Inversion of the Pompeiu transform associated to spherical means N. P. Volchkova, , , Vit. V. Volchkov, $\sqrt{2}^{(1)}$

Keywords: distributions; convolution equations; Pompeiu transform; inversion formulas.
MSC2010 codes: 44A35, 46F12, 53C35, 45E10
Let $n \geq 2, \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ be the space of distributions on $\mathbb{R}^{n}, \sigma_{r}$ be the surface delta function concentrated on the sphere $S_{r}=\left\{x \in \mathbb{R}^{n}:|x|=r\right\}$. The problem of L. Zalcman on reconstruction of a distribution $f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ by known convolutions $f * \sigma_{r_{1}}$ and $f * \sigma_{r_{2}}$ is studied (see [1], Sect. 8). The result obtained (see Theorem 2 below) significantly simplifies known procedures for recovering a function f from given spherical means $f * \sigma_{r_{1}}$ and $f * \sigma_{r_{2}}$.

Let $r>0$ be fixed and λr be an arbitrary positive zero of the Bessel function J_{0}. Then, for any $k \in \mathbb{Z}$, the function $J_{k}(\lambda \rho) e^{i k \varphi}\left(\rho, \varphi\right.$ are the polar coordinates in \mathbb{R}^{2}) has zero integrals over all circles of radius r in \mathbb{R}^{2} (see [2], Sect. C). Similar examples related to the zeros of the Bessel function $J_{n / 2-1}$ can also be constructed for spherical means in \mathbb{R}^{n} for $n \geq 2$. This shown that knowing the averages of a function f over all spheres of the same radius is not enough to uniquely reconstruct f. Subsequently, the class of functions $f \in C\left(\mathbb{R}^{n}\right)$ that have zero integrals over all spheres of fixed radius in \mathbb{R}^{n} was studied by many authors (see [3]-[6] and the references to these works). A well-known result in this direction is the following analogue of Delsarte's famous two-radius theorem for harmonic functions.

Theorem 1 ([1], [3]). Let $r_{1}, r_{2} \in(0,+\infty), \Upsilon_{n}=\left\{\gamma_{1}, \gamma_{2}, \ldots\right\}$ be the sequence of all positive zeros of the function $J_{n / 2-1}$ numbered in ascending order, M_{n} be the set of numbers of the form α / β, where $\alpha, \beta \in \Upsilon_{n}$.

1) If $r_{1} / r_{2} \notin M_{n}, f \in C\left(\mathbb{R}^{n}\right)$ and

$$
\begin{equation*}
\int_{|x-y|=r_{1}} f(x) d \sigma(x)=\int_{|x-y|=r_{2}} f(x) d \sigma(x)=0, \quad y \in \mathbb{R}^{n} \tag{1}
\end{equation*}
$$

($d \sigma$ is the area element), then $f=0$.
2) If $r_{1} / r_{2} \in M_{n}$, then there exists a nonzero real analytic function $f: \mathbb{R}^{n} \rightarrow \mathbb{C}$ satisfying the relations in (1).

In terms of convolutions Theorem 1 means that the Pompeiu transform

$$
\mathcal{P} f=\left(f * \sigma_{r_{1}}, f * \sigma_{r_{2}}\right), \quad f \in C\left(\mathbb{R}^{n}\right)
$$

is injective if and only if $r_{1} / r_{2} \notin M_{n}$. Here we present a new inversion formula for the operator \mathcal{P} under the condition $r_{1} / r_{2} \notin M_{n}$.

Let $\mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$ be the space of compactly supported distributions on $\mathbb{R}^{n}, \mathcal{E}_{b}^{\prime}\left(\mathbb{R}^{n}\right)$ be the space of radial (invariant under rotations of the space \mathbb{R}^{n}) distributions in $\mathcal{E}^{\prime}\left(\mathbb{R}^{n}\right)$. If $T_{1}, T_{2} \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ and at least one of these distributions has compact support then their convolution $T_{1} * T_{2}$ is a distribution in $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$ acting according to the rule

$$
\left\langle T_{1} * T_{2}, \varphi\right\rangle=\left\langle T_{2}(y),\left\langle T_{1}(x), \varphi(x+y)\right\rangle\right\rangle, \quad \varphi \in \mathcal{D}\left(\mathbb{R}^{n}\right)
$$

where $\mathcal{D}\left(\mathbb{R}^{n}\right)$ is the space of finite infinitely differentiable functions on \mathbb{R}^{n}. The spherical transform \widetilde{T} of a distribution $T \in \mathcal{E}_{\natural}^{\prime}\left(\mathbb{R}^{n}\right)$ is defined by

$$
\widetilde{T}(z)=2^{\frac{n}{2}-1} \Gamma\left(\frac{n}{2}\right)\left\langle T, \mathbf{I}_{\frac{n}{2}-1}(z|x|)\right\rangle, \quad z \in \mathbb{C},
$$

[^0]where
$$
\mathbf{I}_{\nu}(z)=\frac{J_{\nu}(z)}{z^{\nu}}, \quad \nu \in \mathbb{C}
$$

We note that \widetilde{T} is an even entire function of exponential type and the Fourier transform \widehat{T} is expressed in terms of \widetilde{T} by

$$
\widehat{T}(\zeta)=\widetilde{T}\left(\sqrt{\zeta_{1}^{2}+\ldots+\zeta_{n}^{2}}\right), \quad \zeta \in \mathbb{C}^{n}
$$

The set of all zeros of the function \widetilde{T} that lie in the half-plane $\underset{\widetilde{T}}{\operatorname{Re}} z \geq 0$ and do not belong to the negative part of the imaginary axis will be denoted by $\mathcal{Z}_{+}(\widetilde{T})$.

Using the well-known properties of the zeros of the Bessel functions one can obtain the corresponding information about the set $\mathcal{Z}_{+}\left(\widetilde{\sigma}_{r}\right)$. In particular, all the zeros of $\widetilde{\sigma}_{r}$ are simple, belong to $\mathbb{R} \backslash\{0\}$ and

$$
\mathcal{Z}_{+}\left(\widetilde{\sigma}_{r}\right)=\left\{\frac{\gamma_{1}}{r}, \frac{\gamma_{2}}{r}, \ldots\right\} .
$$

In addition, since the functions $J_{\frac{n}{2}-1}$ and $J_{\frac{n}{2}}$ do not have common zeros on $\mathbb{R} \backslash\{0\}$, the function

$$
\sigma_{r}^{\lambda}(x)=-\frac{1}{r \lambda^{2}} \frac{\mathbf{I}_{\frac{n}{2}-1}(\lambda|x|)}{\mathbf{I}_{\frac{n}{2}}(\lambda r)} \chi_{r}(x), \quad \lambda \in \mathcal{Z}_{+}\left(\widetilde{\sigma}_{r}\right),
$$

is well defined, where χ_{r} is the indicator of the ball $B_{r}=\left\{x \in \mathbb{R}^{n}:|x|<r\right\}$.
Let

$$
P_{r}(z)=\prod_{j=1}^{\left[\frac{n+5}{4}\right]}\left(z-\left(\frac{\gamma_{j}}{r}\right)^{2}\right), \quad \Omega_{r}=P_{r}(\Delta) \sigma_{r}
$$

where Δ is the Laplace operator. Then, by virtue of the formula

$$
\widetilde{p(\Delta) T}(z)=p\left(-z^{2}\right) \widetilde{T}(z) \quad(p \text { is an algebraic polynomial })
$$

we have

$$
\begin{gathered}
\widetilde{\Omega}_{r}(z)=P_{r}\left(-z^{2}\right) \widetilde{\sigma}_{r}(z) \\
\mathcal{Z}_{+}\left(\widetilde{\Omega}_{r}\right)=\left\{\frac{\gamma_{1}}{r}, \frac{\gamma_{2}}{r}, \ldots\right\} \cup\left\{\frac{i \gamma_{1}}{r}, \frac{i \gamma_{2}}{r}, \ldots, \frac{i \gamma_{m}}{r}\right\},
\end{gathered}
$$

and all zeros of $\widetilde{\Omega}_{r}$ are simple. In addition,

$$
\mathcal{Z}_{+}\left(\widetilde{\Omega}_{r_{1}}\right) \cap \mathcal{Z}_{+}\left(\widetilde{\Omega}_{r_{2}}\right)=\varnothing \quad \Leftrightarrow \quad \frac{r_{1}}{r_{2}} \notin M_{n}
$$

For $\lambda \in \mathcal{Z}_{+}\left(\widetilde{\Omega}_{r}\right)$, we set

$$
\Omega_{r}^{\lambda}=P_{r}(\Delta) \sigma_{r}^{\lambda} \quad \text { if } \quad \lambda \in \mathcal{Z}_{+}\left(\widetilde{\sigma}_{r}\right),
$$

and

$$
\Omega_{r}^{\lambda}=Q_{r, \lambda}(\Delta) \sigma_{r} \quad \text { if } \quad P_{r}\left(-\lambda^{2}\right)=0
$$

where

$$
Q_{r, \lambda}(z)=-\frac{P_{r}(z)}{z+\lambda^{2}} .
$$

Theorem 2. Let $\frac{r_{1}}{r_{2}} \notin M_{n}, f \in \mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right), n \geq 2$. Then

$$
f=\sum_{\lambda \in \mathcal{Z}_{+}\left(\widetilde{\Omega}_{r_{1}}\right)} \sum_{\mu \in \mathcal{Z}_{+}\left(\widetilde{\Omega}_{r_{2}}\right)} \frac{4 \lambda \mu}{\left(\lambda^{2}-\mu^{2}\right) \widetilde{\Omega}_{r_{1}}^{\prime}(\lambda) \widetilde{\Omega}_{r_{2}}^{\prime}(\mu)}\left(P_{r_{2}}(\Delta)\left(\left(f * \sigma_{r_{2}}\right) * \Omega_{r_{1}}^{\lambda}\right)-\right.
$$

$$
\begin{equation*}
\left.-P_{r_{1}}(\Delta)\left(\left(f * \sigma_{r_{1}}\right) * \Omega_{r_{2}}^{\mu}\right)\right), \tag{2}
\end{equation*}
$$

where the series in (2) converges unconditionally in the space $\mathcal{D}^{\prime}\left(\mathbb{R}^{n}\right)$.
Equality (2) reconstruct an arbitrary distribution f from its known convolutions $f * \sigma_{r_{1}}$ and $f * \sigma_{r_{2}}$ (see formulas above). For other results related to the inversion of the spherical mean operator, see [6], [7].

References:

[1] L. Zalcman. Offbeat integral geometry. // Amer. Math. Monthly. 1980. Vol. 87. No. 3. P. 161-175.
[2] J. Radon. Über die Bestimmung von Funktionen durch ihre Integralwerte längs gewisser Mannigfaltigkeiten. // Ber. Verh. Sächs. Akad. Wiss. Leipzig. Math.-Nat. Kl. 1917. Vol. 69. P. 262-277.
[3] J.D. Smith. Harmonic analysis of scalar and vector fields in \mathbb{R}^{n}. // Proc. Cambridge Philos. Soc. 1972. Vol. 72. No. 3. P. 403-416.
[4] V.V. Volchkov. Integral Geometry and Convolution Equations. Kluwer Academic Publishers, 2003.
[5] V.V. Volchkov, Vit.V. Volchkov. Harmonic Analysis of Mean Periodic Functions on Symmetric Spaces and the Heisenberg Group. Springer, 2009.
[6] V.V. Volchkov, Vit.V. Volchkov. Offbeat Integral Geometry on Symmetric Spaces. Birkhäuser, 2013.
[7] C.A. Berenstein, R. Gay, A. Yger. Inversion of the local Pompeiu transform. // J. Analyse Math. 1990. Vol. 54. No. 1. P. 259-287.

[^0]: ${ }^{1}$ Donetsk National Technical University, Department of Higher Mathematics named after V.V.Pak, Russia, Donetsk. Email: volna936@gmail.com
 ${ }^{2}$ Donetsk National University, Department of Mathematical Analysis and Differential Equations, Russia, Donetsk. Email: volna936@gmail.com, v.volchkov@donnu.ru

