Unique solvability of Equations with a Distributed Fractional Derivative Given by the Stieltjes Integral N. V. Filin¹, V. E. Fedorov²

Keywords: distributed fractional derivative; fractional differential equation; inhomogeneous equation; Cauchy problem

MSC2020 codes: 34G10,35R11,34A08,47D99

Let $\mathcal{L}(\mathcal{Z})$ be the Banach space of all linear continuous operators on a Banach space \mathcal{Z} , denote by $\mathcal{C}l(\mathcal{Z})$ the set of all linear closed operators, densely defined in \mathcal{Z} , acting in the space \mathcal{Z} . Introduce the notations $S_{\theta,a} := \{\mu \in \mathbb{C} : |\arg(\mu - a)| < \theta, \mu \neq a\}$ for $\theta \in [\pi/2, \pi], a \in \mathbb{R}$.

Let $b, c \in \mathbb{R}$, $b < c, \mu : [b, c] \to \mathbb{C}$ is a function with a bounded variation. Introduce the notations of the complex-valued function $W(\lambda) := \int_{b}^{c} \lambda^{\alpha} d\mu(\alpha)$. Here the integral is understood in the sense of Riemann – Stieltjes.

We define a class $\mathcal{A}_W(\theta_0, a_0)$ as the set of all operators $A \in \mathcal{C}l(\mathcal{Z})$ satisfying the following conditions:

- (i) there exist $\theta_0 \in (\pi/2, \pi]$, $a_0 \ge 0$, such that $W(\lambda) \in \rho(A)$ for every $\lambda \in S_{\theta_0, a_0}$;
- (ii) for every $\theta \in (\pi/2, \theta_0)$, $a > a_0$ there exists $K(\theta, a) > 0$, such that for all $\lambda \in S_{\theta,a}$

$$\|(W(\lambda)I - A)^{-1}\|_{\mathcal{L}(\mathcal{Z})} \le \frac{|\lambda|K(\theta, a)}{|W(\lambda)||\lambda - a|}$$

Theorem 1. [1]. Let $b, c \in \mathbb{R}$, $b < c, m-1 < c \leq m \in \mathbb{N}$, $\mu : [b, c] \to \mathbb{C}$ is a function with a bounded variation, c be a variation point of the measure $d\mu(t)$, $\theta_0 \in (\pi/2, \pi]$, $a_0 \geq 0$, $A \in \mathcal{A}_W(\theta_0, a_0)$, $g \in C([0, T]; D_A) \cup C^{\gamma}([0, T]; \mathcal{Z})$, $\gamma \in (0, 1]$, $z_k \in D_A$, $k = 0, 1, \ldots, m-1$. Then there exists a unique solution of problem

$$z^{(k)}(0) = z_k, \quad k = 0, 1, \dots, m-1,$$
(1)

for the inhomogeneous equation

$$\int_{b}^{c} D^{\alpha} z(t) d\mu(\alpha) = A z(t) + g(t), \ t \in (0, T].$$
(2)

This work was supported by the grant of President of the Russian Federation for the state support of leading scientific schools, project no. NSh-2708.2022.1.1.

References

 S.M. Sitnik, V. E. Fedorov, N. V. Filin, V.A. Polukhin. On the solvability of equations with a distributed fractional derivative given by the Stieltjes integral // Mathematics. 2022. Vol.10, No. 14. 2979.

¹Chelyabinsk State University, Department of Mathematical Analysis, Russia, Chelyabinsk. Email: nikolay_filin@inbox.ru

²Chelyabinsk State University, Department of Mathematical Analysis, Russia, Chelyabinsk. Email: car@csu.ru