F with the domain
D(A) ⊂ F and all n = 1, 2, 3, . . . we define the domain D(An) of opera-
tor An as follows:

(f ∈ D(An)) ⇐⇒ (f ∈ D(A), Af ∈ D(A), A2f ∈ D(A), . . . , An−1f ∈ D(A)),

which implies D(A) ⊃ D(A2) ⊃ · · · ⊃ D(An).

Definition 1.4. Let (A,D(A)) be a linear operator in Banach space F .
Linear subspace H ⊂ D(A) is called a core of (A,D(A)) iff the closure of
(A,D(A)) is equal to the closure of operator (A,H).

Remark 1.3. We recall (proposition 1.8 from [5]) that if L is the generator
of a C0-semigroup on Banach space F , then

⋂∞
n=1D(Ln) is dense in F and

is a core for L. This implies that D(Ln) is also a core of L and is dense in F
for all n = 1, 2, 3, . . .

Now we are ready to state the Chernoff’s theorem. From several options
(see [5, 3, 1, 9]), we choose the one given in [1] (in equivalent formulation):

Theorem 1.1 (P.R. Chernoff (1968), cf. [5, 3, 1, 9]). Suppose that the
following three conditions are met:

1. C0-semigroup (etL)t≥0 with generator (L,D(L)) in Banach space F is
given, such that for some w ≥ 0 the inequality ‖etL‖ ≤ ewt holds for all
t ≥ 0.

2. There exists a strongly continuous mapping S : [0,+∞) → L (F) such
that S(0) = I and the inequality ‖S(t)‖ ≤ ewt holds for all t ≥ 0.

3. There exists a dense linear subspace D ⊂ F such that for all f ∈ D
there exists a limit S ′(0)f := limt→+0(S(t)f − f)/t. Moreover, S ′(0)
on D has a closure that coincides with the generator (L,D(L)).
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Then the following statement holds:

(C) for every f ∈ F , as n → ∞ we have S(t/n)nf → etLf locally uniformly
with respect to t ≥ 0, i.e. for each T > 0 and each f ∈ F we have

lim
n→∞

sup
t∈[0,T ]

‖S(t/n)nf − etLf‖ = 0.

Definition 1.5. Let C0-semigroup (etL)t≥0 with generator L in Banach space
F be given. The mapping S : [0,+∞) → L (F) is called a Chernoff function
for operator L iff it satisfies the condition (C) of Chernoff theorem 1.1. In this
case expressions S(t/n)n are called Chernoff approximations to the semigroup
etL.

One-dimensional real analog of Chernoff’s theorem. In this sub-
section we discuss how the Chernoff theorem 1.1 can be understood if Banach
space F is one-dimensional, i.e. F = R. In this case any linear operator
A ∈ L (F) is a multiplication by some real number a, any C0-semigroup
(etA)t≥0 consists of multiplications by numbers eta, i.e. (etA)f = eta · f for
any t ≥ 0 and any f ∈ F = R. Thus, theorem 1.1 can be reformulated as
follows:

Theorem 1.2. Suppose there exists a function s : [0,+∞) → R such that
s(0) = 1 and the following conditions are met:

1. function s(t) is continuous and for some w ≥ 0 the inequality |s(t)| ≤
ewt holds for all t ≥ 0;

2. there exists a right-side derivative a = s′(0) := limt→+0(s(t)− 1)/t.

Then s(t/n)n → eta as n → ∞ locally uniformly with respect to t ≥ 0, i.e.
for each T > 0 we have

lim
n→∞

sup
t∈[0,T ]

|s(t/n)n − eta| = 0.

Using the formula limn→∞(1 + ta/n)n = eta, which is a statement from
simple calculus, we can see that the first condition in the theorem 1.2 is
redundant. This is how we get the following short statement, which we call
one-dimensional real analog of Chernoff’s theorem:

(

s : [0,+∞) → R, s(0) = 1, s′(0) = a
)

=⇒ s(t/n)n = eta + o(1) as n → ∞ for all t ≥ 0. (1)
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The idea of the main result of the paper. Let us consider for F = R

and fixed m = 1, 2, 3, . . . a more profound version of (1):

(

s : [0,+∞) → R, s(t) =

m
∑

k=0

aktk

k!
+ o(tm) as t → 0

)

=⇒ s(t/n)n = eta + o(1/nm−1) as n → ∞ for all t ≥ 0. (2)

Statement (2) is similar to (1), but (2) is not so elementary even in one-
dimensional case. The idea of (2) is the following: if one wants to approx-
imate the exponent eta using the fomula eta = limn→∞ s(t/n)n, then the
highest speed of convergence will be achieved if s(t) = eta. So good functions
s(t) should be close to the exponent eta in some sense. In what sense? The
answer is: in the infinitesimal sense, when s(t) and eta have the same Taylor
polynomial. Higher degree m of the polynomial should provide higher speed
o(1/nm−1) of approximation. Statement (2) is a one-dimensional version of
our main theorem 3.1 and contains its main idea. Of course, the theorem 3.1
covers non-trivial cases, such as dimF = ∞ and ‖L‖ = ∞.

Semigroups and linear evolution equations. It is a well known
fact [5] that the solution of a well-posed Cauchy problem for a linear evolu-
tion partial differential equation (such as: Schödinger-type equations, heat
equation, parabolic equations) is given by a strongly continuous semigroup
of linear bounded operators whose infinitesimal generator is a (usually un-
bounded) linear operator from the right-hand side of the evolution equation.
Let us explain this in more detail. Let X be an infinite set, and F be a
Banach space of (not necessarily all) number-valued functions on X , and let
L be a closed linear operator L : D(L) → F with the domain D(L) ⊂ F
dense in F . We consider the Cauchy problem for the evolution equation

{

u′
t(t, x) = Lu(t, x),

u(0, x) = u0(x),
(3)

where x ∈ X , u0 ∈ F , u(t, ·) ∈ F for all t ≥ 0. Operator L can be, in a
trivial case, the Laplace operator ∆ (so u′

t = Lu is the heat equation), or (in a
nontrivial case) a more sophisticated linear differential operator with variable
coefficients that do not depend on t but depend (usually nonlinearly) on x.
It is known [5] that, in case the C0-semigroup

(

etL
)

t≥0
exists and has the

generator (L,D(L)), the solution to Cauchy problem (3) exists and is given
by the equality u(t, x) = (etLu0)(x) for all t ≥ 0 and x ∈ X . If u0 ∈ D(L),
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then u(t, ·) ∈ D(L) for all t ≥ 0 and the solution u is a classical solution (in
the terminology of [5]). And for arbitrary u0 ∈ F the solution of Cauchy
problem (3) exists as a mild solution (in the terminology of [5]), i.e. the
solution of the corresponding integral equation u(t, ·) = L

∫ t

0
u(s, ·)ds+ u0.

The equality u(t, x) = (etLu0)(x) for the solution of the Cauchy prob-
lem (3) shows that finding the semigroup

(

etL
)

t≥0
is a hard problem because

it is equivalent to solving the Cauchy problem (3) for each u0 ∈ F . However,
if a Chernoff function S for operator L is constructed (see definition 1.5),
then the semigroup is given by the equality etL = limn→∞ S(t/n)n. An ad-
vantage of this approach to solving (3) arises from the fact that usually it
is possible to define S by an explicit and not very long formula which con-
tains coefficients of operator L. This gives approximations to the solution
of the Cauchy problem (3) converging towards the solution in F as n → ∞.
Expressions S(t/n)nu0 are called Chernoff approximations to the solution of
the Cauchy problem (3).

What is new compared with the best known results in the field.
The Chernoff theorem has a long list of applications, but a short list of gen-
eralizations and developments because it is difficult to obtain them. Original
Chernoff’s proof and its variants given in all textbooks known to us are dif-
ficult to generalize. To our current knowledge all contributions to ”theory of
rates of convergence in Chernoff’s theorem” can be found in [7, 25] and ref-
erences therein. There are also few “practical” research papers [11, 14] that
measure the speed of convergence in particular cases obtained via numerical
simulations. In the present paper we propose a completely new approach
that allows for simpler proofs and more general results. Let us note that if
S(t) is a Chernoff function for operator L, then the speed of convergence of
S(t/n)nf to etLf depends both on S(t) and f ∈ F , even if ‖f‖ = 1. Not all
Chernoff functions S(t) and vectors f provide high speed of approximation as
our examples show (see section 2). This is a very important and commonly
not noticed fact: for example in [25] estimates in norm operator topology in
the space L (F) are considered hence dependence on direction of f is out of
the scope of [25], meanwhile [25] is probably one of the best recent papers on
the topic. In another bright paper [7] dependence on f is taken into account
but our theorem 3.1 is much more general because it works for arbitrary
k = 1, 2, 3, . . . in (2) and has the form that is very suitable for practical use.
The present paper is a continuation of our research [24, 6].

Applications. In the last section of the paper we provide (with full
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proofs) an example of application of theorem 3.1, which itself is helpful but
can also be used as a template for further applications. As far as we know
this is the first example of a rigorous estimation of the speed of conver-
gence for Chernoff approximations for solution to the Cauchy problem for a
concrete class of equations (second order parabolic equations with variable
coefficients), see theorem 4.2 and example 4.2. In [2] one can find many
classes of equations for which solution methods based on the Chernoff ap-
proximations are developed, so we expect many cases for application of our
main theorem 3.1. One very simple example (rapidly converging Chernoff
approximations for solutions to the heat equation) can be found in [24].

Finally, what this paper is about. This paper is devoted to the study
of the speed of vanishing of the norm of the difference between semigroup
etL and its Chernoff approximation S(t/n)n. We estimate ‖etLf −S(t/n)nf‖
for a fixed f ∈ F and all large enough n. The main result of the paper is
the theorem 3.1. When we say that arbitrary Banach space F is given, we
assume it to be over fields R or C, all the statements in this setting are true
for both cases.

2. Examples of arbitrary slow and arbitrary fast convergence

Let us first provide examples of arbitrary fast and arbitrary slow con-
vergence. We proposed our first examples of such kind in [24], and now we
develop them.

The following fact should be well known, but a clear short proof is bet-
ter than a reference. The C0-(semi)group of translations will be basic for
(counter)examples provided in this section.

Lemma 2.1 (On the group of translations). Consider the linear space F =
UCb(R) of all uniformly continuous bounded functions f : R → R with the
uniform norm ‖f‖ = supx∈R |f(x)| which makes UCb(R) a Banach space.
Define (Q(t)f)(x) = f(x+ t) for all t, x ∈ R and all f ∈ UCb(R). Then:

1. (Q(t))t∈R is a C0-group in UCb(R).
2. The generator (L,D(L)) of the C0-group (Q(t))t∈R is given by L =

[f 7→ f ′], i.e. (Lf)(x) = f ′(x) and

D(L) = UC1
b (R)

define
= {f |f, f ′ ∈ UCb(R)}.

From now let us use notation Q(t) = etL.
3. (Q(t))t≥0 is a C0-semigroup in UCb(R) with the same generator (L,D(L)).
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4. D(Ln) = UCn
b (R)

define
= {f |f, f ′, . . . , f (n) ∈ UCb(R)}.

5. Operator (f 7→ f ′, UC1
b (R)) is closed in UCb(R).

6. Each of the spaces UCn
b (R) is dense in UCb(R) and is a core for

(f 7→ f ′, UC1
b (R)).

7. ‖etL‖ = 1 for all t ∈ R.

Proof. 1. Conditions Q(0)f = f and Q(t1)Q(t2)f = Q(t1 + t2)f follow
directly from the formula (Q(t)f)(x) = f(x+ t). Condition limt→0 ‖Q(t)f −
f‖ = 0 for each f ∈ UCb(R) follows from the fact that f is uniformly
continuous. Indeed, for a fixed f ∈ UCb(R) and ε > 0 there exists δ > 0
such that inequality |t| < δ implies |f(x + t) − f(x)| < ε for all x ∈ R, so
‖Q(t)f − f‖ = supx∈R |f(x+ t)− f(x)| ≤ ε for all |t| < δ.

2a. Let us prove that D(L) ⊂ UC1
b (R). Suppose f ∈ D(L) ⊂ UCb(R),

then by definition 1.2 of a generator we have 0 = limt→0 ‖(etLf−f)/t−Lf‖ =
limt→0 supx∈R |(f(x+t)−f(x))/t−(Lf)(x)|, so 1

t
(f(x+t)−f(x)) → (Lf)(x)

uniformly (hence pointwise) as t → 0. Pointwise convergence implies that at
each x ∈ R function f is differentiable and f ′(x) = (Lf)(x). So f ′ = Lf ∈
UCb(R). We have thus proved that f, f ′ ∈ UCb(R), hence f ∈ UC1

b (R).
2b. Let us now prove that UC1

b (R) ⊂ D(L). To do that we need to
take f ∈ UC1

b (R) and prove that 1
t
(f(x + t) − f(x)) → f ′(x) uniformly in

x ∈ R as t → 0. Let us prove by contradiction: suppose there exists such
ε0 > 0 that for each δ > 0 there exist such tδ ∈ (−δ, δ) and such xδ ∈ R that
| 1
tδ
(f(xδ + tδ) − f(xδ)) − f ′(xδ)| ≥ ε0. As f ′ exists, by Lagrange’s theorem

there exists ξδ ∈ (xδ, xδ + tδ) such that 1
tδ
(f(xδ + tδ) − f(xδ)) = f ′(ξδ), so

|f ′(ξδ) − f ′(xδ)| ≥ ε0. But |ξδ − xδ| < |tδ| < δ and δ > 0 is arbitrary so
we have a contradiction with the fact that f ′ is uniformly continuous. Then
f ∈ D(L).

3. See remark after definition of a generator of C0-group in [5, p. 79].
4. Directly follows from item 2 and definition 1.3.
5. Assume that fn ∈ UC1

b (R) for all n = 1, 2, 3, . . . and fn → f , assume
that there exists g ∈ UCb(R) such that f ′

n → g. We need to prove that
f ∈ UC1

b (R) and f ′ = g. This all follows from theorems of calculus on
differentiation under the limit sign. Indeed, if fn converges to f uniformly,
and f ′

n converges to g uniformly then g is differentiable and f ′ = g. The
condition f ∈ UC1

b (R) follows from the fact that f ∈ UCb(R) and f ′ = g ∈
UCb(R).

6. Consider the space C∞
b (R) of functions bounded with all derivatives.

Then C∞
b (R) is dense in UCb(R) due to lemma 1 in [22]. Also we have
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C∞
b (R) ⊂ UCn

b (R). So UCn
b (R) is dense in UCb(R). The fact that the

closure of (f 7→ f ′, UCn
b (R)) is (f 7→ f ′, UC1

b (R)) is shown exactly by the
reasoning that we used in the proof of item 5.

7. We have ‖etLf‖ = supx∈R |f(x+t)| = supx∈R |f(x)| = ‖f‖ so ‖etL‖ = 1
for all t ∈ R.

Later we will work with the notion of modulus of continuity. For fixing
notation and details we recall (following [4], pp. 168-174) the definition and
some simple facts concerning this notion.

Definition 2.1. For a uniformly continuous function f : R → R its modulus
of continuity is a function ωf : [0,+∞) → [0,+∞) defined by the equality

ωf(x) = sup
|x1−x2|≤x

|f(x1)− f(x2)|.

Proposition 2.1. 1. Function m : [0,+∞) → [0,+∞) is a modulus of con-
tinuity for some uniformly continuous function f : R → R iff the following
conditions i)-iv) hold:

i) m(0) = 0;
ii) m is non-decreasing: x1 > x2 implies m(x1) ≥ m(x2);
iii) m is continuous;
iv) m is semiadditive in the sense that for all x1 ≥ 0, x2 ≥ 0 we have

m(x1 + x2) ≤ m(x1) +m(x2).
2. If i)-iv) hold, then m is a modulus of continuity for itself, i.e. if we

set f(x) = m(x) for x ≥ 0 and f(x) = 0 for x < 0, then ωf(x) = m(x) for
all x ≥ 0.

Proposition 2.2. If m : [0,+∞) → [0,+∞) and function x 7−→ m(x)
x

is
non-increasing for x > 0, then m is semiadditive, i.e. condition iv) of the
proposition 2.1 holds.

Remark 2.1. If for function f : R → R we have ωf(h) = o(h) as h → +0,
then f(x) ≡ const. Indeed, for each x ∈ R and h 6= 0 we have

0 ≤ |f(x+ h)− f(x)| ≤ sup
|x1−x2|≤|h|

|f(x1)− f(x2)| = ωf(|h|),

0 ≤ |f(x+ h)− f(x)|
|h| ≤ ωf(|h|)

|h| ,
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so lim
h→0

∣

∣

∣

f(x+h)−f(x)
h

∣

∣

∣
= 0 hence lim

h→0

f(x+h)−f(x)
h

= 0 i.e. f ′(x) = 0 for each x ∈ R

hence f(x) ≡ const. This is why for a non-constant uniformly continuous
function f such cases as ωf(h) =

√
h and ωf(h) = 2h are possible but such

case as ωf(h) = 2h
√
h is not possible.

Now let us provide a family of Chernoff functions for the (semi)group of
translations. Function v serves as a parameter in this family and determines
the speed of convergence of the Chernoff approximations.

Theorem 2.1. Consider F = UCb(R) – the space of all uniformly continuous
bounded functions f : R → R with the uniform norm ‖f‖ = supx∈R |f(x)|.
Consider the group of translations (etLf)(x) = f(x+ t) in UCb(R) described
in lemma 2.1. Suppose that function v : (0,+∞) → [0,+∞) satisfies the
condition limx→+∞ v(x) = 0. For each f ∈ UCb(R) define G(0)f = f and

(G(t)f)(x) = f(x+ t+ tv(1/t)) for all x ∈ R, t > 0. (4)

Then: 1. For all t ≥ 0 we have ‖etL‖ = ‖G(t)‖ = 1.
2. G is a Chernoff function for (etL)t≥0, i.e. for all T > 0 we have

lim
n→∞

sup
t∈[0,T ]

‖G(t/n)nf − etLf‖ = 0 for each f ∈ UCb(R).

3. If, additionally, function v is continuous and non-increasing every-
where on (0,+∞), then for all f ∈ UCb(R) and all T > 0 we have

sup
t∈[0,T ]

‖G(t/n)nf − etLf‖ = ωf (Tv(n/T )) for each n = 1, 2, 3, . . . (5)

where ωf is the modulus of continuity of the function f .

Proof. Before checking the proof please see lemma 2.1 for the properties of
the (semi)group of translations.

1. Item 7 of lemma 2.1 states that ‖etL‖ = 1. It is clear that G(t) is a
linear bounded operator for each t ≥ 0. For fixed t ≥ 0 we have ‖G(t)f‖ =
supx∈R |f(x+ t+ tv(1/t))| = supy∈R |f(y)| = ‖f‖ so ‖G(t)‖ = 1 for all t ≥ 0.

2. It follows from the definition (4) of function G that (G(t/n)f)(x) =
f(x+ t/n+ (t/n)v(n/t)) and (G(t/n)nf)(x) = f(x+ t+ tv(n/t)), so

sup
t∈[0,T ]

‖etLf −G(t/n)nf‖ = [due to etLf −G(t/n)nf = 0 as t = 0] =

11



sup
t∈(0,T ]

‖etLf −G(t/n)nf‖ = sup
t∈(0,T ]

sup
x∈R

|f(x+ t)− f(x+ t+ tv(n/t))| =

= [change of variable x+ t = y] = sup
t∈(0,T ]

sup
y∈R

|f(y)− f(y + tv(n/t)).

Then by changing the order of supremums we obtain:

sup
t∈[0,T ]

‖etLf −G(t/n)nf‖ = sup
y∈R

sup
t∈(0,T ]

|f(y)− f(y + tv(n/t))|. (6)

Function f ∈ UCb(R) is uniformly continuous so for each ε > 0 there exists
such δ > 0 that for each y ∈ R condition tv(n/t) < δ implies inequality
|f(y) − f(y + tv(n/t))| < ε. We have n/t ≥ n/T for all t ∈ (0, T ], and
limz→+∞ v(z) = 0. So if z0 is large enough to guarantee that Tv(z) < δ for all
z > z0, then for all n > Tz0 and all t ∈ (0, T ] we have tv(n/t) ≤ Tv(n/t) < δ,
which implies |f(y)− f(y + tv(n/t))| < ε for all n > Tz0, all t ∈ (0, T ] and
all y ∈ R. Hence we get

lim
n→∞

sup
y∈R

sup
t∈(0,T ]

∣

∣f(y)− f(y + tv(n/t))
∣

∣ = 0.

This proves item 2 thanks to equality (6).
3. Let us use the equality (6) once more. Thanks to conditions in the

item 3 of the theorem function (0,+∞) ∋ x 7−→ v(x) is non-increasing and
continuous. So the function (0, T ] ∋ t 7→ tv(n/t) is non-decreasing and
continuous hence it maps the interval (0, T ] onto the interval (0, T v(n/T )].
Performing a change of variable τ = tv(n/t) in (6) we get:

sup
t∈[0,T ]

‖etLf −G(t/n)nf‖ = sup
y∈R

sup
0<τ≤Tv(n/T )

|f(y)− f(y + τ)| =

= [x = y + τ, τ = x− y] = sup
0<x−y≤Tv(n/T )

|f(y)− f(x)| = ωf(Tv(n/T )),

where ωf is the modulus of continuity of function f . Recall that ωf is well-
defined because f is uniformly continuous. Item 3 is proved.

With the above theorem we can provide examples powerful enough to
answer rather general questions. The following proposition gives an example
of Chernoff approximations that converge on each vector but do not converge
in operator norm.
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Proposition 2.3. There exists a Banach space F , C0-semigroup (etL)t≥0 in
F with generator (L,D(L)), and Chernoff function G for operator (L,D(L))
such that:

1. limn→∞ ‖G(t/n)nf − etLf‖ = 0 for all f ∈ F ,
2. ‖etL‖ = ‖G(t)‖ = 1,
3. for each t > 0 and each n ∈ N there exists fn ∈ F such that ‖fn‖ = 1

and ‖G(t/n)nfn − etLfn‖ ≥ ‖fn‖ so ‖G(t/n)n − etL‖ ≥ 1 6→ 0 as n → ∞.

Proof. Indeed, consider F = UCb(R), (e
tLf)(x) = f(x+t), and set v(t) = 1/t

in theorem 2.1, then (G(t)f)(x) = f(x+ t + tv(1/t)) becomes (G(t)f)(x) =
f(x+t+t2) and item 2 of theorem 2.1 says that limn→∞ ‖G(t/n)nf−etLf‖ = 0
for all f ∈ F . Item 1 is proved. Item 2 holds due to item 1 of theorem 2.1.

Let us prove item 3. Suppose that t > 0 is fixed and define

fn(x) =







0 for x ≤ 0,
n
t2
x for 0 < x < t2/n,

1 for x ≥ t2/n.

Then

(etLfn)(x) = fn(x+ t) =







0 for x+ t ≤ 0,
n
t2
(x+ t) for 0 < x+ t < t2/n,

1 for x+ t ≥ t2/n.

(etLfn)(x) = fn(x+ t) =







0 for x ≤ −t,
n
t2
(x+ t) for − t < x < t2/n− t,

1 for x ≥ t2/n− t.

It directly follows from (G(t)f)(x) = f(x + t + t2) that (G(t/n)f)(x) =
f(x+ t/n+ (t/n)2) and (G(t/n)nf)(x) = f(x+ t + t2/n) for all f ∈ F . So

(G(t/n)nfn)(x) =







0 for x ≤ −t− t2/n,
n
t2
(x+ t+ t2/n) for − t− t2/n < x < t2/n− t− t2/n,

1 for x ≥ t2/n− t− t2/n.

(G(t/n)nfn)(x) =







0 for x ≤ −t− t2/n,
n
t2
x+ n/t + 1 for − t− t2/n < x < −t,

1 for x ≥ −t.

Then for xt = −t we have (etLfn)(xt) = 0 and (G(t/n)nfn)(xt) = 1, so
‖etLfn − G(t/n)nfn‖ = supx∈R |(etLfn)(x) − (G(t/n)nfn)(x)| ≥ |0 − 1| = 1.
Item 3 is proved.
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Proposition 2.4. For an arbitrary non-increasing continuous function v : (0,+∞) →
[0,+∞) vanishing at infinity at arbitrary high rate (e.g. v(x) = (1 + x)−k,
v(x) = e−x, v(x) = e−ex) there exist C0-semigroup (etL)t≥0 with genera-
tor (L,D(L)) in Banach space F , Chernoff function G and vector f ∈ F
such that f /∈ D(L) but the speed of convergence of Chernoff approximations
G(t/n)nf is arbitrary high, i.e. for all T > 0 we have supt∈[0,T ] ‖G(t/n)nf −
etLf‖ = Tv(n/T ) for all n = 1, 2, 3, . . . such that Tv(n/T ) ≤ 1. Moreover,
we have ‖etL‖ = ‖G(t)‖ = ‖f‖ = 1 for all t ≥ 0.

Proof. Indeed, set F , (etL)t≥0, G as in theorem 2.1 and define f(x) =
max(0,min(x, 1)) for all x ∈ R. Then f is not differentiable at 0 so f /∈ D(L),
and ωf(x) = x for x ∈ [0, 1], hence proposition is correct thanks to item 3 of
theorem 2.1.

Remark 2.2. It is possible to show that after a slight modification of propo-
sition 2.4 there exists not only f /∈ D(L) on which the speed of convergence
is arbitrary high, but also vector g ∈ F on which the convergence is arbitrary
slow.

Proposition 2.5. There exist C0-semigroup (etL)t≥0 in Banach space F ,
Chernoff function G and vector f ∈ F such that f ∈ ∩∞

j=1D(Lj) but the
speed of convergence is arbitrary low, i.e. for arbitrary chosen non-increasing
continuous function u : (0,+∞) → [0,+∞) vanishing at infinity at arbitrary
low rate (e.g. u(x) = (1+x)−1/k, u(x) = 1/ ln(x+e), u(x) = 1/ ln(ln(x+ee)))
and all T > 0 we have supt∈[0,T ] ‖G(t/n)nf − etLf‖ = Tu(n/T ) for all n =

1, 2, 3, . . . such that Tu(n/T ) ≤ 1. Moreover, we have ‖etL‖ = ‖G(t)‖ =
‖f‖ = 1 for all t ≥ 0.

Proof. Indeed, set F , (etL)t≥0, G as in theorem 2.1, v = u and define

f(x) =















2 for x ≥ 3,
x for x ∈ [0, 1],
C∞-continued with 0 ≤ f ′(x) ≤ 1 for x ∈ [1, 3],
−f(−x) for x < 0.

Each derivative of function f is continuous on R and vanishes outside [−3, 3],
and so it is bounded; hence f ∈ ∩∞

j=1D(Lj). Also ωf(x) = x for x ∈ [0, 1];
hence the proposition is correct thanks to item 3 of the theorem 2.1.
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Remark 2.3. The examples above given show that even in a very natural
and simple setting we should not expect the convergence in the operator
norm ‖S(t/n)n − etL‖ → 0 as n → ∞. Instead, in general setting (i.e.
under conditions of the Chernoff theorem 1.1) we have only convergence
‖S(t/n)nf − etLf‖ → 0 as n → ∞ on every vector f , and this convergence
may be arbitrary slow, so we need to choose the vector f and the Chernoff
function S wisely if we want to have fast convergence.

In the next section we provide conditions that guarantee high speed of
convergence of Chernoff approximations. Under some conditions we show
that if S(0) = I, S ′(0) = L, S ′′(0) = L2,. . . ,S(m)(0) = Lm and the difference
S(t)f −

∑m
k=0 t

kLk/k!f is estimated properly on a suitable set of vectors f ,
then ‖S(t/n)nf − etLf‖ behave as 1/nm or close to it, depending on how we
estimate the difference S(t)f −

∑m
k=0 t

kLk/k!f .

3. Estimates for fast convergence (main result)

We start from the simple, purely algebraic lemma that establishes the
decomposition that is basic for our approach.

Lemma 3.1. Let Z and Y be elements of a ring with associative (but maybe
non-commutative) multiplication with unity (e.g. Z and Y may be linear,
everywhere defined operators mapping some linear space into itself). Then
the following equality holds:

Zn − Y n =

n−1
∑

k=0

Zn−k−1(Z − Y )Y k. (7)

Proof.

R.h.s. =

n−1
∑

k=0

Zn−k−1(Z − Y )Y k =

n−1
∑

k=0

Zn−kY k −
n−1
∑

k=0

Zn−k−1Y k+1 =

=

(

ZnY 0 +
n−1
∑

k=1

Zn−kY k

)

−
(

n−2
∑

j=0

Zn−j−1Y j+1 + Zn−(n−1)−1Y n−1+1

)

j=k−1
=

= Zn +
n−1
∑

k=1

Zn−kY k −
n−1
∑

k=1

Zn−kY k − Y n = Zn − Y n = L.h.s. �
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This lemma has the following corollary regarding the high speed of con-
vergence of Chernoff approximations.

Lemma 3.2. Suppose that the following three conditions are met:

1. C0-semigroup (etL)t≥0 with generator (L,D(L)) in Banach space F is
given, such that for some M1 ≥ 1, w ≥ 0 and T > 0 the inequality
‖etL‖ ≤ M1e

wt holds for all t ∈ [0, T ].

2. There exists a mapping S : (0, T ] → L (F) such that for some constant
M2 ≥ 1 the inequality ‖S(t)k‖ ≤ M2e

kwt holds for all t ∈ (0, T ] and all
k = 1, 2, 3, . . . .

3. Numbers m ∈ {0, 1, 2, . . .} and p ∈ {1, 2, 3, . . .} are fixed. There exists
a (etL)t≥0-invariant subspace D ⊂ D(Lm+p) ⊂ F (i.e. (etL)(D) ⊂ D
for any t ≥ 0) and functions Cj : (0, T ] → [0,+∞), j = 0, 1, . . . , m+ p
such that for all t ∈ (0, T ] and all f ∈ D we have

∥

∥S(t)f − etLf
∥

∥ ≤ tm+1

m+p
∑

j=0

Cj(t)‖Ljf‖. (8)

Then for all t > 0, all integer n ≥ t/T and all f ∈ D the following estimate
is true:

‖S(t/n)nf − etLf‖ ≤ M1M2t
m+1ewt

nm

m+p
∑

j=0

e−wt/nCj(t/n)‖Ljf‖. (9)

Proof. Setting Z = S(t/n), Y = e(t/n)L in formula (7) we obtain

‖S(t/n)nf − etLf‖ by (7)
=

∥

∥

∥

∥

n−1
∑

k=0

S(t/n)n−k−1
(

S(t/n)− e(t/n)L
) (

e(t/n)L
)k

f

∥

∥

∥

∥

≤

≤
n−1
∑

k=0

∥

∥S(t/n)n−k−1
∥

∥ ·
∥

∥

∥

(

S(t/n)− e(t/n)L
) (

e(t/n)L
)k

f
∥

∥

∥

by (8)
≤

[here we put
(

e(t/n)L
)k

f in the place of f in (8)]

≤
n−1
∑

k=0

∥

∥S(t/n)n−k−1
∥

∥ · t
m+1

nm+1

m+p
∑

j=0

Cj(t/n)
∥

∥

∥
Lj
(

e(t/n)L
)k

f
∥

∥

∥
=
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[here we use the fact that C0-semigroup (etL)t≥0 mapsD intoD and commutes
with Lj ]

=

n−1
∑

k=0

∥

∥S(t/n)n−k−1
∥

∥ · t
m+1

nm+1

m+p
∑

j=0

Cj(t/n)
∥

∥

∥

(

e(t/n)L
)k

Ljf
∥

∥

∥
≤

≤
n−1
∑

k=0

∥

∥S(t/n)n−k−1
∥

∥ · t
m+1

nm+1
‖e(kt/n)L‖

m+p
∑

j=0

Cj(t/n)‖Ljf‖ ≤

≤
n−1
∑

k=0

M2e
(n−k−1)wt/n · t

m+1

nm+1
M1e

w(kt/n)

m+p
∑

j=0

Cj(t/n)‖Ljf‖ =

=

n−1
∑

k=0

M1M2
tm+1

nm+1
ewt(n−1)/n

m+p
∑

j=0

Cj(t/n)‖Ljf‖ =

= M1M2
tm+1

nm
ewt

m+p
∑

j=0

e−wt/nCj(t/n)‖Ljf‖.

Usually an a priori estimate in the form (8) is not known. To overcome
this problem we recall in the following lemma 3.3 one fact which is most likely
known but a short proof is better than reference. Using this fact, one can
obtain (8) studying only the norm of difference between S(t) and its Taylor’s
polynomial because, as we will see now, etL can also be approximated by (the
same!) Taylor’s polynomial.

Lemma 3.3. Let F be a Banach space, let (etL)t≥0 be a C0-semigroup in
F with generator (L,D(L)). Then for all t ≥ 0, all m = 0, 1, 2, . . . and all
f ∈ D(Lm+1) we have the following formulas, where the integral is understood
in Bochner’s sense:

etLf =

m
∑

k=0

tkLkf

k!
+

∫ t

0

(t− s)m

m!
esLLm+1f ds, (10)

∥

∥

∥

∥

∥

etLf −
m
∑

k=0

tkLkf

k!

∥

∥

∥

∥

∥

≤ tm+1

(m+ 1)!
‖Lm+1f‖ · sup

s∈[0,t]

∥

∥esL
∥

∥ . (11)
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Proof. Denote Q(t) = etL. By definition of the generator of a C0-semigroup
(see definition 1.2), function t 7→ Q(t)f is differentiable at t = 0 iff f ∈ D(L),
and Q′(0)f = Lf . By the semigroup composition property (see definition
1.1) this implies the differentiability of this function at all t ∈ [0,+∞).
The derivative at arbitrary time t ≥ 0 can be found (using only the above-
mentioned definitions) as follows:

Q′(t)f = lim
h→0

1

h
(Q(t+ h)f −Q(t)f) = lim

h→+0

1

h
(Q(t)Q(h)f −Q(t)f) =

= Q(t) lim
h→+0

1

h
(Q(h)f − f) = Q(t)Q′(0)f = Q(t)Lf.

So the derivative is expressed in terms of the semigroup. Then for f ∈
D(L) function t 7→ Q′(t)f = Q(t)Lf is differentiable at t ∈ [0,+∞) iff
Lf ∈ D(L) which is equivalent to f ∈ D(L2); moreover, Q′′(0)f = LLf =
L2f . Repeating this argument we see that function t 7→ Q(t)f is k times
differentiable at t ∈ [0,+∞) iff f ∈ D(Lk); for such f we have Q(k)(t)f =
Q(t)Lkf .

General Taylor’s formula [1, th. 12.4.4] after rescaling reads as

F (t) = F (0) + F ′(0)t+ · · ·+ tm

m!
F (m)(0) +

1

m!

∫ t

0

(t− s)mF (m+1)(s)ds,

and for F (t) = Q(t)f = etLf , F (k)(t)f = etLLkf becomes (10).
Formula (11) is a simple corollary of (10).

Now we are ready to state and prove the main result of the paper.

Theorem 3.1. Suppose that the following three conditions are met:

1. C0-semigroup (etL)t≥0 with generator (L,D(L)) in Banach space F is
given, such that for some M1 ≥ 1, w ≥ 0 and T > 0 the inequality
‖etL‖ ≤ M1e

wt holds for all t ∈ [0, T ].

2. There exists a mapping S : (0, T ] → L (F) (i.e. S(t) : F → F is a
bounded linear operator for each t ∈ (0, T ]) such that for some constant
M2 ≥ 1 the inequality ‖S(t)k‖ ≤ M2e

kwt holds for all t ∈ (0, T ] and all
k = 1, 2, 3, . . . .

3. Numbers m ∈ {0, 1, 2, . . . } and p ∈ {1, 2, 3, . . . } are fixed. There exist
a (etL)t≥0-invariant subspace D ⊂ D(Lm+p) ⊂ F (i.e. etL(D) ⊂ D for
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any t ≥ 0, for example D = D(Lm+p) is well suited) and functions
Kj : (0, T ] → [0,+∞), j = 0, 1, . . . , m+ p such that we have

∥

∥

∥

∥

S(t)f −
m
∑

k=0

tkLkf

k!

∥

∥

∥

∥

≤ tm+1

m+p
∑

j=0

Kj(t)‖Ljf‖ (12)

for all t ∈ (0, T ] and all f ∈ D.

Then the following two statements hold:

1. For all t > 0, all integer n ≥ t/T and all f ∈ D the estimate is true:

‖S(t/n)nf − etLf‖ ≤ M1M2t
m+1ewt

nm

m+p
∑

j=0

Cj(t/n)‖Ljf‖, (13)

where Cm+1(t) = Km+1(t)e
−wt + M1/(m + 1)! and Cj(t) = Kj(t)e

−wt

for all such j ∈ {0, 1, . . . , m+ p}, that j 6= m+ 1.

2. If D is dense in F and for all j = 0, 1, . . . , m+p we have Kj(t) = o(t−m)
as t → +0, then for all g ∈ F and all T > 0 the following equality is
true:

lim
T /T≤n→∞

sup
t∈(0,T ]

∥

∥S(t/n)ng − etLg
∥

∥ = 0. (14)

Proof. 1. With the help of estimate (12) and lemma 3.3 for each t ∈ (0, T ]
and each f ∈ D ⊂ D(Lm+p) we have

‖S(t)f − etLf‖ ≤
∥

∥

∥

∥

S(t)f −
m
∑

k=0

tkLkf

k!

∥

∥

∥

∥

+

∥

∥

∥

∥

m
∑

k=0

tkLkf

k!
− etLf

∥

∥

∥

∥

≤

≤ tm+1

m+p
∑

j=0

Kj(t)‖Ljf‖+ tm+1

(m+ 1)!
‖Lm+1f‖ · sup

s∈[0,t]

∥

∥esL
∥

∥ ≤

≤ tm+1

(

m+p
∑

j=0

Kj(t)‖Ljf‖+ M1e
wt

(m+ 1)!
‖Lm+1f‖

)

= tm+1

m+p
∑

j=0

ewtCj(t)‖Ljf‖,

where Cm+1(t) = Km+1(t)e
−wt + M1/(m + 1)! and Cj(t) = Kj(t)e

−wt for
j 6= m + 1. Now we see that conditions of lemma 3.2 are satisfied, so (9)
is true with Cj(t/n) replaced by ewt/nCj(t/n). Then (13) follows from (9).
Item 1 is thus proved.
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2. Suppose that arbitrary g ∈ F , T > 0 and ε > 0 are given. It is
sufficient to find such integer n0 ≥ T /T that for all n > n0 and all t ∈ (0, T ]
we have ‖S(t/n)ng − etLg‖ < ε.

The set D is dense in F , so for any δ > 0 there exists such f ∈ D that
‖f−g‖ < δ. Then, using inequality (13) from item 1 proven above we obtain
for all t ∈ (0, T ] and all n = 1, 2, 3, . . .:

‖S(t/n)ng − etLg‖ ≤
≤ ‖S(t/n)ng − S(t/n)nf‖+ ‖S(t/n)nf − etLf‖+ ‖etLf − etLg‖ ≤
≤ ‖S(t/n)n‖ · ‖g − f‖+ ‖S(t/n)nf − etLf‖+ ‖etL‖ · ‖f − g‖ ≤

≤ M2e
nwt/nδ +

M1M2t
m+1ewt

nm

m+p
∑

j=0

Cj(t/n)‖Ljf‖+M1e
wtδ ≤

≤ (M1 +M2)e
wT δ +M1M2T ewT

m+p
∑

j=0

(t/n)mCj(t/n)‖Ljf‖.

Let us choose n0 ≥ T /T such that

M1M2T ewT

m+p
∑

j=0

(t/n)mCj(t/n)‖Ljf‖ < ε/2

for all n ≥ n0 and t ∈ (0, T ] (such n0 exists due to limn→∞Cj(t/n)(t/n)
m = 0

thanks to condition Kj(t) = o(t−m) when t → +0 for all j = 0, 1, . . . , m+ p).
Then taking δ = εe−wT /(2M1+2M2) we get: ‖S(t/n)ng−etLg‖ < ε/2+ε/2 =
ε for any n ≥ n0 and t ∈ (0, T ]. The theorem is thus proved.

Remark 3.1. Condition ‖S(t)k‖ ≤ M2e
kwt may seem difficult to obtain,

but if we have the estimate ‖S(t)‖ ≤ ewt then ‖S(t)k‖ ≤ M2e
kwt is true for

M2 = 1.

Let us consider a particular modeling example.

Example 3.1. Suppose that 0 < ε < 1 and for all t ∈ (0; 1], all f ∈ D(L3)
we have ‖etL‖ ≤ et, ‖S(t)‖ ≤ et, ‖S(t)f − f − tLf − 1

2
t2L2f‖ ≤ t2+ε‖L3f‖.

Then in the theorem 3.1 we can take D = D(L3), m = 2, M1 = M2 = w = 1,
K0(t) = K1(t) = K2(t) = 0, K3(t) = tε−1 for any t ∈ (0; 1]. So the estimate
(13) of theorem 3.1 states that for any fixed t > 0 the following estimate is
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true for all f ∈ D(L3) and all integer n ≥ t, having the following asymptotic
behaviour as n → ∞:

‖S(t/n)nf − etLf‖ ≤ t3et

n2

(

e−t/n
( t

n

)ε−1

+
1

3!

)

‖L3f‖ ≤

≤ et
(

t2+ε

n1+ε
+

t3

6n2

)

‖L3f‖ =
t2+εet

n1+ε
‖L3f‖+O

( 1

n2

)

.

A more meaningful example of the usage of the theorem 3.1 can be found
in the proof of theorem 4.2 in the next section.

4. Example of application of the main result

In this section we will show how one can use theorem 3.1 in practice. In
subsection 4.2 we consider a second-order parabolic (diffusion type) equation
and show that the solution of the Cauchy problem is given by a C0-semigroup.
After that we take one of the known [21] Chernoff functions for its generator
and prove the estimates of speed of convergence of the Chernoff approxima-
tions using theorem 3.1.

4.1. First step: estimation of derivatives in terms of a second-order differ-
ential operator

First, we prove theorem 4.1 on estimation of the norms of derivatives of a
function via the norms of powers of a second-order differential operator. To
do this, we need the following two lemmas.

Lemma 4.1. For each twice differentiable function u : R → R and any h > 0,
the inequality holds

sup
x∈R

|u′(x)| ≤ h · sup
x∈R

|u′′(x)|+ 1

h
· sup
x∈R

|u(x)|. (15)

Proof. Let us expand the function u using the first-order Taylor formula at
the point x ∈ R for the increment 2h with remainder in Lagrange form:
u(x+2h) = u(x)+u′(x) · 2h+u′′(ξ) · (2h)2/2, where ξ ∈ (x, x+2h). Express
the derivative from this formula: u′(x) = −u′′(ξ) ·h+(u(x+2h)−u(x))/(2h).
Taking supremums (with respect to x ∈ R) of the absolute values, we get the
estimate (15).
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Lemma 4.2. Let q ∈ {1, 2, 3, . . .}, the functions a, b, c : R → R be differen-
tiable (2q− 2) times, the operator A maps every twice differentiable function
u : R → R to the function Au = au′′ + bu′ + cu, and the function v : R → R

be differentiable 2q times. Then the following three statements are true:
1) the function Aqv can be written as

Aqv = aqv(2q) +

2q−1
∑

i=0

pi · v(i), (16)

where functions p0, . . . , p2q−1 are some homogeneous polynomials of degree q
of the functions a, b, c and their derivatives of order no higher than 2(q−1);

2) the following inequality holds:

‖Aqv‖ ≤
2q
∑

i=0

Ci · ‖v(i)‖, (17)

where Ci = ‖pi‖ for i = 0, . . . , 2q − 1, and C2q = ‖a‖q;
3) in the case infx∈R |a(x)| > 0 the following estimate is correct:

‖v(2q)‖ ≤
∥

∥

∥

1

aq

∥

∥

∥
· ‖Aqv‖+

2q−1
∑

i=0

∥

∥

∥

pi
aq

∥

∥

∥
· ‖v(i)‖. (18)

Proof. 1) The equality (16) will be proved by mathematical induction on q.
The base case: q = 1. In this case, Aqv = Av = av′′ + bv′ + cv, so (16) is

true with p0 = c and p1 = b.
Induction step: q → q + 1. Let us assume that the statement 1) of the

lemma is true for the number q ∈ {1, 2, 3, . . .} and show that it remains true
when replacing q with q + 1.

Substituting the function v by Av in (16), we get:

Aq+1v = Aq(Av) = aq · (Av)(2q) +
2q−1
∑

i=0

pi · (Av)(i) =

= aq ·
(

(av′′)(2q) + (bv′)(2q) + (cv)(2q)
)

+

2q−1
∑

i=0

pi ·
(

(av′′)(i) + (bv′)(i) + (cv)(i)
)

.
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Next, using the Leibniz formula (uv)(i) =
∑i

j=0C
j
i u

(i−j)v(j) in each term of
the right hand side and selecting separately the first term, we find:

Aq+1v = aq+1v(2q+2) +

2q−1
∑

j=0

aqCj
2qa

(2q−j)v(j+2)+

+

2q
∑

j=0

aqCj
2q ·
(

b(2q−j)v(j+1) + c(2q−j)v(j)
)

+

+

2q−1
∑

i=0

pi

i
∑

j=0

Cj
i ·
(

a(i−j)v(j+2) + b(i−j)v(j+1) + c(i−j)v(j)
)

.

This shows that the function Aq+1v can be written in the form similar to (16):

Aq+1v = aq+1v(2q+2) +

2q+1
∑

i=0

ri · v(i),

where functions r0, . . . , r2q+1 are some homogeneous polynomials of degree
q+1 of the functions a, b, c and their derivatives of order no higher than 2q.
Thus, the induction step is completed and the statement of item 1) of the
lemma is proved.

2) Inequality (17) immediately follows from the formula (16).

3) Expressing the function v(2q) from the equality (16) and evaluating its
norm, we obtain the required inequality (18).

Example 4.1. For q = 2, the decomposition (16) has the following form:

Aqv = A2v = (av′′ + bv′ + cv)′′a + (av′′ + bv′ + cv)′b+ (av′′ + bv′ + cv)c =

= a2vIV + (2aa′ + 2ab) · v′′′ + (aa′′ + a′b+ b2 + 2ab′ + 2ac) · v′′+
+ (ab′′ + bb′ + 2ac′ + 2bc) · v′ + (ac′′ + bc′ + c2) · v.

The following theorem helps use theorem 3.1.

Theorem 4.1. Suppose n ∈ {0, 1, 2, . . .}, the functions a, b, c : R → R are
differentiable 2⌊(n − 1)/2] times and the inequality infx∈R |a(x)| > 0 holds.
Suppose, in addition, that the operator A maps each twice differentiable func-
tion u : R → R to the function Au = au′′ + bu′ + cu. Then there exist non-
negative constants C0, C1, . . . , C⌊(n+1)/2⌋, such that for any 2⌊(n+1)/2⌋ times
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differentiable function v : R → R, the following inequality is true:

‖v(n)‖ ≤
⌊(n+1)/2⌋
∑

k=0

Ck‖Akv‖. (19)

Proof. We apply the induction on parameter n.
1) The base case: n = 0. In this case (19) has the form ‖v‖ ≤ C0‖v‖, so

we can take C0 = 1.
2) The induction step. Let the statement of the theorem be proved for

all n ≤ m− 1. We must prove it for n = m.
Consider two possible cases: m is odd and m is even.
2.1) Let m be odd. Then putting u = v(m−1) in lemma 4.1 we have for

any h > 0:

‖v(m)‖ ≤ h‖v(m+1)‖+ 1

h
‖v(m−1)‖. (20)

According to item 3) of the lemma 4.2 with q = (m + 1)/2 the following
inequality is satisfied for some nonnegative constants α0, . . . , αm:

‖v(m+1)‖ ≤
∥

∥

∥

1

a(m+1)/2

∥

∥

∥
· ‖A(m+1)/2v‖+

m
∑

i=0

αi‖v(i)‖.

Inserting this inequality into (20) we get:

‖v(m)‖ ≤ h
∥

∥

∥

1

a(m+1)/2

∥

∥

∥
· ‖A(m+1)/2v‖+

m−2
∑

i=0

hαi‖v(i)‖+

+
(

hαm−1 +
1

h

)

‖v(m−1)‖+ hαm‖v(m)‖.

From here we have:

(1− hαm)‖v(m)‖ ≤ h
∥

∥

∥

1

a(m+1)/2

∥

∥

∥
· ‖A(m+1)/2v‖+

m−2
∑

i=0

hαi‖v(i)‖+

+
(

hαm−1 +
1

h

)

‖v(m−1)‖.
(21)

Choose h > 0 so that 1 − hαm > 0 (we can take h = 1 when αm = 0, and
h = 1/(2αm) when αm > 0). Then, expressing ‖v(m)‖ from (21), we get that
for some nonnegative constants β0, . . . , βm−1 the following estimate is correct

‖v(m)‖ ≤ βm‖A(m+1)/2v‖+
m−1
∑

i=0

βi‖v(i)‖. (22)
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Due to the induction assumption, all values ‖v(i)‖, i = 0, . . . , m − 1 that
are included into the right-hand side of (22), can be evaluated via linear
combinations of the values ‖Akv‖, k = 0, . . . , (m − 1)/2. So, from (22) it
follows that for some nonnegative constants C0, . . . , C(m+1)/2 the following
needed estimate of the type (19) is true:

‖v(m)‖ ≤
(m+1)/2
∑

k=0

Ck‖Akv‖.

2.2) Let m be even. Then, according to item 3) of the lemma 4.2 with
q = m/2 we have for some nonnegative constants α0, . . . , αm−1:

‖v(m)‖ ≤
∥

∥

∥

1

am/2

∥

∥

∥
· ‖Am/2v‖+

m−1
∑

i=0

αi‖v(i)‖. (23)

Due to the induction assumption, all values ‖v(i)‖, i = 0, . . . , m− 1 that are
included into the right-hand side of (23), can be evaluated via linear com-
binations of the values ‖Akv‖, k = 0, . . . , m/2. So, from (23) it follows that
for some nonnegative constants C0, . . . , Cm/2 the following needed estimate
of the type (19) is true:

‖v(m)‖ ≤
m/2
∑

k=0

Ck‖Akv‖.

So the induction step is done for both cases (m is odd and m is even).
Then the inequality (19), and with it the whole theorem 4.1 are proved.

4.2. Second step: estimation of the rate of convergence of Chernoff approxi-
mations to solution of second-order parabolic PDEs

Now, using theorems 3.1 and 4.1, as well as the results of the book [10], we
prove a theorem on the approximation of solutions to the Cauchy problem for
second-order parabolic partial differential equations (PDEs) via the Chernoff
function.

Recall that we use notation UCb(R) for the Banach space of all real-valued
bounded uniformly continuous functions on R. Similarly, UCn

b (R) denotes
the space of all such functions u ∈ UCb(R), that u

′, . . . , u(n) ∈ UCb(R). Let
us denote by symbol HCb(R) the space of all Hölder continuous functions
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u : R → R. Next, for each n ∈ {1, 2, 3, . . .} let us denote by symbol HCn
b (R)

the space of all such functions u ∈ HCb(R), that u
′, . . . , u(n) ∈ HCb(R). We

denote by symbol C∞
b (R) the space of all real-valued functions on R bounded

with all derivatives.

Remark 4.1. It is clear that C∞
b (R) ⊂ HCn

b (R) ⊂ UCn
b (R) ⊂ UCb(R). So

the spaces HCn
b (R) and UCn

b (R) are dense in UCb(R), because C∞
b (R) is

dense in UCb(R) (this is proved e.g. in [22, lemma 1]).

Theorem 4.2. Suppose that the following three conditions are met:

1. Numbers m, q ∈ {1, 2, 3, . . . } are fixed, and q̂ = 2⌊(q+1)/2⌋. Functions
a, b, c from the class HC2m+q̂−2

b (R) are given, such that infx∈R a(x) > 0.
Operator A on UCb(R) with domain D(A) = HC2

b (R) is defined by the
formula Au = au′′ + bu′ + cu.

2. Numbers T > 0, M ≥ 1 and σ ≥ 0 are given. For any t ∈ (0, T ]
bounded linear operator S(t) on UCb(R) is defined such that ‖S(t)k‖ ≤
Mekσt for any k = 1, 2, 3, . . . .

3. There exist constant α ≤ 1 and nonnegative constants K0, K1, . . . , K2m+q

such that for all t ∈ (0, T ] and all f ∈ UC2m+q
b (R) we have

∥

∥

∥

∥

S(t)f −
m
∑

k=0

tkAkf

k!

∥

∥

∥

∥

≤ tm+α

2m+q
∑

i=0

Bi‖f (i)‖. (24)

Then the following three statements hold:

1. The closure A of operator A in Banach space UCb(R) is a generator of

C0-semigroup (etA)t≥0 in UCb(R), and the condition ‖etA‖ ≤ eγt for all
t ≥ 0 is satisfied, where γ = supx∈R c(x).

2. Let w = max(σ, γ, 0). Then nonnegative constants C0, C1, . . . , C2m+q̂

exists (which are independent of t, T and n) such that for all t > 0, all
integer n ≥ nα,t (where nα,t = t/T if α = 1 and nα,t = max(t/T, t) if

α < 1) and all f ∈ UC2m+q̂
b (R) we have

∥

∥S(t/n)nf − etAf
∥

∥ ≤ Mtm+αewt

nm−1+α

2m+q̂
∑

i=0

Ci‖f (i)‖. (25)

3. If α > 1 − m then for all T > 0 and all g ∈ UCb(R) the following
equality is true:

lim
T /T≤n→∞

sup
t∈(0,T ]

∥

∥S(t/n)ng − etAg
∥

∥ = 0. (26)
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Proof. 1). The proof of the first statement is divided into two parts.
1.1) First, assume that c(x) ≤ 0 for all x ∈ R. Then because of [10,

theorem 8.2.1 on p. 111 and corollary 8.3.1 on p. 114] for any function f ∈
HCb(R) the equation u′

t(t, ·) = Au(t, ·), t > 0 has a unique solution u(t, ·) =
uf(t, ·) ∈ HC2

b (R), t > 0, such that limt→+0 ‖uf(t, ·)− f‖ = 0. Moreover, for
all t > 0 the inequality ‖uf(t, ·)‖ ≤ ‖f‖ is satisfied. Based on the above, for
any function f ∈ HCb(R) let Q(t)f = uf(t, ·) if t > 0 and Q(t)f = f if t = 0.
Thus, the following relations will be fulfilled

(Q(t)f)′t = A(Q(t)f) for all t > 0 and all f ∈ HCb(R), (27)

Q(t)f ∈ HC2
b (R) for all t > 0 and all f ∈ HCb(R), (28)

lim
t→+0

Q(t)f = f for all f ∈ HCb(R). (29)

Since the solution uf is unique, then for all t, s ≥ 0, and all f ∈ HCb(R)
the semigroup property Q(t + s)f = Q(t)Q(s)f holds. So, (Q(t))t≥0 is a
C0-semigroup on the space HCb(R), with estimate ‖Q(t)‖ ≤ 1 for all t ≥ 0.

Due to HCb(R) being dense in UCb(R) (see remark 4.1), the operators
Q(t) for any t ≥ 0 can be continued by continuity over the whole space
UCb(R), preserving the norm. So we get that (Q(t))t≥0 is a contraction
C0-semigroup on the space UCb(R).

Let’s show that the generator L of the semigroup (Q(t))t≥0 coincides with
the closure A of the operator A. To do this, first recall (see definition 1.2 or [5,
lemma 1.1]), that D(L) = {ϕ ∈ UCb(R)

∣

∣ lims→+0(Q(s)ϕ−ϕ)/s exists}, and
Lϕ = lims→+0(Q(s)ϕ− ϕ)/s for any ϕ ∈ D(L). Let f ∈ HCb(R) and t > 0.
Then by virtue of semigroup property and the equality (27) we have:

lim
s→+0

Q(s)Q(t)f −Q(t)f

s
= lim

s→+0

Q(t + s)f −Q(t)f

s
=

= (Q(t)f)′t
by (27)
= A(Q(t)f).

From this it follows that

Q(t)f ∈ D(L), L(Q(t)f) = A(Q(t)f) for all t > 0, f ∈ HCb(R). (30)

Now let us assume that f ∈ HC2
b (R) ⊂ HCb(R). Thanks to [10, re-

mark 8.3.2 on p. 114] we have: A(Q(t)f) = [Q(t)](Af) for all t > 0. Then
from this and from the formulas (30), (29) the continued equality follows:

lim
n→∞

L(Q(1/n)f)
by (30)
= lim

n→∞
A(Q(1/n)f) = lim

n→∞
[Q(1/n)](Af)

by (29)
= Af.
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So for each f ∈ HC2
b (R) the following two relations are correct:

lim
n→∞

L(Q(1/n)f) = Af and lim
n→∞

Q(1/n)f = f.

Since the generator L is closed [5, theorem 1.4], it follows that f ∈ D(L) and
Lf = Af . Thus, the restriction of the operator L to the subspace HC2

b (R)
matches the operator A, i.e. L|HC2

b
(R) = A.

Subspace HC2
b (R) is invariant under the semigroup (Q(t))t≥0 (by virtue

of (28)), and is dense in UCb(R). Therefore according to [5, prop. 1.7 of
ch. 2], subspace HC2

b (R) is the core of the generator L. According to the
definition of the core (see definition 1.4 or [5, def. 1.6 of ch. 2]) this means
that HC2

b (R) is dense in D(L) for the graph norm ‖x‖L = ‖x‖+‖Lx‖. From
this and from the equality L|HC2

b
(R) = A it follows that L = A.

1.2) Let us proceed to the general case, where the function c(x) can
have its sign changed. By virtue of the equality γ = supx∈R c(x) we have
c(x)−γ ≤ 0 for all x ∈ R. Using the results of item 1.1) of the proof for linear
operator (A−γ)u = au′′+bu′+(c−γ)u, we get that the closure A− γ = A−γ

of operator A − γ is the generator of C0-semigroup (et(A−γ))t≥0 in Banach

space UCb(R), and the condition ‖et(A−γ)‖ ≤ 1 holds for all t ≥ 0. Hence the

operator A is the generator of C0-semigroup (etA)t≥0 = (eγt · et(A−γ))t≥0, and

the condition ‖etA‖ ≤ eγt holds for all t ≥ 0. So the first statement of the
theorem is proved.

2). It follows from theorem 4.1 that for any i = 0, . . . , 2m + q there
exist nonnegative constants Ci,0, Ci,1, . . . , Ci,⌊(i+1)/2⌋, such that for any f ∈
UC2m+q̂

b (R) we have

‖f (i)‖ ≤
⌊(i+1)/2⌋
∑

j=0

Ci,j‖Ajf‖.

From this and from the inequality (24), the relations follow:

∥

∥

∥

∥

S(t)f −
m
∑

k=0

tkAkf

k!

∥

∥

∥

∥

≤ tm+α

2m+q
∑

i=0

⌊(i+1)/2⌋
∑

j=0

BiCi,j‖Ajf‖ =

= tm+α

m+⌊(q+1)/2⌋
∑

j=0

αj‖Ajf‖ = tm+1

m+⌊(q+1)/2⌋
∑

j=0

Kj(t)‖Ajf‖, (31)
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where αj is some nonnegative constant and Kj(t) = αjt
α−1 for any j =

0, 1, . . . , m+ ⌊(q + 1)/2⌋.
Subspace UC2m+q̂

b (R) is (Q(t))t≥0-invariant due to (28), and is dense in
UCb(R) due to remark 4.1. So, taking into account item 2 of condition and
proved statement 1 of this theorem, we see that all the conditions of theo-
rem 3.1 are met with D = UC2m+q̂

b (R). Then, it follows from the inequal-

ity (13) of theorem 3.1 that for any t > 0, any n ≥ t/T and any f ∈ UC2m+q̂
b

we have

‖S(t/n)nf − etAf‖ ≤ Mtm+1ewt

nm

m+⌊(q+1)/2⌋
∑

j=0

βj(t/n)‖Ajf‖,

where βj(t) = Kj(t)e
−wt ≤ αjt

α−1 for j 6= m+1 and βm+1(t) = Km+1(t)e
−wt+

1/(m+ 1)! ≤ αm+1t
α−1 + 1/(m+ 1)!. It is clear that if α = 1 or t ≤ 1 then

βm+1(t) ≤ (αm+1 + 1/(m + 1)!)tα−1. Consequently, for any t > 0 and any
integer n ≥ nα,t the following inequality is true:

‖S(t/n)nf − etAf‖ ≤ Mtm+αewt

nm−1+α

m+⌊(q+1)/2⌋
∑

j=0

γj‖Ajf‖,

where γj = αj for j 6= m+ 1 and γm+1(t) = αm+1 + 1/(m+ 1)!.
From this and from item 2) of lemma 4.2, it follows that for some non-

negative constants C0, C1, . . . , C2m+q̂ which are independent of t, T and n,
the inequality (25) that we are proving holds:

‖S(t/n)nf − etAf‖ ≤ Mtm+αewt

nm−1+α

2m+q̂
∑

i=0

Ci‖f (i)‖.

3). Equality (26) follows from the estimate (31), from the relations
Kj(t) = αjt

α−1 = o(t−m) as t → +0 for all j = 0, 1, . . . , m+ ⌊(q+1)/2⌋, and
from the equality (14) in the statement 2 of the theorem 3.1.

Here is an example of using theorem 4.2 for one concrete Chernoff func-
tion, which was presented in [21].

Example 4.2. Suppose that functions a, b, c ∈ HC2
b (R) are given such that

infx∈R a(x) > 0. For each u ∈ UC2
b (R) set

Au = au′′ + bu′ + cu (32)
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and for each t ≥ 0, each f ∈ UCb(R) and each x ∈ R set

(S(t)f)(x) =
1

4
f
(

x+ 2
√

a(x)t
)

+
1

4
f
(

x− 2
√

a(x)t
)

+

+
1

2
f
(

x+ 2b(x)t
)

+ tc(x)f(x).
(33)

Then there exist nonnegative constants C0, C1, . . . , C4 such that for all t > 0,
all n ∈ {1, 2, 3, . . .} and all f ∈ UC4

b (R) the following inequality holds:

‖S(t/n)nf − etAf‖ ≤

≤ t2e‖c‖t

n

(

C0‖f‖+ C1‖f ′‖+ C2‖f ′′‖+ C3‖f ′′′‖+ C4‖f (IV )‖
)

.

Proof. 1) Set m = 1, q = 2. Then q̂ = 2 and item 1 of the condition of the
theorem 4.2 is met.

2) Let us estimate the norm ‖S(t)f‖ for any t > 0 and any f ∈ UCb(R)
using the formula (33):

‖S(t)f‖ ≤ 1

4
sup
x∈R

∣

∣

∣
f
(

x+ 2
√

a(x)t
)
∣

∣

∣
+

1

4
sup
x∈R

∣

∣

∣
f
(

x− 2
√

a(x)t
)
∣

∣

∣
+

+
1

2
sup
x∈R

∣

∣f
(

x+ 2b(x)t
)
∣

∣ + t sup
x∈R

|c(x)| · sup
x∈R

|f(x)| ≤

≤ 1

4
‖f‖+ 1

4
‖f‖+ 1

2
‖f‖+ t‖c‖ · ‖f‖ = (1 + t‖c‖) · ‖f‖ ≤ e‖c‖t‖f‖.

So ‖S(t)‖ ≤ e‖c‖t and ‖S(t)k‖ ≤ ek‖c‖t for any t > 0 and any k ∈ {1, 2, 3, . . .}.
Then item 2 of the condition of the theorem 4.2 is met with M = 1, σ = ‖c‖
and any T > 0.

3) Let’s take any function f ∈ UC4
b (R) and expand [S(t)f ](x) in powers

of t > 0, using Taylor’s formula with remainders in Lagrange’s form. Then
we have for some real ξ1 = ξ1(t, x), ξ2 = ξ2(t, x) and ξ3 = ξ3(t, x):

f
(

x+ 2
√

a(x)t
)

= f(x) + f ′(x) · 2
√

a(x)t +
1

2
f ′′(x) ·

(

2
√

a(x)t
)2

+

+
1

6
f ′′′(x) ·

(

2
√

a(x)t
)3

+
1

24
f IV (ξ1) ·

(

2
√

a(x)t
)4

;

f
(

x− 2
√

a(x)t
)

= f(x)− f ′(x) · 2
√

a(x)t +
1

2
f ′′(x) ·

(

2
√

a(x)t
)2

−
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−1

6
f ′′′(x) ·

(

2
√

a(x)t
)3

+
1

24
f IV (ξ2) ·

(

2
√

a(x)t
)4

;

f(x+ 2b(x)t) = f(x) + f ′(x) · 2b(x)t + 1

2
f ′′(ξ3) · (2b(x)t)2.

Therefore, using these three equalities together with (33) we get the following
expression for [S(t)f ](x):

[S(t)f ](x) = f(x) + t[a(x)f ′′(x) + b(x)f ′(x) + c(x)f(x)]+

+t2
[(a(x))2

6

(

f IV (ξ1) + f IV (ξ2)
)

+ (b(x))2f ′′(ξ3)
]

.
(34)

So, taking into account the formula (32), we come to the inequality

‖S(t)f − (f + tAf)‖ ≤ t2
(‖a‖2

3
‖f IV ‖+ ‖b‖2‖f ′′‖

)

.

Then last item (item 3) of the condition of the theorem 4.2 is met with α = 1.

4) Further, using item 2 of the asserting part of the theorem 4.2, we get
that for all t > 0, all n = 1, 2, 3, . . . and all f ∈ UC4

b (R) the estimate

‖S(t/n)nf − etAf‖ ≤

≤ t2e‖c‖t

n

(

C0‖f‖+ C1‖f ′‖+ C2‖f ′′‖+ C3‖f ′′′‖+ C4‖f (IV )‖
)

is true for some nonnegative constants C0, C1, C2, C3, C4.

Acknowledgements. Authors are partially supported by the Labora-
tory of Dynamical Systems and Applications NRU HSE, and by the Ministry
of Science and Higher Education of the RF grant ag. No 075-15-2019-1931.
Authors are thankful to the members of research group “Evolution semi-
groups and applications” and Professor Dmitry Turaev for the discussion of
the research presented.

References

[1] V.I. Bogachev, O.G. Smolyanov. Real and Functional Analysis. —
Springer, 2020.

[2] Ya.A. Butko. The method of Chernoff approximation. Springer Pro-
ceedings in Mathematics and Statistics. Volume 325. — Springer,
Cham, 2020. Pp. 19–46.

31



[3] P.R. Chernoff. Note on product formulas for operator semigroups. //
J. Funct. Anal. 2:2 (1968), 238–242.

[4] V.K. Dzyadyk, I.A. Shevchuk. Theory of Uniform Approximation of
Functions by Polynomials. — De Gruyter, 2008.

[5] K.-J. Engel, R. Nagel. One-Parameter Semigroups for Linear Evolution
Equations. — Springer, 2000.

[6] O.E. Galkin, I.D. Remizov. Rate of Convergence of Chernoff Approx-
imations of operator C0-semigroups.// Mathematical Notes, 2021, to
appear

[7] A. Gomilko, S. Kosowicz, Yu. Tomilov. A general approach to approx-
imation theory of operator semigroups. // Journal de Mathématiques
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