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Introduction. In quantum information theory, the notions of the channel and its capacity,
giving a measure of ultimate information-processing performance of the channel, play a cen-
tral role. For a comprehensive introduction to quantum channels, see [1]. Diagonal quantum
channels have significant applications in communication and physics. There are some studies
on different types of diagonal channels, for instance depolarizing channels |2, 3] and diagonal
channels with constant Frobenius norm [4].

Definition 1. Quantum channel ® : C"*" — C™*" is called diagonal, if its representation
with respect to an orthonormal basis § (constructed by the generalized Pauli matrices) is
diagonal, i.e. ® = diag(1,as,as,...,an2_1).

Theorem 1. ([5]) For every diagonal quantum channel ®, there is a collection of transition
probabilities { Py;}j_, ,i.e. Py >0, Z?:l Pyj =1 such that

O(|k) (k) = Zijlejl (k=1,2,...n).

Kraus representation for diagonal channel. Before we formulate the result of this section,
we need to prove the following two lemmas [5].

Lemma 1. Let k = (21, %2, ..., Tn) where x;’s are rows of nxn matriz K, then (K*E;; K)1<; j<n =
(2 h<ij<n = K"K

Lemma 2. Let ® : C"" — C™" be a quantum channel, Ce be its Choi matriz, and

Co = R*R for some matriz R. If k;’s are rows of R, and K;’s are associated matrices to k;’s
in lemma 1 (1 < i < n?) then {K;}2, is a set of Kraus operators of ®.

Now we are in a position to assert the main result of this section:
Theorem 2. (|5]) For hybrid depolarizing classical quantum channel

O = dla‘g(:l?\_p? ceey _137\_1)7 ceey _227])7 "'7p)7
X x n—1

Kraus operators can be determined in the following explicit form:

vap 0 .. 0 0 /2 .. 0
0 L .. 0 "
K, = Vao 7 Ky, = 0 0 ... 0 ’
0 0 .. & 0 0 .0
! Le oo .. 0
7Kn = 00 .. 0 ) Kn+1 = " ’
0 0 ... 0 0 0 .. 0
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