On informational completeness of covariant positive operator-valued measures G. G. Amosov¹

Keywords: locally compact Abelian groups, Pontryagin duality, projective unitary representations, covariant positive operator-valued measures

MSC2010 codes: 81P18, 20C25

Let G be a locally compact Abelian group with the Haar measure ν . Due to the Pontraygin duality there exists the unique Haar measure $\hat{\nu}$ on the group of characters \hat{G} such that the composition of forward and inverse Fourier transforms of functions from $\mathcal{H} = L^2(G)$ gives the identity transformation. Following to [1-2] define a projective unitary representation of the group $\mathfrak{G} = \hat{G} \times G$ in \mathcal{H} by the formula

$$(U_{\chi,g}f)(a) = \chi(a)f(a+g), \ \chi \in G, \ g \in G, \ f \in \mathcal{H}.$$

Then, the following statement holds true.

Theorem 1 [2]. Let f be a cyclic vector for the representation $(U_{\chi,q})$. Then,

$$\mathfrak{M}(B) = \int_{B} |U_{\chi,g}f\rangle \langle U_{\chi,g}f| \, d\hat{\nu}(\chi)d\nu(g), \ B \subset \mathfrak{G},$$

is a positive operator-valued measure (POVM) on the space \mathfrak{G} .

Any POVM \mathfrak{M} determines an affine map Φ from the set $\mathfrak{S}(\mathcal{H})$ consisting of all states (positive unit trace operators) in \mathcal{H} to the set $\Pi(\mathfrak{G})$ of all probability distributions on \mathfrak{G} defined by the formula

$$\Phi(\rho)[B] = Tr(\rho\mathfrak{M}(B))$$

for measurable $B \subset \mathfrak{G}$. The map Φ is known as a measurement channel. We call a POVM \mathfrak{M} informationally complete if given a probability distribution $\pi \in \Phi(\mathfrak{S}(H))$ there exists the unique state ρ such that $\Phi(\rho) = \pi$.

We introduced a family of contractions

$$T_{\chi,g} = \int_{\hat{G}\times G} \chi'(g)\overline{\chi(g')}d\hat{\nu}(\chi')d\nu(g'), \ \chi \in \hat{G}, \ g \in G,$$

and proved that [3] there is a family of complex-valued functions $f(\chi, g)$, $0 < |f(\chi, g)| \le 1$ such that

$$T_{\chi,g} = f(\chi,g)U_{\chi,g}, \ \chi \in G, \ g \in G,$$

and has shown that the following theorem takes palce.

Theorem 2 [3]. The POVM \mathfrak{M} is informationally complete. Moreover, the inverse formula for restoring a state ρ is given by

$$\rho = \int_{\mathfrak{G}} d\hat{\nu}(\chi) d\nu(g) f(\chi,g)^{-1} U_{\chi,g}^* \int_{\mathfrak{G}} d\hat{\nu}(\chi') d\nu(g') \chi(g') \overline{\chi'(g)} p_{\rho}(\chi',g'),$$

where

$$p_{\rho}(\chi,g) = \langle U_{\chi,g}f, \rho U_{\chi,g}f \rangle$$

is the density of probability distribution $\pi = \Phi(\rho)$.

¹Steklov Mathematical Institute, Moscow, Russia. Email: gramos@mi-ras.ru

References

- G. Amosov. On quantum tomography on locally compact groups. // Phys. Lett. A. 2022. Vol. 431. No. 128002, 7 pp.
- [2] G. Amosov. On quantum channels generated by covariant positive operator-valued measures on a locally compact group. // Quantum Inf. Process. 2022. Vol. 21. No. 312, 10 pp.
- [3] G. Amosov. On constructing informationally complete covariant positive operator-valued measures. // https://arxiv.org/abs/2301.12492