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Illustrative example: Mackey-Glass equation

Consider the Mackey-Glass equation

ẋ(t) = −τ0γ0x(t) + τ0β0f(x(t− 1)), (1)

where τ0, β0, γ0 > 0 are parameters and for an even integer k the
nonlinearity is given by

f(y) = y

1 + yk
(2)

It is well-known that the model exhibits chaotic behavior for a range of
parameters.

Problem: How to estimate the dimension of the resulting attractor?
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Operators and delay equations: main space

For some τ > 0 consider the main Hilbert space

H = L2([−τ, 0];µ;Rn), (3)

where µ = µL + δ0 is the sum of the Lebesgue measure on [−τ, 0] and
the δ-measure concentrated at 0.
For ϕ(·) ∈ H we consider

R
(1)
0 ϕ := ϕ(0) ∈ Rn and R(1)

1 ϕ := ϕ
∣∣
(−τ,0) ∈ L2(−τ, 0;Rn). (4)

We define an (unbounded) operator A in H = L2([−τ, 0];µ;Rn) by

R
(1)
0 (Aϕ) = Ãϕ and R(1)

1 (Aϕ) = d

dθ
ϕ, (5)

where Ã : C([−τ, 0];Rn) → Rn is a bounded linear operator.
For scalar (n = 1) equations we often have Ãϕ = αϕ(0) + βϕ(−τ).
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Operators and delay equations: additive symmetrization
of A

Recall that A is given by

R
(1)
0 (Aϕ) = Ãϕ and R(1)

1 (Aϕ) = d

dθ
ϕ, (6)

For the adjoint A∗ of A in H = L2([−τ, 0];µ;Rn) we have

R
(1)
1 (A∗ψ) = − d

dθ
ψ (7)

due to integration by parts. Thus, R(1)
1 (A+A∗)ϕ = 0, that is the

additive symmetrization A+A∗ has kernel with finite codimension ≤ n.

As a consequence, the Liouville trace formula (at least in the standard
inner product) cannot be utilized to obtain effective dimension estimates.
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Operators and delay equations: nonautonomous systems

Let us consider a semiflow (P, π) on a complete metric space P. Let
U := Rr1 and M := Rr2 be endowed with some (not necessarily
Euclidean) inner products. We consider the class of nonautonomous
delay equations in Rn over (P, π) given by

ẋ(t) = Ãxt + B̃F ′(πt(p))Cxt, (8)

where Ã : C([−τ, 0];Rn) → Rn, C : C([−τ, 0];Rn) → M are bounded
linear operators; B̃ : U → Rn is a linear operator and F ′ : P → L(M;U)
is a continuous mapping such that for some Λ > 0 we have

‖F ′(p)‖L(M;U) ≤ Λ for all p ∈ P. (9)
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Operators and delay equations: nonautonomous systems
(continuation)
We study the class of delay equations in Rn over (P, π) given by

ẋ(t) = Ãxt + B̃F ′(πt(p))Cxt, (10)
System (10) can be treated as an abstract evolution equation in
H = L2([−τ, 0];µ;Rn) given by

ξ̇(t) = Aξ(t) +BF ′(πt(p))Cξ(t), (11)
where A is the operator associated with Ã; B : U → H is the boundary
operator such that R(1)

0 Bη = B̃η and R(1)
1 Bη = 0 for η ∈ U and

Cϕ := CR
(1)
1 ϕ for ϕ ∈ H.

It can be shown that (11) generates a cocycle Ξ in H over (P, π). Let
Ξm be its extension to the m-fold exterior power H∧m of H.
Problem: Provide conditions for the uniform exponential stability of Ξm.

Our method: consider Ξ (resp. Ξm) as a perturbation of the
C0-semigroup generated by A (resp. its multiplicative extension).
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Operators and delay equations: eventually compact
C0-semigroup G(t) generated by A

Recall Ã : C([−τ, 0];Rn) → Rn is a bounded linear operator and A is
given by

R
(1)
0 (Aϕ) = Ãϕ and R(1)

1 (Aϕ) = d

dθ
ϕ, (12)

The operator A is defined on the domain D(A) given by the embedding
of ϕ ∈ W 1,2(−τ, 0;Rn) into ψ ∈ H such that R(1)

0 ψ = ϕ(0) and
R

(1)
1 ψ = ϕ.

It can be shown that A generates an eventually compact C0-semigroup
G = G(t), where t ≥ 0.

Mikhail Anikushin (SPbU) Compound cocycles and delay equations February 27–March 3, 2023 7 / 52



Operators and delay equations: compound operators

We define G⊗m(t) as the m-fold multiplicative tensor product of G(t).
It can be shown that G⊗m = G⊗m(t), where t ≥ 0, is an eventually
compact C0-semigroup in the m-fold tensor product H⊗m of H.
Analogously, G∧m(t) can be defined as the restriction of G⊗m(t) to the
m-fold exterior power H∧m of H.

Let A[⊗m] be the generator of G⊗m called the m-fold additive
compound of A. Its restriction A[∧m] to H∧m is the generator of G[∧m]

and it is called the m-fold antisymmetric additive compound of A.
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Spectra of A[⊗m] and A[∧m]

Theorem

We have spec(A[∧m]) ⊆ spec(A[⊗m]) and

spec(A[⊗m]) =


m∑

j=1
λj | λj ∈ spec(A) for any j ∈ {1, . . . ,m}

 . (13)

Moreover, any λ0 ∈ spec(A[⊗m]) is an isolated spectral point and there
exist finitely many, say N , distinct m-tuples

(
λk

1, . . . , λ
k
m

)
∈ Cm for

1 ≤ k ≤ N such that

λ0 =
m∑

j=1
λk

j and λk
j ∈ spec(A). (14)
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Spectra of A[⊗m] and A[∧m] (continuation)

Theorem (continuation)
In addition, each λk

j is an isolated spectral point of A and for the
corresponding spectral subspaces LA⊗m(λ0) and LA(λk

j ) we have

LA[⊗m](λ0) =
N⊕

k=1

m⊗
j=1

LA(λk
j ). (15)

Moreover, λ0 ∈ spec(A[∧m]) if and only if Π∧
mLA[⊗m](λ0) 6= {0}. In this

case the spectral subspace of A[∧m] w.r.t. λ0 is given by

LA[∧m](λ0) = Π∧
mLA[⊗m](λ0) = LA[⊗m](λ0) ∩ H∧m. (16)
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Operators and delay equations: description of H⊗m

Recall µ = µL + δ0.
Theorem

For the space H = L2([−τ, 0];µ;Rn), the mapping

ϕ1 ⊗ . . .⊗ ϕm 7→ (ϕ1 ⊗ . . .⊗ ϕm)(θ1, . . . , θm) := ϕ1(θ1) ⊗ . . .⊗ ϕm(θm)
(17)

induces a natural isometric isomorphism between H⊗m and

L⊗
m := L2([−τ, 0]m;µ⊗m; (Rn)⊗m). (18)

In particular, its restriction to H∧m gives an isometric isomorphism onto
the subspace L∧

m of antisymmetric functionsa.
aSuch functions satisfy for each permutation σ ∈ Sm

Φ(θσ(1), . . . , θσ(m)) = (−1)σTσ−1 Φ(θ1, . . . , θm). (19)

µ⊗m-almost everywhere on [−τ, 0]m; Tσ is the transposition operator in (Rn)⊗m.
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Operators and delay equations: k-faces of [−τ, 0]m w.r.t.
µ⊗m

Now let us choose 1 ≤ k ≤ m integers 1 ≤ j1 < . . . < jk ≤ m and
define the set Bj1...jk

(a k-face of [−τ, 0]m w.r.t. µ⊗m) as

Bj1...jk
= {0}j1−1 × (−τ, 0) × {0}j2−1 × (−τ, 0) . . . . (20)

We also put B0 := {0}m denoting the set corresponding to the unique
0-face w.r.t. µ⊗m and consider it as Bj1...jk

for k = 0.
From the definition of µ = µL + δ0 we have that µ⊗m can be
decomposed into the orthogonal sum given by

µ⊗m =
m∑

k=0

∑
j1...jk

µk
L(Bj1...jk

), (21)

where µk
L(Bj1...jk

) denotes the k-dimensional Lebesgue measure on
Bj1...jk

and µ0
L(B0) denotes the δ-measure concentrated at B0 = {0}m.
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Operators and delay equations: restriction operators

We define the restriction operator R(m)
j1...jk

as

L⊗
m 3 Φ 7→ R

(m)
j1...jk

Φ := Φ
∣∣
Bj1...jk

∈ L2((−τ, 0)k; (Rn)⊗m) (22)

Let ∂j1...jk
L⊗

m denote the subspace of L⊗
m where all the restriction

operators except possibly R(m)
j1...jk

vanish. We call ∂j1...jk
L⊗

m the
boundary subspace on Bj1...jk

. Clearly, the space L⊗
m decomposes into

the orthogonal inner sum as

L⊗
m =

m⊕
k=0

⊕
j1...jk

∂j1...jk
L⊗

m, (23)

where each boundary subspace ∂j1...jk
L⊗

m is naturally isomorphic to the
space L2((−τ, 0)k; (Rn)⊗m) via the restriction operator R(m)

j1...jk
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Operators and delay equations: example m = 2, n = 1

Figure: A representation of an element Φ from L2([−τ, 0]2;µ⊗2;R) via its four
restrictions R0Φ, R1Φ, R2Φ and R12Φ.
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Operators and delay equations: action of A[⊗m]

Let W2
D((−τ, 0)k; (Rn)m) be the space of Φ ∈ L2((−τ, 0)k; (Rn)m) with

L2-summable diagonal derivative ∑k
l=1

∂
∂θl

Φ.

Theorem

For the m-fold additive compound A[⊗m] of A and any Φ ∈ D(A[⊗m] we
have Rj1...jk

Φ ∈ W2
D((−τ, 0)k; (Rn)m) anda

Rj1...jk

(
A[⊗m]Φ

)
=

k∑
l=1

∂

∂θl
Rj1...jk

Φ+
∑

j /∈{j1,...,jk}
Ã

(k)
j,J(j)Rjj1...jk

Φ, (24)

for any 0 ≤ k ≤ m, 1 ≤ j1 < j2 < . . . < jk ≤ m.
aHere Rj1...jk Φ is considered as a function of θ1, . . . , θk and Ã

(k)
j,J(j) is an operator

associated with Ã.
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Compound delay equations: structural Cauchy formula

For T > 0 let Φν(·) be a mild solution on [0, T ] to

Φ̇(t) = (A[⊗m] + νI)Φ(t) + η(t), (25)

where η(·) ∈ L2(0, T ; L⊗m). Put ρν(t) := eνt.

Theorem (Structural Cauchy formula)
For every 1 ≤ k ≤ m and 1 ≤ j1 < . . . < jk ≤ m there exist functions
X = Xj1...jk

∈ L2(Ck
T ; (Rn)⊗m) and

Y = Yj1...jk
∈ L2(0, T ;L2((−τ, 0)k; (Rn)⊗m)) such that Rj1...jk

Φν is
given by the sum of the ρν-adornment of X and ρν-twisting of Y

Rj1...jk
Φ(t) = ΦX,ρν (t) + ΨY,ρν (t) for all t ∈ [0, T ]. (26)
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Structural Cauchy formula: adorned functions

For T > 0 define the set

Cm
T =

⋃
t∈[0,T ]

([−τ, 0]m + t) , (27)

where t = (t, . . . , t) ∈ Rm.
For simplicity, let ρ(t) = ρν(t) = eνt and fix a Hilbert space F. Then for
each X ∈ L2(Cm

T ;F) we define a function Φ(t) for t ∈ [0, T ] as

Φ(t) = ΦX,ρ(t) := ρ(t)X(t+ ·1, . . . , t+ ·m) ∈ L2((−τ, 0)m;F). (28)

In this case we say that Φ is a ρ-adornment of X or that Φ is
ρ-adorned) over Cm

T . It is clear that Φ determines X uniquely.
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Structural Cauchy formula: spaces of adorned functions

We define the space Y2
ρ (0, T ;L2(−τ, 0;F)) of all ρ-adorned over Cm

T

functions Φ(·) and endow it with the norm given by

‖Φ(·)‖Y2
ρ (0,T ;L2(−τ,0;F)) :=

=

∫
(−τ,0)m

∣∣∣X(θ)
∣∣∣2
F
dθ +

m∑
j=1

∫
Bĵ

dθ̂j(θ)
∫ T

0

∣∣∣ρ(t)X(θ + t)
∣∣∣2
F
dt

1/2

,

(29)

where dθ̂j is the (m− 1)-dimensional Lebesgue measure on the
(m− 1)-face Bĵ = B1...ĵ...m.
In the case T = ∞ we additionally require that the norm in (29) is finite.
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Structural Cauchy formula: twisted functions

Now let Tm(t), where t ≥ 0, be the diagonal translation semigroup in
L2((−τ, 0)m;F), i.e.

(Tm(t)Φ)(θ) =
{

Φ(θ + t), if θ + t ∈ (−τ, 0)m,

0, otherwise .
(30)

Here θ = (θ1, . . . , θm) ∈ [−τ, 0]m and t = (t, . . . , t) ∈ Rm.
For a given T > 0 let Ψ(·) be a function on [0, T ] taking values in
L2((−τ, 0)m;F) such that

Ψ(t) = ΨY,ρ(t) := ρ(t)
∫ t

0
Tm(t− s)Y (s)ds for all t ∈ [0, T ] (31)

for some Y (·) ∈ L2(0, T ;L2((−τ, 0)m;F)). We say that Ψ is a
ρ-twisting of Y or simply that Ψ is ρ-twisted. It can be shown that Ψ
determines Y uniquely.
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Structural Cauchy formula: spaces of twisted functions

We consider the space T 2
ρ (0, T ;L2((−τ, 0)m;F)) of ρ-twisted functions

and endow it with the norm

‖Ψ(·)‖T 2
ρ (0,T ;L2((−τ,0)m;F)) :=

(∫ T

0
‖ρ(t)Y (t)‖2

L2((−τ,0)m;F)dt

)1/2

.

(32)
For T = ∞ we require the value in (32) to be finite.
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Structural Cauchy formula: uniqueness

It turns out that the spaces Y2
ρ (0, T ;L2(−τ, 0;F)) and

T 2
ρ (0, T ;L2((−τ, 0)m;F)) are linearly independent, i.e.

ΦX,ρ(t) + ΨY,ρ(t) = 0 for all t ∈ [0, T ]
if and only if

ΦX,ρ(t) = ΨY,ρ(t) = 0 for all t ∈ [0, T ].
(33)
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Compound delay equations: structural Cauchy formula
(continuation)
For T > 0 let Φν(·) be a mild solution on [0, T ] to

Φ̇(t) = (A[⊗m] + ν)Φ(t) + η(t), (34)

where η(·) ∈ L2(0, T ; L⊗m). Put ρν(t) := eνt.

Theorem (Structural Cauchy formula, continuation)
…such that Rj1...jk

Φν is given by the sum of the ρν-adornment of X and
ρν-twisting of Y

Rj1...jk
Φ(t) = ΦX,ρν (t) + ΨY,ρν (t) for all t ∈ [0, T ]. (35)

Moreover, the norms of ΦX,ρν in Y2
ρ (0, T ;L2(−τ, 0; (Rn)⊗m)) and ΨY,ρν

in T 2
ρ (0, T ;L2((−τ, 0)m; (Rn)⊗m))) can be estimated in terms of

|Φν(0)|L⊗m , ‖Φν(·)‖L2(0,T ;L⊗m) and ‖η(·)‖L2(0,T ;L⊗m) with some
uniform in T constant.
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Measurement operators

For given Hilbert spaces F and Mγ , let γ(θ) ∈ L(F;Mγ) be an
operator-valued function of bounded variation on θ ∈ [−τ, 0].
For given 1 ≤ J ≤ k we consider the operator Cγ

J from C([−τ, 0]k+1;F)
to C([−τ, 0]k;Mγ) given by

Cγ
J Φ(θĴ) =

∫ 0

−τ
dγ(θJ)Φ(θ1, . . . , θk+1), (36)

where θĴ := (θ1, . . . , θ̂J , . . . , θk+1).
For example, for k = 1 and dγ = δ−τ we have (Cγ

1 Φ)(θ) = Φ(−τ, θ) and
(Cγ

2 Φ)(θ) = Φ(θ,−τ).
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Pointwise measurement operators

We want to interpret the operator ICγ
J

acting on Φ(·) from
L2(0, T ;L2((−τ, 0)k+1;F)) by pointwise measurement of Cγ

J , i.e.

(ICγ
J
Φ)(t) = Cγ

J Φ(t) (37)

It turns out that it is possible to interpret ICγ
J

as a bounded operator if
we restrict ourselves with

Φ(t) = ΦX,ρ(t) + ΨY,ρ(t), (38)

where ΦX,ρ ∈ Y2
ρ (0, T ;L2(−τ, 0;F)) and ΨY,ρ ∈ T 2

ρ (0, T ;L2(−τ, 0;F)).
We call call such functions as in (38) ρ-agalmanated.
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Nonautonomous systems in abstract form

Recall the class of nonautonomous delay equations in Rn over a semiflow
(P, π) given by

ẋ(t) = Ãxt + B̃F ′(πt(p))Cxt, (39)

and that system (39) can be treated as an abstract evolution equation in
H = L2([−τ, 0];µ;Rn) given by

ξ̇(t) = Aξ(t) +BF ′(πt(p))Cξ(t). (40)

where B : U → H is the boundary operator such that R(1)
0 Bη = B̃η and

R
(1)
1 Bη = 0 for η ∈ U and Cϕ := CR

(1)
1 ϕ for ϕ ∈ H.

Recall that (40) generates a cocycle Ξ in H.
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Compound delay equations: infinitesimal description of
Ξm

Theorem

For any m solutions ξ1(t), . . . , ξm(t) of (40) with ξ1(0), …,
ξm(0) ∈ D(A), the function Φ(t) = ξ1(t) ⊗ . . .⊗ ξm(t) for t ≥ 0 is a
C1-differentiable L⊗

m-valued mapping such that Φ(t) ∈ D(A[⊗m]),
Φ(t) ∈ C([−τ, 0]m; (Rn)⊗m) continuously depend on t ≥ 0 anda

Φ̇(t) = A[⊗m]Φ(t) +
∑

j1...jk

∑
j /∈{j1,...,jk}

Bj1...jk
j F ′

j(πt(p))C(k)
j,J(j)Rjj1...jk

Φ(t),

(41)
where the sum taken over all 1 ≤ j1 < . . . < jk ≤ m with
0 ≤ k ≤ m− 1.

aHere J(j) = J(j; j1 . . . jk) denotes an integer J such that j is the J-th element
of the set {j, j1, . . . , jk} arranged by increasing
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Compound delay equations: definition of C
(k)
j,J

For each operator C : C([−τ, 0];Rn) → M = Rr2 there exists a
(r2 × n)-matrix of bounded variation c(θ) such that

Cϕ =
∫ 0

−τ
dc(θ)ϕ(θ) for all ϕ ∈ C([−τ, 0];Rn). (42)

Then for j ∈ {1, . . . ,m}, we put γj(θ) to be the linear operator from
F := (Rn)⊗m to Mj := (Rn)⊗j−1 ⊗ M ⊗ (Rn)m−j such that

x1 ⊗ . . .⊗ xj ⊗ . . .⊗ xm 7→ x1 ⊗ . . .⊗ c(θ)xj ⊗ . . . xm. (43)

Then γj(θ) ∈ L(F;Mj) and we put C(k)
j,J := Cγ

J with γ = γj , and
Mγ = Mj .
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Compound delay equations: definition of F ′
j(p)

We define F ′
j(p) as an operator form Mj = (Rn)⊗j−1 ⊗M⊗ (Rn)m−j to

Uj = (Rn)⊗j−1 ⊗ U ⊗ (Rn)m−j by

x1 ⊗ . . .⊗ xj ⊗ . . . xm → x1 ⊗ . . .⊗ F ′(p)xj ⊗ . . . xm. (44)

We use the same notation to denote the operator between spaces of
functions taking values in Mj and Uj respectively where F ′

j(p) is applied
pointwisely.
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Compound delay equations: definition of Bj1...jk
j

Recall Uj = (Rn)⊗j−1 ⊗ U ⊗ (Rn)m−j .
For 0 ≤ k ≤ m− 1 we define a linear bounded operator B(j1...jk)

j which
takes an element ΦU from L2((−τ, 0)k;Uj) to an element from
∂j1...jk

L⊗
m defined for (θ1, . . . , θm) ∈ Bj1...jk

as

(
Bj1...jk

j ΦU
)

(θ1, . . . , θm) := (IdR1,j ⊗B̃⊗ IdR2,j )ΦU(θj1 , . . . , θjk
), (45)

where R1,j := (Rn)⊗(j−1) and R2,j := (Rn)⊗(m−j).
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Compound delay equations: associated control system in
L⊗
m

Let us consider the control space given by the outer orthogonal sum

U⊗
m :=

⊕
j1...jk

⊕
j /∈{j1,...,jk}

L2((−τ, 0)k;Uj), (46)

where the indices j1 . . . jk and j are such that 1 ≤ j1 < . . . < jk ≤ m
with 0 ≤ k ≤ m− 1 and j ∈ {1, . . . ,m}. We define a control operator
B⊗

m ∈ L(U⊗
m; L⊗

m) as (see (45))

B⊗
mη :=

∑
j1...jk

∑
j /∈{j1,...,jk}

Bj1...jk
j ηj

j1...jk
for η = (ηj

j1...jk
) ∈ U⊗

m. (47)

We associate to the pair (A[⊗m], B⊗
m) a control system as

Φ̇(t) = A[⊗m]Φ(t) +B⊗
mη(t), (48)

where η(·) ∈ L2(0, T ;U⊗
m).
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Compound delay equations: subspace L∧
m: definition

Recall that for H = L2([−τ, 0];µ;Rn) the m-fold exterior product H∧m

is naturally isomorphic to the subspace L∧
m of antisymmetric functions in

L⊗
m = L2([−τ, 0]m;µ⊗m; (Rn)⊗m).

Recall that such functions satisfy for each permutation σ ∈ Sm the
identity

Φ(θσ(1), . . . , θσ(m)) = (−1)σTσ−1Φ(θ1, . . . , θm). (49)

µ⊗m-almost everywhere on [−τ, 0]m. Here Tσ is the transposition
operator in (Rn)⊗m w.r.t. σ, i.e.

Tσ(x1 ⊗ . . .⊗ xm) := xσ(1) ⊗ . . .⊗ xσ(m). (50)
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Subspace L∧
m: antisymmetric relations

For each permutation σ ∈ Sm we have the identity

Φ(θσ(1), . . . , θσ(m)) = (−1)σTσ−1Φ(θ1, . . . , θm). (51)

µ⊗m-almost everywhere on [−τ, 0]m.
This relations induce antisymmetric relations on restrictions to k-faces.
Namely, for any 0 ≤ k ≤ m, any 1 ≤ j1 < . . . < jm ≤ m and σ ∈ Sm we
have

(Rj1...jk
Φ)(θj1 , . . . , θjk

) = (−1)σTσ(Rσ−1(j1)...σ−1(jk)Φ)(θjσ(1) , . . . , θjσ(k)),

for almost all (θj1 , . . . , θjk
) ∈ (−τ, 0)k,

(52)

where σ ∈ Sk is such that σ−1(jσ(1)) < . . . < σ−1(jσ(k)).
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Subspace L∧
m: decomposition

Note that the antisymmetric relations (52) link each ∂j1...jk
L⊗

m with
other boundary subspaces on k-faces. Thus, it is convenient to define for
a given k ∈ {0, . . . ,m} the subspace

∂kL∧
m :=

Φ ∈
⊕

j1...jk

∂j1...jk
L⊗

m | Φ satisfies (52)

 , (53)

where the sum is taken over all 1 ≤ j1 < . . . < jk ≤ m. We say that k is
improper if ∂kL∧

m is zero. Otherwise we say that k is proper. For
example, when n = 1, gives that any k ≤ m− 2 is improper and only
k = m− 1 and k = m are proper.
Clearly, L∧

m decomposes into the orthogonal sum of all ∂kL∧
m as

L∧
m =

m⊕
k=0

∂kL∧
m. (54)
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Definition of U∧
m

Consider η = (ηj
j1...jk

) ∈ U⊗
m satisfying for all k ∈ {0, . . . ,m− 1},

1 ≤ j1 < . . . < jk ≤ m, j /∈ {j1, . . . , jk} and any σ ∈ Sm the relations

ηj
j1...jk

(θj1 , . . . , θjk
) = (−1)σTσ−1η

σ(j)
σ(jσ(1))...σ(jσ(k))(θjσ(1) , . . . , θjσ(k)),

for almost all (θj1 , . . . , θjk
) ∈ (−τ, 0)k,

(55)

where σ ∈ Sk is such that σ(jσ(1)) < . . . < σ(jσ(k)).
Now we define U∧

m as

U∧
m := {η = (ηj

j1...jk
) ∈ U⊗

m | η satisfies (55) and
ηj

j1...jk
= 0 for improper k}.

(56)
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Compound delay equations: associated control system in
L∧
m

Recall the system just considered in the antisymmetric case

Φ̇(t) = A[∧m]Φ(t) +
∑

j1...jk

∑
j /∈{j1,...,jk}

Bj1...jk
j F ′

j(πt(p))C(k)
j,J(j)Rjj1...jk

Φ(t),

(57)
We associate to (57) the linear system in L∧

m as

Φ̇(t) = A[∧m]Φ(t) +B∧
mη(t), (58)

where η(·) ∈ L2(0, T ;U∧
m) and B∧

m is defined on U∧
m by the restriction of

B⊗
m from U⊗

m to U∧
m.

Mikhail Anikushin (SPbU) Compound cocycles and delay equations February 27–March 3, 2023 35 / 52



Compound delay equations: Lipschitz quadratic
constraint
Recall

Φ̇(t) = A[∧m]Φ(t) +
∑

j1...jk

∑
j /∈{j1,...,jk}

Bj1...jk
j F ′

j(πt(p))C(k)
j,J(j)Rjj1...jk

Φ(t),

(59)
and

Φ̇(t) = A[∧m]Φ(t) +B∧
mη(t). (60)

Since ‖F ′(p)‖L(U;M) ≤ Λ, for ηj
j1...jk

(t) = F ′
j(πt(p))C(k)

j,J(j)Rjj1...jk
Φ(t)

we have the quadratic constraint F(Φ(t), η(t)) ≥ 0 satisfied, where

F(Φ, η) =

=
∑

j1...jk

∑
j /∈{j1,...,jk}

(Λ2‖C(k)
j,J(j)Rjj1...jk

Φ‖2
L2((−τ,0)k;Mj)−

−‖ηj
j1...jk

‖2
L2((−τ,0)k;Uj)),

(61)
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Extension of Cγ
J to Ek+1(F)

We need to consider Cγ
J in a wider context. For this we define the space

Em(F) of all functions Φ ∈ L2((−τ, 0)m;F) such that for any
j ∈ {1, . . . ,m} there exists Φb

j ∈ C([−τ, 0];L2((−τ, 0)m−1;F) such that
we have the identity in L2((−τ, 0)m−1;F) as1

Φ
∣∣
Bĵ+θej

= Φb
j(θ) for almost all θ ∈ [−τ, 0]. (62)

Let us endow Em(F) with the norm

‖Φ‖Em(F) := sup
1≤j≤m

sup
θ∈[−τ,0]

‖Φb
j(θ)‖L2((−τ,0)m−1;F) (63)

which makes Em(F) a Banach space.
We have that Cγ

J can be extended to a bounded operator from Ek+1(F)
to L2((−τ, 0)k;Mγ).

1Recall that we naturally identify Bĵ + θej with [−τ, 0]m−1 by omitting the j-th
coordinate.
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Intermediate Banach spaces E⊗
m and E∧

m

We define the Banach space E⊗
m through the outer direct sum as

E⊗
m :=

m⊕
k=0

⊕
j1...jk

Ek((Rn)⊗m) (64)

and endow it with any of standard norms. We embed the space E⊗
m into

L⊗
m by naturally sending each element from the j1 . . . jk-th summand in

(64) to ∂j1...jk
L⊗

m. We have that

D(A[⊗m]) ⊂ E⊗
m ⊂ L⊗

m, (65)

where all the embeddings are dense and continuous.
Let E∧

m be the intersection of E⊗
m with L∧

m. Analogously, we have

D(A[∧m]) ⊂ E∧
m ⊂ L∧

m, (66)

where all the embeddings are dense and continuous.
Mikhail Anikushin (SPbU) Compound cocycles and delay equations February 27–March 3, 2023 38 / 52



Measurement space M⊗
m and the operator C⊗

m

Consider the measurement space M⊗
m given by the outer orthogonal sum

M⊗
m :=

⊕
j1...jk

⊕
j /∈∈{j1,...,jk}

L2((−τ, 0)k;Mj), (67)

where the sum is taken over all k ∈ {0, . . . ,m− 1},
1 ≤ j1 < . . . < jk ≤ m and j ∈ {1, . . . ,m}.

Define C⊗
m ∈ L(E⊗

m;M⊗
m) by

C⊗
mΦ :=

∑
j1...jk

∑
j /∈{j1,...,jk}

C
(k)
j,J(j)Rjj1...jk

Φ, (68)

where the sum is taken in M⊗
m.
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Measurement space M∧
m and the operator C∧

m

Let us consider M = (M j
j1...jk

) ∈ M⊗
m which satisfy for all

k ∈ {0, . . . ,m− 1}, 1 ≤ j1 < . . . < jk ≤ m, j /∈ {j1, . . . , jk} and any
σ ∈ Sm the relations

M j
j1...jk

(θj1 , . . . , θjk
) = (−1)σTσ−1M

σ(j)
σ(jσ(1))...σ(jσ(k))(θjσ(1) , . . . , θjσ(k)),

for almost all (θj1 , . . . , θjk
) ∈ (−τ, 0)k,

(69)

where σ ∈ Sk is such that σ(jσ(1)) < . . . < σ(jσ(k)).
We define M∧

m as

M∧
m := {M = (M j

j1...jk
) ∈ M⊗

m | M satisfies (69) and
M j

j1...jk
= 0 for improper k}.

(70)

Let C∧
m be the restriction of C⊗

m to E∧
m. We have C∧

m ∈ L(E∧
m;M∧

m).
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Lipschitz quadratic constraints via C∧
m

One can rewrite the quadratic form

F(Φ, η) =

=
∑

j1...jk

∑
j /∈{j1,...,jk}

(Λ2‖C(k)
j,J(j)Rjj1...jk

Φ‖2
L2((−τ,0)k;Mj)−

−‖ηj
j1...jk

‖2
L2((−τ,0)k;Uj)),

(71)

in a compact way using C∧
m as

F(Φ, η) = Λ2‖C∧
mΦ‖2

M∧
m

− ‖η‖2
U∧

m
. (72)
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General quadratic constraints

One can generalize quadratic constraints as follows. Let G(M,η) be a
bounded quadratic form of M ∈ M∧

m and η ∈ U∧
m. Then we put

F(Φ, η) := G(C∧
mΦ, η) for Φ ∈ E∧

m and η ∈ U∧
m. (73)

We say that F is a quadratic constraint if F(Φ, η) ≥ 0 is satisfied for all
Φ ∈ E∧

m, any p ∈ P and η ∈ U∧
m such that

ηj
j1...jk

= F ′
j(p)C(k)

j,J(j)Rjj1...jk
Φ for all k ∈ {0, . . . ,m− 1},

1 < j1 < . . . jk < m and j /∈ {j1, . . . , jk}.
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Resolvent estimates in E⊗
m and E∧

M

Theorem

For regular (=nonspectral) points p ∈ C of A[⊗m] we have

‖(A[⊗m] − pI)−1‖L(L⊗
m;E⊗

m) ≤ C1(p) · ‖(A[⊗m] − pI)−1‖L(L⊗
m) + C2(p),

(74)
where the constants C1(p) and C2(p) depend on max{1, e−τ Re p} in a
monotonically increasing way. Moreover, analogous statement holds for
A[∧m].
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Frequency inequalities associated with F

We associate with each F the frequency inequality on the line
Re p = −ν0 (with ν0 ∈ R) avoiding the spectrum of A[∧m] as follows.

(FI) For some δ > 0 and any p with Re p = −ν0 we have

FC(−(A[∧m] − pI)−1B∧
mη, η) ≤ −δ |η|2(U∧

m)C for any η ∈
(
U∧

m

)C
.

(75)
Here FC is the Hermitian extension of F .
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Existence of Lyapunov functionals for Ξm

Theorem

Suppose for some ν0 ∈ R the spectrum of A[∧m] avoids the line
−ν0 + iR and there are exactly j eigenvalues with Reλ ≥ −ν0. Let the
frequency inequality w.r.t. F defining a quadratic constraint be satisfied.
Then there exists a bounded self-adjoint operator P ∈ L(L∧

m) such that
for its quadratic form V (Φ) := (Φ, PΦ)L∧

m
and some δV > 0 for the

cocycle Ξm in L∧
m corresponding to (40) we have

e2ν0tV (Ξt
m(p,Φ)) − V (Φ) ≤ −δV

∫ t

0
e2ν0s |Ξs

m(p,Φ)|2L∧
m
ds. (76)

for any t ≥ 0, p ∈ P and Φ ∈ L∧
m.

Moreover, V (·) is positive on the stable subspace Ls
m(ν0) and negative

on the unstable subpsace Lu
m(ν0) of A[∧m] + ν0I.
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Exponential stability of Ξm and gaps in the Sacker-Sell
spectrum

In the case j = 0 and ν0 > 0, from (76) we have the uniform exponential
stability of the cocycle Ξm with the exponent ν0, i.e. for some
M(ν0) > 0 we have

|Ξt
m(p,Φ)|L∧

m
≤ M(ν0)e−ν0t|Φ|L∧

m
for all t ≥ 0, p ∈ P,Φ ∈ L∧

m. (77)

In the case (P, π) is a flow, from (76) we obtain that −ν0 is a gap of
rank j in the Sacker-Sell spectrum of Ξm, i.e. the cocycle eν0tΞt

m admits
uniform exponential dichotomy with the unstable bundle of rank j. To
construct the corresponding bundles, one may use our work [4]. Here it
is important that the cocycle Ξm is uniformly eventually compact.
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Numerical computation of frequency inequalities:
self-adjoint nonlinearities
Suppose M = U and that F ′(p) is a self-adjoint operator satisfying
0 ≤ (F ′(p)M,M) ≤ Λ2(M,M) for each p ∈ P and M ∈ M. Then for
the quadratic form G(M,η) of M ∈ M∧

m and η ∈ U∧
m given by

G(M,η) := Λ(M,η)U∧
m

− (η, η)U∧
m
, (78)

the associated quadratic form F(Φ, η) := G(C∧
mΦ, η) of Φ ∈ E∧

m and
η ∈ U∧

m defines a quadratic constraint.
Then the frequency inequality associated with F is equivalent to

inf
ω∈R

inf
η∈(U∧

m)C,
η 6=0

(SW (−ν0 + iω)η, η)(U∧
m)C

|η|2(U∧
m)C

+ Λ−1 > 0, (79)

where SW (p) := 1
2(W (p) +W ∗(p)) is the additive symmetrization of

W (p) = −C∧
m(A[∧m] − pI)−1B∧

m.
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Numerical computation of frequency inequalities:
approximation

Recall the frequency inequality associated with F is equivalent to

inf
ω∈R

inf
η∈(U∧

m)C,
η 6=0

(SW (−ν0 + iω)η, η)(U∧
m)C

|η|2(U∧
m)C

+ Λ−1 > 0, (80)

where SW (p) := 1
2(W (p) +W ∗(p)) is the additive symmetrization of

W (p) = −C∧
m(A[∧m] − pI)−1B∧

m.
Take an orthogonal basis e1, e2, . . . in (U∧

m)C = (M∧
m)C. Let PN be the

orthogonal projector onto Span{e1, . . . , eN }. Let us put

αN (ω) := inf
η∈(U∧

m)C,
η 6=0

(PNSW (−ν0 + iω)PNη, PNη)(U∧
m)C

|PNη|2(U∧
m)C

(81)
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Numerical computation of frequency inequalities:
pointwise convergence

Recall

αN (ω) := inf
η∈(U∧

m)C,
η 6=0

(PNSW (−ν0 + iω)PNη, PNη)(U∧
m)C

|PNη|2(U∧
m)C

(82)

It can be shown that for each ω ∈ R we have αN (ω) → α(ω) as
N → ∞, where

α(ω) = inf
η∈(U∧

m)C,
η 6=0

(SW (−ν0 + iω)η, η)(U∧
m)C

|η|2(U∧
m)C

. (83)

Mikhail Anikushin (SPbU) Compound cocycles and delay equations February 27–March 3, 2023 49 / 52



Numerical computation of frequency inequalities:
problems

For each ω ∈ R we have αN (ω) → α(ω) as N → ∞, but
1. The convergence depends on ω: the wider interval of ω we want,

the larger N we should take.
2. Computing αN (ω) requires solving the resolvent equation, that is a

first-order PDE in the qube [−τ, 0]m with boundary conditions
containing both partial derivatives and delays, for each basis vector
upto N th.

3. For large N we deal with highly oscillating functions in the basis
that cause high computational errors.

4. Unlike in the case m = 1, α(ω) do not vanish as ω → ∞. But, in
concrete examples, it seems to display an asymptotically as ω → ∞
periodic (or almost periodic) pattern.
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