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Introduction. In the article [1], in order to describe heat and diffusion processes, a new
fourth-order partial differential equation was introduced

α1(∂t − κ2∆)u(t,x) + α2(∂t − κ2∆)2u(t,x) = f(t,x), (1)

where x = (x1, x2, . . . , xn), α1 and α2 are some real parameters, κ > 0 is a physical constant
characteristic of the medium, and ∆ is the Laplace operator. Also, in the paper [1], the
solution of the Cauchy problem for Eq. (1) was formally constructed in the one-dimensional
case. However, in the article [1], the most important thing about the Cauchy problem for
equation (1) is not presented: the uniqueness class and the correctness class.

Main result. The uniqueness class for the Cauchy problem for Eq. (1) consists of functions
g which satisfy the inequality

g(x) ⩽ C exp(b|x|2). (2)

The correctness class for the Cauchy problem for Eq. (1) is the is the class of locally inte-
grable functions g, which satisfy the inequality (2).

Thus, Eq. (1) does not improve the uniqueness class and correctness class of the heat
equation [3].
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