

Improved L^2 -approximations in homogenization of parabolic equations with account of correctors S. E. Pastukhova¹

 ${\bf Keywords:}\ {\bf homogenization};\ {\rm error}\ {\rm estimates};\ {\rm correctors}.$

MSC2020 codes: 35K15

We consider the Cauchy problem for a second order parabolic equation

$$L_{\varepsilon}u^{\varepsilon} = f \text{ in } \mathbb{R}^d \times (0,T), \quad u^{\varepsilon}(x,0) = 0 \text{ for } x \in \mathbb{R}^d.$$

Here, $L_{\varepsilon} = \partial_t - div_x a(x/\varepsilon) \nabla_x$, the measurable real-valued coefficient matrix $a(x/\varepsilon)$ is ε -periodic and is not necessarily symmetric; ε is a small positive parameter tending to zero; and the righthand side function f belongs to $L^2(\mathbb{R}^d \times (0,T))$. We find approximations for the solution u^{ε} in the norm $\|\cdot\|_{L^2(\mathbb{R}^d \times (0,T))}$ with the remainder term of order ε^2 . These approximations are of the form

 $u^{\varepsilon}(x,t) = u(x,t) + \varepsilon U(x,x/\varepsilon,t) + O(\varepsilon^2),$

where the main term u(x,t) is the solution to the well-known homogenized problem

$$L_0 u = f$$
 in $\mathbb{R}^d \times (0, T)$, $u(x, 0) = 0$ for $x \in \mathbb{R}^d$,

with the parabolic operator $L_0 = \partial_t - div_x a^0 \nabla_x$ having the constant coefficient matrix a^0 defined via solutions to the auxiliary problems on the periodicity cell which is the unit cube in \mathbb{R}^d ; the corrector $U(x, x/\varepsilon, t)$, generally, has the three-part structure, that is, $U(x, x/\varepsilon, t) = U_1(x, x/\varepsilon, t) + U_2(x, x/\varepsilon, t) + U_3(x, t)$, and the each part of it is defined with the help of the solutions to the aforementioned cell problems. In the selfadjoint case, the corrector U becomes simpler, because its third term vanishes: $U_3 = 0$.

The above asymptotic for the solution $u^{\varepsilon}(x,t)$ admits the operator formulation in terms of the resolvent operators L_{ε}^{-1} , L_{0}^{-1} and the corresponding correcting operator, which can be restored in accordance with the above corrector $U(x, x/\varepsilon, t)$. Namely,

$$\|L_{\varepsilon}^{-1}f - L_{0}^{-1}f - \varepsilon \mathcal{K}_{\varepsilon}f\|_{L^{2}(\mathbb{R}^{d} \times (0,T))} \leq C\varepsilon^{2}\|f\|_{L^{2}(\mathbb{R}^{d} \times (0,T))}$$

where the constant C depends only on the dimension d, the ellipticity constants of the matrix $a(\cdot)$ and the value T.

To obtain these results, we use the so-called shift method proposed firstly in [1,2] and applied to the parabolic homogenization earlier in [3,4].

References:

[1] V. V. Zhikov, On operator estimates in homogenization theory// Dokl. Akad. Nauk. 2005. Vol. 403. No. 3. P. 305–308. (Russian)

[2] V.V. Zhikov, S.E. Pastukhova. On operator estimates for some problems in homogenization theory// Russ. J. Math. Physics. 2005. Vol. 12. No. 4. P. 515–524.

[3] V.V. Zhikov, S.E. Pastukhova. Estimates of homogenization for a parabolic equation with periodic coefficients// Russ. J. Math. Physics. 2006. Vol. 13. No. 2. P. 224–237.

 [4] V.V. Zhikov, S.E. Pastukhova. Operator eatimates in homogenization theory // Russian Math. Surveys. 2016. Vol. 71. No. 3. P. 417b⁺⁻⁵¹¹.