Resolving Families of Operators and Fractional Multi-Term Quasilinear Equations M. M. Turov ${ }^{\text {I }}$ V. E. Fedorov ${ }^{2}$

Keywords: multi-term fractional differential equation, Riemann - Liouville fractional derivative, defect of Cauchy type problem, incomplete Cauchy type problem, analytic family of resolving operators, quasilinear equation, initial boundary value problem.

MSC2020 codes: 35R11, 34G10, 34G20, 34A08.
Let $A_{1}, A_{2}, \ldots, A_{m-1}, B_{1}, B_{2}, \ldots, B_{n}, C_{1}, C_{2}, \ldots, C_{r}$ be closed linear operators in a Banach space \mathcal{Z} with domains $D_{A_{1}}, D_{A_{2}}, \ldots, D_{A_{m-1}}, D_{B_{1}}, D_{B_{2}}, \ldots, D_{B_{n}}, D_{C_{1}}, D_{C_{2}}, \ldots, D_{C_{r}}$ respectively, $m-1<\alpha \leq m \in \mathbb{N}, n, r, \varrho, q \in \mathbb{N} \cup\{0\}, Z$ be an open subset in $\mathbb{R} \times \mathcal{Z}^{m+\varrho+q}$, $B \in C(Z ; \mathcal{Z})$. Consider the quasilinear multi-term fractional equation

$$
\begin{array}{r}
\quad D^{\alpha} z(t)=\sum_{j=1}^{m-1} A_{j} D^{\alpha-m+j} z(t)+\sum_{l=1}^{n} B_{l} D^{\alpha_{l}} z(t)+\sum_{s=1}^{r} C_{s} J^{\beta_{s}} z(t)+ \tag{1}\\
+F\left(t, D^{\alpha-m-\varrho} z(t), \ldots, D^{\alpha-1} z(t), D^{\gamma_{1}} z(t), D^{\gamma_{2}} z(t), \ldots, D^{\gamma_{q}} z(t)\right) .
\end{array}
$$

Here D_{t}^{δ} is the Riemann - Liouville derivative with $\delta>0$ and the Riemann - Liouville integral with $\gamma<0,0<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}<\alpha, m_{l}-1<\alpha_{l} \leq m_{l} \in \mathbb{Z}, \alpha_{l}-m_{l} \neq \alpha-m$, $l=1,2, \ldots, n, \gamma_{1}<\gamma_{2}<\cdots<\gamma_{q}<\alpha, n_{i}-1<\gamma_{i} \leq n_{i} \in \mathbb{Z}, \gamma_{i}-n_{i} \neq \alpha-m, i=1,2, \ldots, q$. Some γ_{i} may be negative. Let us define $\mu^{*}:=m^{*}\left(\alpha, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}, \gamma_{1}+1, \gamma_{2}+1, \ldots, \gamma_{q}+1\right)$ (see [1]), $\mu_{0}^{*}:=\max \left\{\mu^{*}, 0\right\}$, so for solving the Cauchy type problem

$$
\begin{equation*}
D^{\alpha-m+k} z\left(t_{0}\right)=z_{k}, \quad k=0,1, \ldots, m-1, \tag{2}
\end{equation*}
$$

for equation (1) conditions are met

$$
\begin{gathered}
D^{\alpha-m+k} z\left(t_{0}\right)=0, \quad k=-r,-r+1, \ldots, \mu_{0}^{*}-1 ; \\
D^{\alpha_{l}-m_{l}+k} z\left(t_{0}\right)=0, \quad k=0,1, \ldots, m_{l}-1, l=1,2, \ldots, n ; \\
D^{\gamma_{i}-n_{i}+k} z\left(t_{0}\right)=0, \quad k=0,1, \ldots, n_{i}, \quad i=1,2, \ldots, q .
\end{gathered}
$$

Define by $\mathcal{L}(\mathcal{Z})$ the Banach space of all linear bounded operators on \mathcal{Z},

$$
\mathcal{D}:=\bigcap_{j=1}^{m-1} D_{A_{j}} \cap \bigcap_{l=1}^{n} D_{B_{l}} \cap \bigcap_{s=1}^{r} D_{C_{s}}, \quad\|\cdot\|_{\mathcal{D}}=\sum_{j=1}^{m-1}\|\cdot\|_{D_{A_{j}}}+\sum_{l=1}^{n}\|\cdot\|_{D_{B_{l}}}+\sum_{s=r}^{m-1}\|\cdot\|_{D_{C_{s}}} .
$$

A solution to problem (1), (2) on $\left(t_{0}, t_{1}\right]$ is a function $z:\left(t_{0}, t_{1}\right] \rightarrow \mathcal{D}$, such that $J^{m-\alpha} z \in$ $C^{m}\left(\left(t_{0}, t_{1}\right] ; \mathcal{Z}\right) \cap C^{m-1}\left(\left[t_{0}, t_{1}\right] ; \mathcal{Z}\right), D^{\alpha-m+j} z \in C\left(\left(t_{0}, t_{1}\right] ; D_{A_{j}}\right), j=1,2, \ldots, m-1, D^{\alpha_{l}} z \in$ $C\left(\left(t_{0}, t_{1}\right] ; D_{B_{l}}\right), l=1,2, \ldots, n, D^{\gamma_{i}} z \in C\left(\left[t_{0}, t_{1}\right] ; \mathcal{Z}\right), i=1,2, \ldots, q$, condition (2) are satisfied, inclusion $\left(t, D^{\alpha-m-\varrho} z(t), D^{\alpha-m-\varrho+1} z(t), \ldots, D^{\alpha-1} z(t), D^{\gamma_{1}} z(t), D^{\gamma_{2}} z(t), \ldots, D^{\gamma_{q}} z(t)\right) \in Z$ for $t \in\left[t_{0}, t_{1}\right]$ and equality (1) for $t \in\left(t_{0}, t_{1}\right]$ hold.

Definition 1. A tuple of operators $\left(A_{1}, A_{2}, \ldots, A_{m-1}, B_{1}, B_{2}, \ldots, B_{n}, C_{1}, C_{2}, \ldots, C_{r}\right)$, which are linear and closed in a Banach space \mathcal{Z}, belongs to the class $\mathcal{A}_{\alpha}^{n, r}\left(\theta_{0}, a_{0}\right)$ for some $\theta_{0} \in$ $(\pi / 2, \pi), a_{0} \geq 0$, if
(i) \mathcal{D} is dense in \mathcal{Z};

[^0](ii) for all $\lambda \in S_{\theta_{0}, a_{0}}:=\left\{\mu \in \mathbb{C}:\left|\arg \left(\mu-a_{0}\right)\right|<\theta_{0}\right\}, p=0,1, \ldots, m-1$ we have
$$
R_{\lambda} \cdot\left(I-\sum_{j=p+1}^{m-1} \lambda^{j-m} A_{j}\right) \in \mathcal{L}(\mathcal{Z})
$$
(iii) for any $\theta \in\left(\pi / 2, \theta_{0}\right), a>a_{0}$, there exists such a $K(\theta, a)$, that for all $\lambda \in S_{\theta, a}$, $p=0,1, \ldots, m-1$ we have
$$
\left\|R_{\lambda} \cdot\left(I-\sum_{j=p+1}^{m-1} \lambda^{j-m} A_{j}\right)\right\|_{\mathcal{L}(\mathcal{Z})} \leq \frac{K(\theta, a)}{|\lambda-a||\lambda|^{\alpha-1}}
$$

Definition 2. Let $p \in\{0,1, \ldots, m-1\}$; a strongly continuous family of operators $\left\{S_{p}(t) \in\right.$ $\mathcal{L}(\mathcal{Z}): t>0\}$ is called p-resolving for equation (1), if next conditions are satisfied:
(i) for $t>0 S_{p}(t)\left[D_{A_{j}}\right] \subset D_{A_{j}}, S_{p}(t) A_{j} x=A_{j} S_{p}(t) x$ for all $x \in D_{A_{j}}, j=1,2, \ldots, m-1$; $S_{p}(t)\left[D_{B_{l}}\right] \subset D_{B_{l}}, S_{p}(t) B_{l} x=B_{l} S_{p}(t) x$ for all $x \in D_{B_{l}} ; S_{p}(t)\left[D_{C_{s}}\right] \subset D_{C_{s}}, S_{p}(t) C_{s} x=C_{s} S_{p}(t) x$ for all $x \in D_{C_{s}}$;
(ii) for every $z_{p} \in \mathcal{D} S_{p}(t) z_{p}$ is a solution of linear ($B \equiv 0$) problem (1), (2) with $z_{l}=0$ for every $l \in\{0,1, \ldots, m-1\} \backslash\{p\}$.

A p-resolving family of operators for $p \in\{0,1, \ldots, m-1\}$ is called analytic, if it has the analytic extension to a sector $\Sigma_{\psi_{0}}:=\left\{t \in \mathbb{C}:|\arg t|<\psi_{0}, t \neq 0\right\}$ for some $\psi_{0} \in(0, \pi / 2]$. An analytic p-resolving family of operators $\left\{S_{p}(t) \in \mathcal{L}(\mathcal{Z}): t>0\right\}$ has a type $\left(\psi_{0}, a_{0}\right)$ for some $\psi_{0} \in(0, \pi / 2], a_{0} \in \mathbb{R}$, if for all $\psi \in\left(0, \psi_{0}\right), a>a_{0}$ there exists such a $C(\psi, a)$, that for all $t \in \Sigma_{\psi}$ the inequality $\left\|S_{p}(t)\right\|_{\mathcal{L}(\mathcal{Z})} \leq C(\psi, a)|t|^{\alpha-m+p} e^{a \operatorname{Ret}}$ is satisfied.

Theorem 1. Let $m-1<\alpha \leq m \in \mathbb{N}, \alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}<\alpha, m_{l}-1<\alpha_{l} \leq m_{l} \in \mathbb{N}$, $\alpha_{l}-m_{l} \neq \alpha-m, m^{*}:=m^{*}\left(\alpha, \alpha_{1}, \alpha_{2}, \ldots, \alpha_{n}\right), \beta_{1}>\beta_{2}>\cdots>\beta_{r} \geq 0, A_{j}, j=1,2, \ldots, m-1$, $B_{l}, l=1,2, \ldots, n, C_{s}, s=1,2, \ldots, r$, are linear and closed operators, \mathcal{D} dense \mathcal{Z}. Then there are p-resolving families of operators $\left\{S_{p}(t) \in \mathcal{L}(\mathcal{Z}): t>0\right\}$ of the type $\left(\theta_{0}, a_{0}\right)$ for equation (1) for all $p=m^{*}, m^{*}+1, \ldots, m-1$, if and only if $\left(A_{1}, A_{2}, \ldots, A_{m-1}, B_{1}, B_{2}, \ldots, B_{n}, C_{1}, C_{2}, \ldots, C_{r}\right) \in$ $\mathcal{A}_{\alpha}^{n, r}\left(\theta_{0}, a_{0}\right)$. Moreover,

$$
S_{p}(t)=Z_{p}(t):=\frac{1}{2 \pi i} \int_{\Gamma} \lambda^{m-1-p} R_{\lambda}\left(I-\sum_{j=p+1}^{m-1} \lambda^{j-m} A_{j}\right) e^{\lambda t} d \lambda, \quad p=m^{*}, m^{*}+1, \ldots, m-1
$$

where $\Gamma:=\Gamma^{+} \cup \Gamma^{-} \cup \Gamma^{0}, \Gamma^{0}:=\left\{\lambda \in \mathbb{C}: \lambda=a+r_{0} e^{i \varphi}, \varphi \in(-\theta, \theta)\right\}, \Gamma^{ \pm}:=\{\lambda \in \mathbb{C}: \lambda=$ $\left.a+r_{0} e^{ \pm i \theta}, r \in\left[r_{0}, \infty\right)\right\}, \theta \in\left(\pi / 2, \theta_{0}\right), a>a_{0}, r_{0}>0$.

Theorem 2. Let $m-1<\alpha \leq m \in \mathbb{N}, 0<\alpha_{1}<\alpha_{2}<\cdots<\alpha_{n}<\alpha, m_{l}-1<\alpha_{l} \leq m_{l} \in \mathbb{N}$, $\alpha_{l}-m_{l} \neq \alpha-m, \gamma_{1}<\gamma_{2}<\cdots<\gamma_{q}<\alpha-1, n_{i}-1<\gamma_{i} \leq n_{i} \in \mathbb{Z}, \gamma_{i}-n_{i} \neq \alpha-m, i=1,2, \ldots, q$, $\left(A_{1}, A_{2}, \ldots, A_{m-1}, B_{1}, B_{2}, \ldots, B_{n}, C_{1}, C_{2}, \ldots, C_{r}\right) \in \mathcal{A}_{\alpha}^{n, r}\left(\theta_{0}, a_{0}\right), z_{k} \in \mathcal{D}, k=\mu_{0}^{*}, \mu_{0}^{*}+1, \ldots$, $m-1, Z$ be open in $\mathbb{R} \times \mathcal{Z}^{m+\varrho+q},\left(t_{0}, 0,0, \ldots, 0, z_{\mu_{0}^{*}}, z_{\mu_{0}^{*}+1}, \ldots, z_{m-1}, 0,0, \ldots, 0\right) \in Z$, the mapping $B \in C(Z ; \mathcal{D})$ be locally Lipschitz continuous with respect to the phase variables. Then there exists $t_{1}>t_{0}$, such that problem (1), (2) has a unique solution on $\left(t_{0}, t_{1}\right]$.

Acknowledgments. The work is funded by the grant of President of the Russian Federation to support of leading scientific schools, project number NSh-2708.2022.1.1

References

[1] V.E. Fedorov, M.M. Turov. The Defect of a Cauchy Type Problem for Linear Equations with Several Riemann - Liouville Derivatives // Siberian Mathematical Journal. 2022. Vol. 62. No. 5. P. 925-942.
[2] V.E. Fedorov, W.-S Du, M.M. Turov. On the Unique Solvability of Incomplete Cauchy Type Problems for a Class of Multi-Term Equations with the Riemann - Liouville Derivatives // Symmetry. 2022. Vol. 14. No. 2. 75.

[^0]: ${ }^{1}$ Chelyabinsk State University, Department of Mathematical Analysis, Chelyabinsk, Russia, Chelyabinsk. Email: turov_m_m@mail.ru
 ${ }^{2}$ Chelyabinsk $\overline{\text { State University, Department of Mathematical Analysis, Chelyabinsk, Russia, Chelyabinsk. }}$ Email: @karcsu.ru

