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Carleman’s famous tangent approximation theorem derived in 1927 states that for every
function f ∈ C(R) and every error function ε, i.e. any positive function ε ∈ C(R), there exists
an entire function g : C → C such that

|f(t)− g(t)| < ε(t)

for all t ∈ R (see, for example, [1], Chap. 4, Sect. 3). Carleman’s theorem has been further
developed and refined in many papers (see bibliography in [1] and [2]). Carleman himself had
already generalized his result by replacing R by more general curves and systems of curves
in the complex plane. Many authors have studied, in connection with Carleman’s theorem,
approximation in combination with interpolation, as well as tangent approximation of smooth
functions together with their derivatives. In addition, approximation with a certain rate of
decrease of the error function was considered. Questions related to tangent and uniform ap-
proximation under restrictions on the growth of the approximating function were also studied.
We also note the multidimensional analog of Carleman’s theorem obtained by S. Sheinberg (see
references in [1]). Carleman’s theorem and its generalizations play an important role in the
study of boundary properties of analytic functions and in the study of the distribution of their
values (see [1], Chap. 4, Sect. 5).

The class of entire functions g : C → C coincides with the set of solutions of the differential
equation (
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)
g = 0, (x1, x2) ∈ R2.

In this regard, it is of interest to obtain analogues of Carleman’s theorem in which the approx-
imation is made by solutions of other linear partial differential equations in Rn, n ≥ 2, with
constant coefficients. For the solutions of most of these equations, many important and useful
properties of the class of entire functions are not fulfilled (for example, they as a rule do not
form an algebra), which prevents them from obtaining analogues of Carleman’s theorem by
known methods. The simplest example is the class of eigenfunctions of the Laplace operator in
R2, that is, the set of solutions of the equation(
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)
g + λg = 0, (x1, x2) ∈ R2,

for λ ̸= 0.
Here we study the approximation of continuous functions on rays in Rn by solutions of a

multidimensional convolution equation of the form

g ∗ T = 0, (1)

where T is a given radial distribution with compact support in Rn, n ≥ 2. The theory of
equations (1) originates in the work of the famous Romanian mathematician D. Pompeiu who
considered the case when T is the indicator of a ball in Rn (see, e.g., [3], [4]). Equation (1)
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as well as its various analogues and generalizations have been intensively studied over the past
fifty years by F. John, J. Delsarte, J.D. Smith, L. Zalcman, C.A. Berenstein, and others (see
the overviews in [3], [4] and monographs [5]–[7] which provide extensive bibliographies). We
note that with an appropriate choice of T they characterize such important classes of functions
as functions with zero spherical (or ball) means, functions with the property of mean values
from the theory of harmonic functions, and also solutions of elliptic differential equations of
the form

p(∆)g = 0,

where ∆ is the Laplace operator in Rn, and p is an arbitrary algebraic polynomial other than
the identical constant.

Everywhere in what follows, Rn is a Euclidean space of dimension n ≥ 2. Denote by
D′(Rn) (respectively, E ′(Rn)) the space of distributions (respectively, distributions with compact
supports) in Rn, D(Rn) is the space of finite infinitely differentiable functions in Rn, E(Rn) =
C∞(Rn).

Let T ∈ E ′(Rn), T ̸= 0. For every f ∈ D′(Rn), the convolution f ∗ T is defined by the
equality

⟨f ∗ T, φ⟩ = ⟨fy, ⟨Tx, φ(x+ y)⟩⟩ , φ ∈ D(Rn),

as a distribution in D′(Rn) (the index at the bottom of the distributions f and T means the
action on the specified variable). A distribution of the class

D′
T (Rn) = {f ∈ D′(Rn) : f ∗ T = 0}

is called mean periodic with respect to T .
Let SO(n) be the rotation group of Rn. A distribution T ∈ E ′(Rn) is called radial if it is

invariant under the group SO(n), i.e.

⟨T, φ(τx)⟩ = ⟨T, φ(x)⟩ for all φ ∈ E(Rn), τ ∈ SO(n).

Denote by E ′
♮(Rn) the set of all radial distributions T ∈ E ′(Rn). The simplest example of

distribution in the class E ′
♮(Rn) is the Dirac delta function δ0 with support at zero, i.e.

⟨δ0, φ⟩ = φ(0), φ ∈ E(Rn).

Let Sn−1 = {x ∈ Rn : |x| = 1}, l ∈ Sn−1, and assume that a ∈ Rn. As usual, the ray in Rn

with vertex a in direction l is the set

La,l = {x = (x1, . . . , xn) ∈ Rn : xj = aj + tlj, t ≥ 0, j = 1, . . . , n}.

Theorem 1. Let T ∈ E ′
♮(Rn) and

T ̸= cδ0, c ∈ C\{0}. (2)

Suppose also that a ∈ Rn, l ∈ Sn−1, and g ∈ C(La,l). Then for every positive function
ε ∈ C(La,l) there exists a function f ∈ (E ∩ D′

T )(Rn) satisfying the conditions
(i) for every x ∈ La,l

|g(x)− f(x)| < ε(x); (3)

(ii) there exists a function w ∈ C∞(R2) such that

f(x) = w
(
(x, l),

√
|x|2 − (x, l)2

)
(4)

for all x ∈ Rn.

2



By the arbitrariness of ε ∈ C(La,l), inequality (3) guarantees the tangent approximation of
g on La,l by smooth solutions to (1). Note that (4) means that the approximating function f
is radial in any hyperplane orthogonal to the ray La,l.

Observe that (2) is necessary in Theorem 1. Indeed, if T = cδ0 for some c ∈ C\{0} then
the zero function is the only solution to (1); therefore, the claim of Theorem 1 fails.
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