Frequency-domain conditions for the exponential stability of compound cocycles generated by delay equations and effective dimension estimates of global attractors

Mikhail Anikushin

St. Petersburg University Faculty of Mathematics and Mechanics

Department of Applied Cybernetics
demolishka@gmail.com

February 27-March 3, 2023

Illustrative example: Mackey-Glass equation

Consider the Mackey-Glass equation

$$
\begin{equation*}
\dot{x}(t)=-\tau_{0} \gamma_{0} x(t)+\tau_{0} \beta_{0} f(x(t-1)), \tag{1}
\end{equation*}
$$

where $\tau_{0}, \beta_{0}, \gamma_{0}>0$ are parameters and for an even integer k the nonlinearity is given by

$$
\begin{equation*}
f(y)=\frac{y}{1+y^{k}} \tag{2}
\end{equation*}
$$

It is well-known that the model exhibits chaotic behavior for a range of parameters.

Problem: How to estimate the dimension of the resulting attractor?

Operators and delay equations: main space

For some $\tau>0$ consider the main Hilbert space

$$
\begin{equation*}
\mathbb{H}=L_{2}\left([-\tau, 0] ; \mu ; \mathbb{R}^{n}\right), \tag{3}
\end{equation*}
$$

where $\mu=\mu_{L}+\delta_{0}$ is the sum of the Lebesgue measure on $[-\tau, 0]$ and the δ-measure concentrated at 0 .
For $\phi(\cdot) \in \mathbb{H}$ we consider

$$
\begin{equation*}
R_{0}^{(1)} \phi:=\phi(0) \in \mathbb{R}^{n} \text { and } R_{1}^{(1)} \phi:=\left.\phi\right|_{(-\tau, 0)} \in L_{2}\left(-\tau, 0 ; \mathbb{R}^{n}\right) \tag{4}
\end{equation*}
$$

We define an (unbounded) operator A in $\mathbb{H}=L_{2}\left([-\tau, 0] ; \mu ; \mathbb{R}^{n}\right)$ by

$$
\begin{equation*}
R_{0}^{(1)}(A \phi)=\widetilde{A} \phi \text { and } R_{1}^{(1)}(A \phi)=\frac{d}{d \theta} \phi \tag{5}
\end{equation*}
$$

where $\widetilde{A}: C\left([-\tau, 0] ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ is a bounded linear operator. For scalar $(n=1)$ equations we often have $\widetilde{A} \phi=\alpha \phi(0)+\beta \phi(-\tau)$.

Operators and delay equations: additive symmetrization of A

Recall that A is given by

$$
\begin{equation*}
R_{0}^{(1)}(A \phi)=\widetilde{A} \phi \text { and } R_{1}^{(1)}(A \phi)=\frac{d}{d \theta} \phi, \tag{6}
\end{equation*}
$$

For the adjoint A^{*} of A in $\mathbb{H}=L_{2}\left([-\tau, 0] ; \mu ; \mathbb{R}^{n}\right)$ we have

$$
\begin{equation*}
R_{1}^{(1)}\left(A^{*} \psi\right)=-\frac{d}{d \theta} \psi \tag{7}
\end{equation*}
$$

due to integration by parts. Thus, $R_{1}^{(1)}\left(A+A^{*}\right) \phi=0$, that is the additive symmetrization $A+A^{*}$ has kernel with finite codimension $\leq n$.

As a consequence, the Liouville trace formula (at least in the standard inner product) cannot be utilized to obtain effective dimension estimates.

Operators and delay equations: nonautonomous systems

Let us consider a semiflow (\mathcal{P}, π) on a complete metric space \mathcal{P}. Let $\mathbb{U}:=\mathbb{R}^{r_{1}}$ and $\mathbb{M}:=\mathbb{R}^{r_{2}}$ be endowed with some (not necessarily Euclidean) inner products. We consider the class of nonautonomous delay equations in \mathbb{R}^{n} over (\mathcal{P}, π) given by

$$
\begin{equation*}
\dot{x}(t)=\widetilde{A} x_{t}+\widetilde{B} F^{\prime}\left(\pi^{t}(\mathfrak{p})\right) C x_{t}, \tag{8}
\end{equation*}
$$

where $\widetilde{A}: C\left([-\tau, 0] ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}, C: C\left([-\tau, 0] ; \mathbb{R}^{n}\right) \rightarrow \mathbb{M}$ are bounded linear operators; $\widetilde{B}: \mathbb{U} \rightarrow \mathbb{R}^{n}$ is a linear operator and $F^{\prime}: \mathcal{P} \rightarrow \mathcal{L}(\mathbb{M} ; \mathbb{U})$ is a continuous mapping such that for some $\Lambda>0$ we have

$$
\begin{equation*}
\left\|F^{\prime}(\mathfrak{p})\right\|_{\mathcal{L}(\mathbb{M} ; \mathbb{U})} \leq \Lambda \text { for all } \mathfrak{p} \in \mathcal{P} \tag{9}
\end{equation*}
$$

Operators and delay equations: nonautonomous systems (continuation)

We study the class of delay equations in \mathbb{R}^{n} over (\mathcal{P}, π) given by

$$
\begin{equation*}
\dot{x}(t)=\widetilde{A} x_{t}+\widetilde{B} F^{\prime}\left(\pi^{t}(\mathfrak{p})\right) C x_{t} \tag{10}
\end{equation*}
$$

System (10) can be treated as an abstract evolution equation in $\mathbb{H}=L_{2}\left([-\tau, 0] ; \mu ; \mathbb{R}^{n}\right)$ given by

$$
\begin{equation*}
\dot{\xi}(t)=A \xi(t)+B F^{\prime}\left(\pi^{t}(\mathfrak{p})\right) C \xi(t) \tag{11}
\end{equation*}
$$

where A is the operator associated with $\widetilde{A} ; B: \mathbb{U} \rightarrow \mathbb{H}$ is the boundary operator such that $R_{0}^{(1)} B \eta=\widetilde{B} \eta$ and $R_{1}^{(1)} B \eta=0$ for $\eta \in \mathbb{U}$ and $C \phi:=C R_{1}^{(1)} \phi$ for $\phi \in \mathbb{H}$.
It can be shown that (11) generates a cocycle Ξ in \mathbb{H} over (\mathcal{P}, π). Let
Ξ_{m} be its extension to the m-fold exterior power $\mathbb{H}^{\wedge m}$ of \mathbb{H}.
Problem: Provide conditions for the uniform exponential stability of Ξ_{m}.
Our method: consider Ξ (resp. Ξ_{m}) as a perturbation of the C_{0}-semigroup generated by A (resp. its multiplicative extension).

Operators and delay equations: eventually compact

 C_{0}-semigroup $G(t)$ generated by ARecall $\widetilde{A}: C\left([-\tau, 0] ; \mathbb{R}^{n}\right) \rightarrow \mathbb{R}^{n}$ is a bounded linear operator and A is given by

$$
\begin{equation*}
R_{0}^{(1)}(A \phi)=\widetilde{A} \phi \text { and } R_{1}^{(1)}(A \phi)=\frac{d}{d \theta} \phi, \tag{12}
\end{equation*}
$$

The operator A is defined on the domain $\mathcal{D}(A)$ given by the embedding of $\phi \in W^{1,2}\left(-\tau, 0 ; \mathbb{R}^{n}\right)$ into $\psi \in \mathbb{H}$ such that $R_{0}^{(1)} \psi=\phi(0)$ and $R_{1}^{(1)} \psi=\phi$.
It can be shown that A generates an eventually compact C_{0}-semigroup $G=G(t)$, where $t \geq 0$.

Operators and delay equations: compound operators

We define $G^{\otimes m}(t)$ as the m-fold multiplicative tensor product of $G(t)$. It can be shown that $G^{\otimes m}=G^{\otimes m}(t)$, where $t \geq 0$, is an eventually compact C_{0}-semigroup in the m-fold tensor product $\mathbb{H}^{\otimes m}$ of \mathbb{H}. Analogously, $G^{\wedge m}(t)$ can be defined as the restriction of $G^{\otimes m}(t)$ to the m-fold exterior power $\mathbb{H}^{\wedge m}$ of \mathbb{H}.

Let $A^{[\otimes m]}$ be the generator of $G^{\otimes m}$ called the m-fold additive compound of A. Its restriction $A^{[\wedge m]}$ to $\mathbb{H}^{\wedge m}$ is the generator of $G^{[\wedge m]}$ and it is called the m-fold antisymmetric additive compound of A.

Spectra of $A^{[\otimes m]}$ and $A^{[\wedge m]}$

Theorem

We have $\operatorname{spec}\left(A^{[\wedge m]}\right) \subseteq \operatorname{spec}\left(A^{[\otimes m]}\right)$ and

$$
\begin{equation*}
\operatorname{spec}\left(A^{[\otimes m]}\right)=\left\{\sum_{j=1}^{m} \lambda_{j} \mid \lambda_{j} \in \operatorname{spec}(A) \text { for any } j \in\{1, \ldots, m\}\right\} \tag{13}
\end{equation*}
$$

Moreover, any $\lambda_{0} \in \operatorname{spec}\left(A^{[\otimes m]}\right)$ is an isolated spectral point and there exist finitely many, say N, distinct m-tuples $\left(\lambda_{1}^{k}, \ldots, \lambda_{m}^{k}\right) \in \mathbb{C}^{m}$ for $1 \leq k \leq N$ such that

$$
\begin{equation*}
\lambda_{0}=\sum_{j=1}^{m} \lambda_{j}^{k} \text { and } \lambda_{j}^{k} \in \operatorname{spec}(A) \tag{14}
\end{equation*}
$$

Spectra of $A^{[\otimes m]}$ and $A^{[\wedge m]}$ (continuation)

Theorem (continuation)

In addition, each λ_{j}^{k} is an isolated spectral point of A and for the corresponding spectral subspaces $\mathbb{L}_{A^{\otimes m}}\left(\lambda_{0}\right)$ and $\mathbb{L}_{A}\left(\lambda_{j}^{k}\right)$ we have

$$
\begin{equation*}
\mathbb{L}_{A[\otimes m]}\left(\lambda_{0}\right)=\bigoplus_{k=1}^{N} \bigotimes_{j=1}^{m} \mathbb{L}_{A}\left(\lambda_{j}^{k}\right) . \tag{15}
\end{equation*}
$$

Moreover, $\lambda_{0} \in \operatorname{spec}\left(A^{[\wedge m]}\right)$ if and only if $\Pi_{m}^{\wedge} \mathbb{L}_{A^{[8 m]}}\left(\lambda_{0}\right) \neq\{0\}$. In this case the spectral subspace of $A^{[\wedge m]}$ w.r.t. λ_{0} is given by

$$
\begin{equation*}
\mathbb{L}_{A^{[\wedge m]}}\left(\lambda_{0}\right)=\Pi_{m}^{\wedge} \mathbb{L}_{A^{[\otimes m]}}\left(\lambda_{0}\right)=\mathbb{L}_{A^{[\otimes m]}}\left(\lambda_{0}\right) \cap \mathbb{H}^{\wedge m} . \tag{16}
\end{equation*}
$$

Operators and delay equations: description of $\mathbb{H}^{\otimes m}$

Recall $\mu=\mu_{L}+\delta_{0}$.

Theorem

For the space $\mathbb{H}=L_{2}\left([-\tau, 0] ; \mu ; \mathbb{R}^{n}\right)$, the mapping
$\phi_{1} \otimes \ldots \otimes \phi_{m} \mapsto\left(\phi_{1} \otimes \ldots \otimes \phi_{m}\right)\left(\theta_{1}, \ldots, \theta_{m}\right):=\phi_{1}\left(\theta_{1}\right) \otimes \ldots \otimes \phi_{m}\left(\theta_{m}\right)$
induces a natural isometric isomorphism between $\mathbb{H}^{\otimes m}$ and

$$
\begin{equation*}
\mathcal{L}_{m}^{\otimes}:=L_{2}\left([-\tau, 0]^{m} ; \mu^{\otimes m} ;\left(\mathbb{R}^{n}\right)^{\otimes m}\right) . \tag{18}
\end{equation*}
$$

In particular, its restriction to $\mathbb{H}^{\wedge m}$ gives an isometric isomorphism onto the subspace \mathcal{L}_{m}^{\wedge} of antisymmetric functions ${ }^{a}$.
${ }^{a}$ Such functions satisfy for each permutation $\sigma \in \mathbb{S}_{m}$

$$
\begin{equation*}
\Phi\left(\theta_{\sigma(1)}, \ldots, \theta_{\sigma(m)}\right)=(-1)^{\sigma} T_{\sigma^{-1}} \Phi\left(\theta_{1}, \ldots, \theta_{m}\right) \tag{19}
\end{equation*}
$$

$\mu^{\otimes m}$-almost everywhere on $[-\tau, 0]^{m} ; T_{\sigma}$ is the transposition operator in $\left(\mathbb{R}^{n}\right)^{\otimes m}$.

Operators and delay equations: k-faces of $[-\tau, 0]^{m}$ w.r.t. $\mu^{\otimes m}$

Now let us choose $1 \leq k \leq m$ integers $1 \leq j_{1}<\ldots<j_{k} \leq m$ and define the set $\mathcal{B}_{j_{1} \ldots j_{k}}\left(\mathrm{a} k\right.$-face of $[-\tau, 0]^{m}$ w.r.t. $\mu^{\otimes m}$) as

$$
\begin{equation*}
\mathcal{B}_{j_{1} \ldots j_{k}}=\{0\}^{j_{1}-1} \times(-\tau, 0) \times\{0\}^{j_{2}-1} \times(-\tau, 0) \ldots \tag{20}
\end{equation*}
$$

We also put $\mathcal{B}_{0}:=\{0\}^{m}$ denoting the set corresponding to the unique 0 -face w.r.t. $\mu^{\otimes m}$ and consider it as $\mathcal{B}_{j_{1} \ldots j_{k}}$ for $k=0$. From the definition of $\mu=\mu_{L}+\delta_{0}$ we have that $\mu^{\otimes m}$ can be decomposed into the orthogonal sum given by

$$
\begin{equation*}
\mu^{\otimes m}=\sum_{k=0}^{m} \sum_{j_{1} \ldots j_{k}} \mu_{L}^{k}\left(\mathcal{B}_{j_{1} \ldots j_{k}}\right), \tag{21}
\end{equation*}
$$

where $\mu_{L}^{k}\left(\mathcal{B}_{j_{1} \ldots j_{k}}\right)$ denotes the k-dimensional Lebesgue measure on $\mathcal{B}_{j_{1} \ldots j_{k}}$ and $\mu_{L}^{0}\left(\mathcal{B}_{0}\right)$ denotes the δ-measure concentrated at $\mathcal{B}_{0}=\{0\}^{m}$.

Operators and delay equations: restriction operators

We define the restriction operator $R_{j_{1} \ldots j_{k}}^{(m)}$ as

$$
\begin{equation*}
\mathcal{L}_{m}^{\otimes} \ni \Phi \mapsto R_{j_{1} \ldots j_{k}}^{(m)} \Phi:=\left.\Phi\right|_{\mathcal{B}_{j_{1} \ldots j_{k}}} \in L_{2}\left((-\tau, 0)^{k} ;\left(\mathbb{R}^{n}\right)^{\otimes m}\right) \tag{22}
\end{equation*}
$$

Let $\partial_{j_{1} \ldots j_{k}} \mathcal{L}_{m}^{\otimes}$ denote the subspace of $\mathcal{L}_{m}^{\otimes}$ where all the restriction operators except possibly $R_{j_{1} \ldots j_{k}}^{(m)}$ vanish. We call $\partial_{j_{1} \ldots j_{k}} \mathcal{L}_{m}^{\otimes}$ the boundary subspace on $\mathcal{B}_{j_{1} \ldots j_{k}}$. Clearly, the space $\mathcal{L}_{m}^{\otimes}$ decomposes into the orthogonal inner sum as

$$
\begin{equation*}
\mathcal{L}_{m}^{\otimes}=\bigoplus_{k=0}^{m} \bigoplus_{j_{1} \ldots j_{k}} \partial_{j_{1} \ldots j_{k}} \mathcal{L}_{m}^{\otimes} \tag{23}
\end{equation*}
$$

where each boundary subspace $\partial_{j_{1} \ldots j_{k}} \mathcal{L}_{m}^{\otimes}$ is naturally isomorphic to the space $L_{2}\left((-\tau, 0)^{k} ;\left(\mathbb{R}^{n}\right)^{\otimes m}\right)$ via the restriction operator $R_{j_{1} \ldots j_{k}}^{(m)}$

Operators and delay equations: example $m=2, n=1$

Figure: A representation of an element Φ from $L_{2}\left([-\tau, 0]^{2} ; \mu^{\otimes 2} ; \mathbb{R}\right)$ via its four restrictions $R_{0} \Phi, R_{1} \Phi, R_{2} \Phi$ and $R_{12} \Phi$.

Operators and delay equations: action of $A^{[\otimes m]}$

Let $\mathcal{W}_{D}^{2}\left((-\tau, 0)^{k} ;\left(\mathbb{R}^{n}\right)^{m}\right)$ be the space of $\Phi \in L_{2}\left((-\tau, 0)^{k} ;\left(\mathbb{R}^{n}\right)^{m}\right)$ with L_{2}-summable diagonal derivative $\sum_{l=1}^{k} \frac{\partial}{\partial \theta_{l}} \Phi$.

Theorem

For the m-fold additive compound $A^{[\otimes m]}$ of A and any $\Phi \in \mathcal{D}\left(A^{[\otimes m]}\right.$ we have $R_{j_{1} \ldots j_{k}} \Phi \in \mathcal{W}_{D}^{2}\left((-\tau, 0)^{k} ;\left(\mathbb{R}^{n}\right)^{m}\right)$ and a

$$
R_{j_{1} \ldots j_{k}}\left(A^{[\otimes m]} \Phi\right)=\sum_{l=1}^{k} \frac{\partial}{\partial \theta_{l}} R_{j_{1} \ldots j_{k}} \Phi+\sum_{j \notin\left\{j_{1}, \ldots, j_{k}\right\}} \widetilde{A}_{j, J(j)}^{(k)} R_{j j_{1} \ldots j_{k}} \Phi, \text { (24) }
$$

for any $0 \leq k \leq m, 1 \leq j_{1}<j_{2}<\ldots<j_{k} \leq m$.
${ }^{2}$ Here $R_{j_{1} \ldots j_{k}} \Phi$ is considered as a function of $\theta_{1}, \ldots, \theta_{k}$ and $\widetilde{A}_{j, J(j)}^{(k)}$ is an operator associated with \widetilde{A}.

Compound delay equations: structural Cauchy formula

For $T>0$ let $\Phi_{\nu}(\cdot)$ be a mild solution on $[0, T]$ to

$$
\begin{equation*}
\dot{\Phi}(t)=\left(A^{[\otimes m]}+\nu I\right) \Phi(t)+\eta(t), \tag{25}
\end{equation*}
$$

where $\eta(\cdot) \in L_{2}\left(0, T ; \mathcal{L}^{\otimes m}\right)$. Put $\rho_{\nu}(t):=e^{\nu t}$.

Theorem (Structural Cauchy formula)

For every $1 \leq k \leq m$ and $1 \leq j_{1}<\ldots<j_{k} \leq m$ there exist functions $X=X_{j_{1} \ldots j_{k}} \in L_{2}\left(\mathcal{C}_{T}^{k} ;\left(\mathbb{R}^{n}\right)^{\otimes m}\right)$ and
$Y=Y_{j_{1} \ldots j_{k}} \in L_{2}\left(0, T ; L_{2}\left((-\tau, 0)^{k} ;\left(\mathbb{R}^{n}\right)^{\otimes m}\right)\right)$ such that $R_{j_{1} \ldots j_{k}} \Phi_{\nu}$ is given by the sum of the ρ_{ν}-adornment of X and ρ_{ν}-twisting of Y

$$
\begin{equation*}
R_{j_{1} \ldots j_{k}} \Phi(t)=\Phi_{X, \rho_{\nu}}(t)+\Psi_{Y, \rho_{\nu}}(t) \text { for all } t \in[0, T] . \tag{26}
\end{equation*}
$$

Structural Cauchy formula: adorned functions

For $T>0$ define the set

$$
\begin{equation*}
\mathcal{C}_{T}^{m}=\bigcup_{t \in[0, T]}\left([-\tau, 0]^{m}+\underline{t}\right), \tag{27}
\end{equation*}
$$

where $\underline{t}=(t, \ldots, t) \in \mathbb{R}^{m}$.
For simplicity, let $\rho(t)=\rho_{\nu}(t)=e^{\nu t}$ and fix a Hilbert space \mathbb{F}. Then for each $X \in L_{2}\left(\mathcal{C}_{T}^{m} ; \mathbb{F}\right)$ we define a function $\Phi(t)$ for $t \in[0, T]$ as

$$
\begin{equation*}
\Phi(t)=\Phi_{X, \rho}(t):=\rho(t) X\left(t+\cdot_{1}, \ldots, t+\cdot_{m}\right) \in L_{2}\left((-\tau, 0)^{m} ; \mathbb{F}\right) \tag{28}
\end{equation*}
$$

In this case we say that Φ is a ρ-adornment of X or that Φ is ρ-adorned) over \mathcal{C}_{T}^{m}. It is clear that Φ determines X uniquely.

Structural Cauchy formula: spaces of adorned functions

We define the space $\mathcal{Y}_{\rho}^{2}\left(0, T ; L_{2}(-\tau, 0 ; \mathbb{F})\right)$ of all ρ-adorned over \mathcal{C}_{T}^{m} functions $\Phi(\cdot)$ and endow it with the norm given by

$$
\begin{array}{r}
\|\Phi(\cdot)\|_{\mathcal{Y}_{\rho}^{2}\left(0, T ; L_{2}(-\tau, 0 ; \mathbb{F})\right)}:= \\
=\left(\int_{(-\tau, 0)^{m}}|X(\bar{\theta})|_{\mathbb{F}}^{2} d \bar{\theta}+\sum_{j=1}^{m} \int_{\mathcal{B}_{\hat{j}}} d \widehat{\theta}_{j}(\bar{\theta}) \int_{0}^{T}|\rho(t) X(\bar{\theta}+\underline{t})|_{\mathbb{F}}^{2} d t\right)^{1 / 2} \tag{29}
\end{array}
$$

where $d \widehat{\theta}_{j}$ is the $(m-1)$-dimensional Lebesgue measure on the $(m-1)$-face $\mathcal{B}_{\hat{j}}=\mathcal{B}_{1 \ldots \hat{j} \ldots m}$.
In the case $T=\infty$ we additionally require that the norm in (29) is finite.

Structural Cauchy formula: twisted functions

Now let $T_{m}(t)$, where $t \geq 0$, be the diagonal translation semigroup in $L_{2}\left((-\tau, 0)^{m} ; \mathbb{F}\right)$, i.e.

$$
\left(T_{m}(t) \Phi\right)(\bar{\theta})=\left\{\begin{array}{l}
\Phi(\bar{\theta}+\underline{t}), \text { if } \bar{\theta}+\underline{t} \in(-\tau, 0)^{m} \tag{30}\\
0, \text { otherwise }
\end{array}\right.
$$

Here $\bar{\theta}=\left(\theta_{1}, \ldots, \theta_{m}\right) \in[-\tau, 0]^{m}$ and $\underline{t}=(t, \ldots, t) \in \mathbb{R}^{m}$.
For a given $T>0$ let $\Psi(\cdot)$ be a function on $[0, T]$ taking values in $L_{2}\left((-\tau, 0)^{m} ; \mathbb{F}\right)$ such that

$$
\begin{equation*}
\Psi(t)=\Psi_{Y, \rho}(t):=\rho(t) \int_{0}^{t} T_{m}(t-s) Y(s) d s \text { for all } t \in[0, T] \tag{31}
\end{equation*}
$$

for some $Y(\cdot) \in L_{2}\left(0, T ; L_{2}\left((-\tau, 0)^{m} ; \mathbb{F}\right)\right)$. We say that Ψ is a ρ-twisting of Y or simply that Ψ is ρ-twisted. It can be shown that Ψ determines Y uniquely.

Structural Cauchy formula: spaces of twisted functions

We consider the space $\mathcal{T}_{\rho}^{2}\left(0, T ; L_{2}\left((-\tau, 0)^{m} ; \mathbb{F}\right)\right)$ of ρ-twisted functions and endow it with the norm

$$
\begin{equation*}
\|\Psi(\cdot)\|_{\mathcal{T}_{\rho}^{2}\left(0, T ; L_{2}\left((-\tau, 0)^{m} ; \mathbb{F}\right)\right)}:=\left(\int_{0}^{T}\|\rho(t) Y(t)\|_{L_{2}\left((-\tau, 0)^{m} ; \mathbb{F}\right)}^{2} d t\right)^{1 / 2} \tag{32}
\end{equation*}
$$

For $T=\infty$ we require the value in (32) to be finite.

Structural Cauchy formula: uniqueness

It turns out that the spaces $\mathcal{Y}_{\rho}^{2}\left(0, T ; L_{2}(-\tau, 0 ; \mathbb{F})\right)$ and $\mathcal{T}_{\rho}^{2}\left(0, T ; L_{2}\left((-\tau, 0)^{m} ; \mathbb{F}\right)\right)$ are linearly independent, i.e.

$$
\begin{array}{r}
\Phi_{X, \rho}(t)+\Psi_{Y, \rho}(t)=0 \text { for all } t \in[0, T] \\
\text { if and only if } \tag{33}\\
\Phi_{X, \rho}(t)=\Psi_{Y, \rho}(t)=0 \text { for all } t \in[0, T] .
\end{array}
$$

Compound delay equations: structural Cauchy formula (continuation)

For $T>0$ let $\Phi_{\nu}(\cdot)$ be a mild solution on $[0, T]$ to

$$
\begin{equation*}
\dot{\Phi}(t)=\left(A^{[\otimes m]}+\nu\right) \Phi(t)+\eta(t), \tag{34}
\end{equation*}
$$

where $\eta(\cdot) \in L_{2}\left(0, T ; \mathcal{L}^{\otimes m}\right)$. Put $\rho_{\nu}(t):=e^{\nu t}$.

Theorem (Structural Cauchy formula, continuation)

...such that $R_{j_{1} \ldots j_{k}} \Phi_{\nu}$ is given by the sum of the ρ_{ν}-adornment of X and ρ_{ν}-twisting of Y

$$
\begin{equation*}
R_{j_{1} \ldots j_{k}} \Phi(t)=\Phi_{X, \rho_{\nu}}(t)+\Psi_{Y, \rho_{\nu}}(t) \text { for all } t \in[0, T] . \tag{35}
\end{equation*}
$$

Moreover, the norms of $\Phi_{X, \rho_{\nu}}$ in $\mathcal{Y}_{\rho}^{2}\left(0, T ; L_{2}\left(-\tau, 0 ;\left(\mathbb{R}^{n}\right)^{\otimes m}\right)\right)$ and $\Psi_{Y, \rho_{\nu}}$ in $\left.\mathcal{T}_{\rho}^{2}\left(0, T ; L_{2}\left((-\tau, 0)^{m} ;\left(\mathbb{R}^{n}\right)^{\otimes m}\right)\right)\right)$ can be estimated in terms of $\left|\Phi_{\nu}(0)\right|_{\mathcal{L}^{\otimes m}},\left\|\Phi_{\nu}(\cdot)\right\|_{L_{2}\left(0, T ; \mathcal{L}^{\otimes m}\right)}$ and $\|\eta(\cdot)\|_{L_{2}\left(0, T ; \mathcal{L}^{\otimes m}\right)}$ with some uniform in T constant.

Measurement operators

For given Hilbert spaces \mathbb{F} and \mathbb{M}_{γ}, let $\gamma(\theta) \in \mathcal{L}\left(\mathbb{F} ; \mathbb{M}_{\gamma}\right)$ be an operator-valued function of bounded variation on $\theta \in[-\tau, 0]$. For given $1 \leq J \leq k$ we consider the operator C_{J}^{γ} from $C\left([-\tau, 0]^{k+1} ; \mathbb{F}\right)$ to $C\left([-\tau, 0]^{k} ; \mathbb{M}_{\gamma}\right)$ given by

$$
\begin{equation*}
C_{J}^{\gamma} \Phi\left(\bar{\theta}_{\hat{J}}\right)=\int_{-\tau}^{0} d \gamma\left(\theta_{J}\right) \Phi\left(\theta_{1}, \ldots, \theta_{k+1}\right) \tag{36}
\end{equation*}
$$

where $\bar{\theta}_{\hat{J}}:=\left(\theta_{1}, \ldots, \hat{\theta}_{J}, \ldots, \theta_{k+1}\right)$.
For example, for $k=1$ and $d \gamma=\delta_{-\tau}$ we have $\left(C_{1}^{\gamma} \Phi\right)(\theta)=\Phi(-\tau, \theta)$ and $\left(C_{2}^{\gamma} \Phi\right)(\theta)=\Phi(\theta,-\tau)$.

Pointwise measurement operators

We want to interpret the operator $\mathcal{I}_{C_{J}^{\gamma}}$ acting on $\Phi(\cdot)$ from $L_{2}\left(0, T ; L_{2}\left((-\tau, 0)^{k+1} ; \mathbb{F}\right)\right)$ by pointwise measurement of C_{J}^{γ}, i.e.

$$
\begin{equation*}
\left(\mathcal{I}_{C_{J}^{\gamma}} \Phi\right)(t)=C_{J}^{\gamma} \Phi(t) \tag{37}
\end{equation*}
$$

It turns out that it is possible to interpret $\mathcal{I}_{C_{J}^{\gamma}}$ as a bounded operator if we restrict ourselves with

$$
\begin{equation*}
\Phi(t)=\Phi_{X, \rho}(t)+\Psi_{Y, \rho}(t) \tag{38}
\end{equation*}
$$

where $\Phi_{X, \rho} \in \mathcal{Y}_{\rho}^{2}\left(0, T ; L_{2}(-\tau, 0 ; \mathbb{F})\right)$ and $\Psi_{Y, \rho} \in \mathcal{T}_{\rho}^{2}\left(0, T ; L_{2}(-\tau, 0 ; \mathbb{F})\right)$. We call call such functions as in (38) ρ-agalmanated.

Nonautonomous systems in abstract form

Recall the class of nonautonomous delay equations in \mathbb{R}^{n} over a semiflow (\mathcal{P}, π) given by

$$
\begin{equation*}
\dot{x}(t)=\widetilde{A} x_{t}+\widetilde{B} F^{\prime}\left(\pi^{t}(\mathfrak{p})\right) C x_{t} \tag{39}
\end{equation*}
$$

and that system (39) can be treated as an abstract evolution equation in $\mathbb{H}=L_{2}\left([-\tau, 0] ; \mu ; \mathbb{R}^{n}\right)$ given by

$$
\begin{equation*}
\dot{\xi}(t)=A \xi(t)+B F^{\prime}\left(\pi^{t}(\mathfrak{p})\right) C \xi(t) \tag{40}
\end{equation*}
$$

where $B: \mathbb{U} \rightarrow \mathbb{H}$ is the boundary operator such that $R_{0}^{(1)} B \eta=\widetilde{B} \eta$ and $R_{1}^{(1)} B \eta=0$ for $\eta \in \mathbb{U}$ and $C \phi:=C R_{1}^{(1)} \phi$ for $\phi \in \mathbb{H}$. Recall that (40) generates a cocycle Ξ in \mathbb{H}.

Compound delay equations: infinitesimal description of Ξ_{m}

Theorem

For any m solutions $\xi_{1}(t), \ldots, \xi_{m}(t)$ of (40) with $\xi_{1}(0), \ldots$, $\xi_{m}(0) \in \mathcal{D}(A)$, the function $\Phi(t)=\xi_{1}(t) \otimes \ldots \otimes \xi_{m}(t)$ for $t \geq 0$ is a C^{1}-differentiable $\mathcal{L}_{m}^{\otimes}$-valued mapping such that $\Phi(t) \in \mathcal{D}\left(A^{[\otimes m]}\right)$, $\Phi(t) \in C\left([-\tau, 0]^{m} ;\left(\mathbb{R}^{n}\right)^{\otimes m}\right)$ continuously depend on $t \geq 0$ and a $\dot{\Phi}(t)=A^{[\otimes m]} \Phi(t)+\sum_{j_{1} \ldots j_{k}} \sum_{j \notin\left\{j_{1}, \ldots, j_{k}\right\}} B_{j}^{j_{1} \ldots j_{k}} F_{j}^{\prime}\left(\pi^{t}(\mathfrak{p})\right) C_{j, J(j)}^{(k)} R_{j j_{1} \ldots j_{k}} \Phi(t)$,
where the sum taken over all $1 \leq j_{1}<\ldots<j_{k} \leq m$ with $0 \leq k \leq m-1$.
${ }^{\text {a }}$ Here $J(j)=J\left(j ; j_{1} \ldots j_{k}\right)$ denotes an integer J such that j is the J-th element of the set $\left\{j, j_{1}, \ldots, j_{k}\right\}$ arranged by increasing

Compound delay equations: definition of $C_{j, J}^{(k)}$

For each operator $C: C\left([-\tau, 0] ; \mathbb{R}^{n}\right) \rightarrow \mathbb{M}=\mathbb{R}^{r_{2}}$ there exists a $\left(r_{2} \times n\right)$-matrix of bounded variation $c(\theta)$ such that

$$
\begin{equation*}
C \phi=\int_{-\tau}^{0} d c(\theta) \phi(\theta) \text { for all } \phi \in C\left([-\tau, 0] ; \mathbb{R}^{n}\right) \tag{42}
\end{equation*}
$$

Then for $j \in\{1, \ldots, m\}$, we put $\gamma_{j}(\theta)$ to be the linear operator from $\mathbb{F}:=\left(\mathbb{R}^{n}\right)^{\otimes m}$ to $\mathbb{M}_{j}:=\left(\mathbb{R}^{n}\right)^{\otimes j-1} \otimes \mathbb{M} \otimes\left(\mathbb{R}^{n}\right)^{m-j}$ such that

$$
\begin{equation*}
x_{1} \otimes \ldots \otimes x_{j} \otimes \ldots \otimes x_{m} \mapsto x_{1} \otimes \ldots \otimes c(\theta) x_{j} \otimes \ldots x_{m} \tag{43}
\end{equation*}
$$

Then $\gamma_{j}(\theta) \in \mathcal{L}\left(\mathbb{F} ; \mathbb{M}_{j}\right)$ and we put $C_{j, J}^{(k)}:=C_{J}^{\gamma}$ with $\gamma=\gamma_{j}$, and $\mathbb{M}_{\gamma}=\mathbb{M}_{j}$.

Compound delay equations: definition of $F_{j}^{\prime}(\mathfrak{p})$

We define $F_{j}^{\prime}(\mathfrak{p})$ as an operator form $\mathbb{M}_{j}=\left(\mathbb{R}^{n}\right)^{\otimes j-1} \otimes \mathbb{M} \otimes\left(\mathbb{R}^{n}\right)^{m-j}$ to $\mathbb{U}_{j}=\left(\mathbb{R}^{n}\right)^{\otimes j-1} \otimes \mathbb{U} \otimes\left(\mathbb{R}^{n}\right)^{m-j}$ by

$$
\begin{equation*}
x_{1} \otimes \ldots \otimes x_{j} \otimes \ldots x_{m} \rightarrow x_{1} \otimes \ldots \otimes F^{\prime}(\mathfrak{p}) x_{j} \otimes \ldots x_{m} \tag{44}
\end{equation*}
$$

We use the same notation to denote the operator between spaces of functions taking values in \mathbb{M}_{j} and \mathbb{U}_{j} respectively where $F_{j}^{\prime}(\mathfrak{p})$ is applied pointwisely.

Compound delay equations: definition of $B_{j}^{j_{1} \ldots j_{k}}$

Recall $\mathbb{U}_{j}=\left(\mathbb{R}^{n}\right)^{\otimes j-1} \otimes \mathbb{U} \otimes\left(\mathbb{R}^{n}\right)^{m-j}$.
For $0 \leq k \leq m-1$ we define a linear bounded operator $B_{j}^{\left(j_{1} \ldots j_{k}\right)}$ which takes an element $\Phi_{\mathbb{U}}$ from $L_{2}\left((-\tau, 0)^{k} ; \mathbb{U}_{j}\right)$ to an element from $\partial_{j_{1} \ldots j_{k}} \mathcal{L}_{m}^{\otimes}$ defined for $\left(\theta_{1}, \ldots, \theta_{m}\right) \in \mathcal{B}_{j_{1} \ldots j_{k}}$ as

$$
\begin{equation*}
\left(B_{j}^{j_{1} \ldots j_{k}} \Phi_{\mathbb{U}}\right)\left(\theta_{1}, \ldots, \theta_{m}\right):=\left(\operatorname{Id}_{\mathbb{R}_{1, j}} \otimes \widetilde{B} \otimes \operatorname{Id}_{\mathbb{R}_{2, j}}\right) \Phi_{\mathbb{U}}\left(\theta_{j_{1}}, \ldots, \theta_{j_{k}}\right), \tag{45}
\end{equation*}
$$

where $\mathbb{R}_{1, j}:=\left(\mathbb{R}^{n}\right)^{\otimes(j-1)}$ and $\mathbb{R}_{2, j}:=\left(\mathbb{R}^{n}\right)^{\otimes(m-j)}$.

Compound delay equations: associated control system in
$\mathcal{L}_{m}^{\otimes}$
Let us consider the control space given by the outer orthogonal sum

$$
\begin{equation*}
\mathbb{U}_{m}^{\otimes}:=\bigoplus_{j_{1} \ldots j_{k}} \bigoplus_{j \notin\left\{j_{1}, \ldots, j_{k}\right\}} L_{2}\left((-\tau, 0)^{k} ; \mathbb{U}_{j}\right) \tag{46}
\end{equation*}
$$

where the indices $j_{1} \ldots j_{k}$ and j are such that $1 \leq j_{1}<\ldots<j_{k} \leq m$ with $0 \leq k \leq m-1$ and $j \in\{1, \ldots, m\}$. We define a control operator $B_{m}^{\otimes} \in \mathcal{L}\left(\mathbb{U}_{m}^{\otimes} ; \mathcal{L}_{m}^{\otimes}\right)$ as (see (45))

$$
\begin{equation*}
B_{m}^{\otimes} \eta:=\sum_{j_{1} \ldots j_{k}} \sum_{j \notin\left\{j_{1}, \ldots, j_{k}\right\}} B_{j}^{j_{1} \ldots j_{k}} \eta_{j_{1} \ldots j_{k}}^{j} \text { for } \eta=\left(\eta_{j_{1} \ldots j_{k}}^{j}\right) \in \mathbb{U}_{m}^{\otimes} \tag{47}
\end{equation*}
$$

We associate to the pair $\left(A^{[\otimes m]}, B_{m}^{\otimes}\right)$ a control system as

$$
\begin{equation*}
\dot{\Phi}(t)=A^{[\otimes m]} \Phi(t)+B_{m}^{\otimes} \eta(t) \tag{48}
\end{equation*}
$$

where $\eta(\cdot) \in L_{2}\left(0, T ; \mathbb{U}_{m}^{\otimes}\right)$.

Compound delay equations: subspace \mathcal{L}_{m}^{\wedge} : definition

Recall that for $\mathbb{H}=L_{2}\left([-\tau, 0] ; \mu ; \mathbb{R}^{n}\right)$ the m-fold exterior product $\mathbb{H}^{\wedge m}$ is naturally isomorphic to the subspace \mathcal{L}_{m}^{\wedge} of antisymmetric functions in $\mathcal{L}_{m}^{\otimes}=L_{2}\left([-\tau, 0]^{m} ; \mu^{\otimes m} ;\left(\mathbb{R}^{n}\right)^{\otimes m}\right)$.
Recall that such functions satisfy for each permutation $\sigma \in \mathbb{S}_{m}$ the identity

$$
\begin{equation*}
\Phi\left(\theta_{\sigma(1)}, \ldots, \theta_{\sigma(m)}\right)=(-1)^{\sigma} T_{\sigma^{-1}} \Phi\left(\theta_{1}, \ldots, \theta_{m}\right) \tag{49}
\end{equation*}
$$

$\mu^{\otimes m}$-almost everywhere on $[-\tau, 0]^{m}$. Here T_{σ} is the transposition operator in $\left(\mathbb{R}^{n}\right)^{\otimes m}$ w.r.t. σ, i.e.

$$
\begin{equation*}
T_{\sigma}\left(x_{1} \otimes \ldots \otimes x_{m}\right):=x_{\sigma(1)} \otimes \ldots \otimes x_{\sigma(m)} \tag{50}
\end{equation*}
$$

Subspace \mathcal{L}_{m}^{\wedge} : antisymmetric relations

For each permutation $\sigma \in \mathbb{S}_{m}$ we have the identity

$$
\begin{equation*}
\Phi\left(\theta_{\sigma(1)}, \ldots, \theta_{\sigma(m)}\right)=(-1)^{\sigma} T_{\sigma^{-1}} \Phi\left(\theta_{1}, \ldots, \theta_{m}\right) \tag{51}
\end{equation*}
$$

$\mu^{\otimes m}$-almost everywhere on $[-\tau, 0]^{m}$.
This relations induce antisymmetric relations on restrictions to k-faces. Namely, for any $0 \leq k \leq m$, any $1 \leq j_{1}<\ldots<j_{m} \leq m$ and $\sigma \in \mathbb{S}_{m}$ we have

$$
\begin{array}{r}
\left(R_{j_{1} \ldots j_{k}} \Phi\right)\left(\theta_{j_{1}}, \ldots, \theta_{j_{k}}\right)=(-1)^{\sigma} T_{\sigma}\left(R_{\sigma^{-1}\left(j_{1}\right) \ldots \sigma^{-1}\left(j_{k}\right)} \Phi\right)\left(\theta_{j_{\bar{\sigma}(1)}}, \ldots, \theta_{j_{\bar{\sigma}(k)}}\right), \\
\text { for almost all }\left(\theta_{j_{1}}, \ldots, \theta_{j_{k}}\right) \in(-\tau, 0)^{k}, \tag{52}
\end{array}
$$

where $\bar{\sigma} \in \mathbb{S}_{k}$ is such that $\sigma^{-1}\left(j_{\bar{\sigma}(1)}\right)<\ldots<\sigma^{-1}\left(j_{\bar{\sigma}(k)}\right)$.

Subspace \mathcal{L}_{m}^{\wedge} : decomposition

Note that the antisymmetric relations (52) link each $\partial_{j_{1} \ldots j_{k}} \mathcal{L}_{m}^{\otimes}$ with other boundary subspaces on k-faces. Thus, it is convenient to define for a given $k \in\{0, \ldots, m\}$ the subspace

$$
\begin{equation*}
\partial_{k} \mathcal{L}_{m}^{\wedge}:=\left\{\Phi \in \bigoplus_{j_{1} \ldots j_{k}} \partial_{j_{1} \ldots j_{k}} \mathcal{L}_{m}^{\otimes} \mid \Phi \text { satisfies (52) }\right\} \tag{53}
\end{equation*}
$$

where the sum is taken over all $1 \leq j_{1}<\ldots<j_{k} \leq m$. We say that k is improper if $\partial_{k} \mathcal{L}_{m}^{\wedge}$ is zero. Otherwise we say that k is proper. For example, when $n=1$, gives that any $k \leq m-2$ is improper and only $k=m-1$ and $k=m$ are proper.
Clearly, \mathcal{L}_{m}^{\wedge} decomposes into the orthogonal sum of all $\partial_{k} \mathcal{L}_{m}^{\wedge}$ as

$$
\begin{equation*}
\mathcal{L}_{m}^{\wedge}=\bigoplus_{k=0}^{m} \partial_{k} \mathcal{L}_{m}^{\wedge} \tag{54}
\end{equation*}
$$

Definition of \mathbb{U}_{m}^{\wedge}

Consider $\eta=\left(\eta_{j_{1} \ldots j_{k}}^{j}\right) \in \mathbb{U}_{m}^{\otimes}$ satisfying for all $k \in\{0, \ldots, m-1\}$, $1 \leq j_{1}<\ldots<j_{k} \leq m, j \notin\left\{j_{1}, \ldots, j_{k}\right\}$ and any $\sigma \in \mathbb{S}_{m}$ the relations

$$
\eta_{j_{1} \ldots j_{k}}^{j}\left(\theta_{j_{1}}, \ldots, \theta_{j_{k}}\right)=(-1)^{\sigma} T_{\sigma^{-1}} \eta_{\sigma\left(j_{\bar{\sigma}(1)}\right) \ldots \sigma\left(j_{\bar{\sigma}(k))}\right.}^{\sigma(j)}\left(\theta_{j_{\bar{\sigma}(1)}}, \ldots, \theta_{j_{\bar{\sigma}(k)}}\right),
$$ for almost all $\left(\theta_{j_{1}}, \ldots, \theta_{j_{k}}\right) \in(-\tau, 0)^{k}$,

where $\bar{\sigma} \in \mathbb{S}_{k}$ is such that $\sigma\left(j_{\bar{\sigma}(1)}\right)<\ldots<\sigma\left(j_{\bar{\sigma}(k)}\right)$. Now we define \mathbb{U}_{m}^{\wedge} as

$$
\begin{align*}
& \mathbb{U}_{m}^{\wedge}:=\left\{\eta=\left(\eta_{j_{1} \ldots j_{k}}^{j}\right) \in \mathbb{U}_{m}^{\otimes} \mid \eta\right. \text { satisfies (55) and } \tag{56}\\
&\left.\eta_{j_{1} \ldots j_{k}}^{j}=0 \text { for improper } k\right\} .
\end{align*}
$$

Compound delay equations: associated control system in \mathcal{L}_{m}^{\wedge}

Recall the system just considered in the antisymmetric case

$$
\begin{equation*}
\dot{\Phi}(t)=A^{[\wedge m]} \Phi(t)+\sum_{j_{1} \ldots j_{k}} \sum_{j \notin\left\{j_{1}, \ldots, j_{k}\right\}} B_{j}^{j_{1} \ldots j_{k}} F_{j}^{\prime}\left(\pi^{t}(\mathfrak{p})\right) C_{j, J(j)}^{(k)} R_{j j_{1} \ldots j_{k}} \Phi(t), \tag{57}
\end{equation*}
$$

We associate to (57) the linear system in \mathcal{L}_{m}^{\wedge} as

$$
\begin{equation*}
\dot{\Phi}(t)=A^{[\wedge m]} \Phi(t)+B_{m}^{\wedge} \eta(t), \tag{58}
\end{equation*}
$$

where $\eta(\cdot) \in L_{2}\left(0, T ; \mathbb{U}_{m}^{\wedge}\right)$ and B_{m}^{\wedge} is defined on \mathbb{U}_{m}^{\wedge} by the restriction of B_{m}^{\otimes} from \mathbb{U}_{m}^{\otimes} to \mathbb{U}_{m}^{\wedge}.

Compound delay equations: Lipschitz quadratic constraint

Recall

$$
\begin{equation*}
\dot{\Phi}(t)=A^{[\wedge m]} \Phi(t)+\sum_{j_{1} \ldots j_{k}} \sum_{j \notin\left\{j_{1}, \ldots, j_{k}\right\}} B_{j}^{j_{1} \ldots j_{k}} F_{j}^{\prime}\left(\pi^{t}(\mathfrak{p})\right) C_{j, J(j)}^{(k)} R_{j j_{1} \ldots j_{k}} \Phi(t) \tag{59}
\end{equation*}
$$

and

$$
\begin{equation*}
\dot{\Phi}(t)=A^{[\wedge m]} \Phi(t)+B_{m}^{\wedge} \eta(t) \tag{60}
\end{equation*}
$$

Since $\left\|F^{\prime}(\mathfrak{p})\right\|_{\mathcal{L}(\mathbb{U} ; \mathbb{M})} \leq \Lambda$, for $\eta_{j_{1} \ldots j_{k}}^{j}(t)=F_{j}^{\prime}\left(\pi^{t}(\mathfrak{p})\right) C_{j, J(j)}^{(k)} R_{j j_{1} \ldots j_{k}} \Phi(t)$ we have the quadratic constraint $\mathcal{F}(\Phi(t), \eta(t)) \geq 0$ satisfied, where

$$
\begin{array}{r}
\mathcal{F}(\Phi, \eta)= \\
\sum_{j_{1} \ldots j_{k}} \sum_{j \notin\left\{j_{1}, \ldots, j_{k}\right\}}\left(\Lambda^{2}\left\|C_{j, J(j)}^{(k)} R_{j j_{1} \ldots j_{k}} \Phi\right\|_{L_{2}\left((-\tau, 0)^{k} ; \mathbb{M}_{j}\right)}^{2}-\right. \tag{61}\\
\left.-\left\|\eta_{j_{1} \ldots j_{k}}^{j}\right\|_{L_{2}\left((-\tau, 0)^{k} ; \mathbb{U}_{j}\right)}^{2}\right)
\end{array}
$$

Extension of C_{J}^{γ} to $\mathbb{E}_{k+1}(\mathbb{F})$

We need to consider C_{J}^{γ} in a wider context. For this we define the space $\mathbb{E}_{m}(\mathbb{F})$ of all functions $\Phi \in L_{2}\left((-\tau, 0)^{m} ; \mathbb{F}\right)$ such that for any $j \in\{1, \ldots, m\}$ there exists $\Phi_{j}^{b} \in C\left([-\tau, 0] ; L_{2}\left((-\tau, 0)^{m-1} ; \mathbb{F}\right)\right.$ such that we have the identity in $L_{2}\left((-\tau, 0)^{m-1} ; \mathbb{F}\right)$ as 1

$$
\begin{equation*}
\left.\Phi\right|_{\mathcal{B}_{\hat{j}}+\theta e_{j}}=\Phi_{j}^{b}(\theta) \text { for almost all } \theta \in[-\tau, 0] . \tag{62}
\end{equation*}
$$

Let us endow $\mathbb{E}_{m}(\mathbb{F})$ with the norm

$$
\begin{equation*}
\|\Phi\|_{\mathbb{E}_{m}(\mathbb{F})}:=\sup _{1 \leq j \leq m} \sup _{\theta \in[-\tau, 0]}\left\|\Phi_{j}^{b}(\theta)\right\|_{L_{2}\left((-\tau, 0)^{m-1} ; \mathbb{F}\right)} \tag{63}
\end{equation*}
$$

which makes $\mathbb{E}_{m}(\mathbb{F})$ a Banach space.
We have that C_{J}^{γ} can be extended to a bounded operator from $\mathbb{E}_{k+1}(\mathbb{F})$ to $L_{2}\left((-\tau, 0)^{k} ; \mathbb{M}_{\gamma}\right)$.

[^0] coordinate.

Intermediate Banach spaces \mathbb{E}_{m}^{\otimes} and \mathbb{E}_{m}^{\wedge}

We define the Banach space \mathbb{E}_{m}^{\otimes} through the outer direct sum as

$$
\begin{equation*}
\mathbb{E}_{m}^{\otimes}:=\bigoplus_{k=0}^{m} \bigoplus_{j_{1} \ldots j_{k}} \mathbb{E}_{k}\left(\left(\mathbb{R}^{n}\right)^{\otimes m}\right) \tag{64}
\end{equation*}
$$

and endow it with any of standard norms. We embed the space \mathbb{E}_{m}^{\otimes} into $\mathcal{L}_{m}^{\otimes}$ by naturally sending each element from the $j_{1} \ldots j_{k}$-th summand in (64) to $\partial_{j_{1} \ldots j_{k}} \mathcal{L}_{m}^{\otimes}$. We have that

$$
\begin{equation*}
\mathcal{D}\left(A^{[\otimes m]}\right) \subset \mathbb{E}_{m}^{\otimes} \subset \mathcal{L}_{m}^{\otimes}, \tag{65}
\end{equation*}
$$

where all the embeddings are dense and continuous.
Let \mathbb{E}_{m}^{\wedge} be the intersection of \mathbb{E}_{m}^{\otimes} with \mathcal{L}_{m}^{\wedge}. Analogously, we have

$$
\begin{equation*}
\mathcal{D}\left(A^{[\wedge m]}\right) \subset \mathbb{E}_{m}^{\wedge} \subset \mathcal{L}_{m}^{\wedge}, \tag{66}
\end{equation*}
$$

where all the embeddings are dense and continuous.

Measurement space \mathbb{M}_{m}^{\otimes} and the operator C_{m}^{\otimes}

Consider the measurement space \mathbb{M}_{m}^{\otimes} given by the outer orthogonal sum

$$
\begin{equation*}
\mathbb{M}_{m}^{\otimes}:=\bigoplus_{j_{1} \ldots j_{k}} \bigoplus_{j \notin \in\left\{j_{1}, \ldots, j_{k}\right\}} L_{2}\left((-\tau, 0)^{k} ; \mathbb{M}_{j}\right) \tag{67}
\end{equation*}
$$

where the sum is taken over all $k \in\{0, \ldots, m-1\}$, $1 \leq j_{1}<\ldots<j_{k} \leq m$ and $j \in\{1, \ldots, m\}$.

Define $C_{m}^{\otimes} \in \mathcal{L}\left(\mathbb{E}_{m}^{\otimes} ; \mathbb{M}_{m}^{\otimes}\right)$ by

$$
\begin{equation*}
C_{m}^{\otimes} \Phi:=\sum_{j_{1} \ldots j_{k}} \sum_{j \notin\left\{j_{1}, \ldots, j_{k}\right\}} C_{j, J(j)}^{(k)} R_{j j_{1} \ldots j_{k}} \Phi \tag{68}
\end{equation*}
$$

where the sum is taken in \mathbb{M}_{m}^{\otimes}.

Measurement space \mathbb{M}_{m}^{\wedge} and the operator C_{m}^{\wedge}

Let us consider $M=\left(M_{j_{1} \ldots j_{k}}^{j}\right) \in \mathbb{M}_{m}^{\otimes}$ which satisfy for all $k \in\{0, \ldots, m-1\}, 1 \leq j_{1}<\ldots<j_{k} \leq m, j \notin\left\{j_{1}, \ldots, j_{k}\right\}$ and any $\sigma \in \mathbb{S}_{m}$ the relations

$$
\begin{array}{r}
M_{j_{1} \ldots j_{k}}^{j}\left(\theta_{j_{1}}, \ldots, \theta_{j_{k}}\right)=(-1)^{\sigma} T_{\sigma^{-1}} M_{\sigma\left(j_{\bar{\sigma}(1)}\right) \ldots \sigma\left(j_{\bar{\sigma}(k))}\right)}^{\sigma()^{2}}\left(\theta_{\left.j_{\overline{\sigma_{(1)}}}, \ldots, \theta_{j_{\bar{\sigma}(k)}}\right),},\right. \\
\text { for almost all }\left(\theta_{j_{1}}, \ldots, \theta_{j_{k}}\right) \in(-\tau, 0)^{k}, \tag{69}
\end{array}
$$

where $\bar{\sigma} \in \mathbb{S}_{k}$ is such that $\sigma\left(j_{\bar{\sigma}(1)}\right)<\ldots<\sigma\left(j_{\bar{\sigma}(k)}\right)$.
We define \mathbb{M}_{m}^{\wedge} as

$$
\begin{align*}
\mathbb{M}_{m}^{\wedge}:=\left\{M=\left(M_{j_{1} \ldots j_{k}}^{j}\right) \in \mathbb{M}_{m}^{\otimes} \mid\right. & M \text { satisfies (69) and } \tag{70}\\
& \left.M_{j_{1} \ldots j_{k}}^{j}=0 \text { for improper } k\right\} .
\end{align*}
$$

Let C_{m}^{\wedge} be the restriction of C_{m}^{\otimes} to \mathbb{E}_{m}^{\wedge}. We have $C_{m}^{\wedge} \in \mathcal{L}\left(\mathbb{E}_{m}^{\wedge} ; \mathbb{M}_{m}^{\wedge}\right)$.

Lipschitz quadratic constraints via C_{m}^{\wedge}

One can rewrite the quadratic form

$$
\begin{array}{r}
\mathcal{F}(\Phi, \eta)= \\
\sum_{j_{1} \ldots j_{k}} \sum_{j \notin\left\{j_{1}, \ldots, j_{k}\right\}}\left(\Lambda^{2}\left\|C_{j, J(j)}^{(k)} R_{j j_{1} \ldots j_{k}} \Phi\right\|_{L_{2}\left((-\tau, 0)^{k} ; \mathbb{M}_{j}\right)}^{2}-\right. \tag{71}\\
\left.-\left\|\eta_{j_{1} \ldots j_{k}}^{j}\right\|_{L_{2}\left((-\tau, 0)^{k} ; \mathbb{U}_{j}\right)}^{2}\right)
\end{array}
$$

in a compact way using C_{m}^{\wedge} as

$$
\begin{equation*}
\mathcal{F}(\Phi, \eta)=\Lambda^{2}\left\|C_{m}^{\wedge} \Phi\right\|_{\mathbb{M}_{\hat{m}}^{\wedge}}^{2}-\|\eta\|_{\mathbb{U}_{\hat{m}}}^{2} \tag{72}
\end{equation*}
$$

General quadratic constraints

One can generalize quadratic constraints as follows. Let $\mathcal{G}(M, \eta)$ be a bounded quadratic form of $M \in \mathbb{M}_{m}^{\wedge}$ and $\eta \in \mathbb{U}_{m}^{\wedge}$. Then we put

$$
\begin{equation*}
\mathcal{F}(\Phi, \eta):=\mathcal{G}\left(C_{m}^{\wedge} \Phi, \eta\right) \text { for } \Phi \in \mathbb{E}_{m}^{\wedge} \text { and } \eta \in \mathbb{U}_{m}^{\wedge} \tag{73}
\end{equation*}
$$

We say that \mathcal{F} is a quadratic constraint if $\mathcal{F}(\Phi, \eta) \geq 0$ is satisfied for all $\Phi \in \mathbb{E}_{m}^{\wedge}$, any $\mathfrak{p} \in \mathcal{P}$ and $\eta \in \mathbb{U}_{m}^{\wedge}$ such that $\eta_{j_{1} \ldots j_{k}}^{j}=F_{j}^{\prime}(\mathfrak{p}) C_{j, J(j)}^{(k)} R_{j j_{1} \ldots j_{k}} \Phi$ for all $k \in\{0, \ldots, m-1\}$, $1<j_{1}<\ldots j_{k}<m$ and $j \notin\left\{j_{1}, \ldots, j_{k}\right\}$.

Resolvent estimates in \mathbb{E}_{m}^{\otimes} and \mathbb{E}_{M}^{\wedge}

Theorem

For regular (=nonspectral) points $p \in \mathbb{C}$ of $A^{[\otimes m]}$ we have

$$
\begin{equation*}
\left\|\left(A^{[\otimes m]}-p I\right)^{-1}\right\|_{\mathcal{L}\left(\mathcal{L}_{m}^{\otimes} ; \mathbb{E}_{m}^{\otimes}\right)} \leq C_{1}(p) \cdot\left\|\left(A^{[\otimes m]}-p I\right)^{-1}\right\|_{\mathcal{L}\left(\mathcal{L}_{m}^{\otimes}\right)}+C_{2}(p), \tag{74}
\end{equation*}
$$

where the constants $C_{1}(p)$ and $C_{2}(p)$ depend on $\max \left\{1, e^{-\tau \operatorname{Re} p}\right\}$ in a monotonically increasing way. Moreover, analogous statement holds for $A^{[\wedge m]}$.

Frequency inequalities associated with \mathcal{F}

We associate with each \mathcal{F} the frequency inequality on the line $\operatorname{Re} p=-\nu_{0}$ (with $\nu_{0} \in \mathbb{R}$) avoiding the spectrum of $A^{[\wedge m]}$ as follows.
(FI) For some $\delta>0$ and any p with $\operatorname{Re} p=-\nu_{0}$ we have

$$
\begin{equation*}
\mathcal{F}^{\mathbb{C}}\left(-\left(A^{[\wedge m]}-p I\right)^{-1} B_{m}^{\wedge} \eta, \eta\right) \leq-\delta|\eta|_{\left(\mathbb{U}_{m}\right)^{\mathbb{C}}}^{2} \text { for any } \eta \in\left(\mathbb{U}_{m}^{\wedge}\right)^{\mathbb{C}} \tag{75}
\end{equation*}
$$

Here $\mathcal{F}^{\mathbb{C}}$ is the Hermitian extension of \mathcal{F}.

Existence of Lyapunov functionals for Ξ_{m}

Theorem

Suppose for some $\nu_{0} \in \mathbb{R}$ the spectrum of $A^{[\wedge m]}$ avoids the line $-\nu_{0}+i \mathbb{R}$ and there are exactly j eigenvalues with $\operatorname{Re} \lambda \geq-\nu_{0}$. Let the frequency inequality w.r.t. \mathcal{F} defining a quadratic constraint be satisfied. Then there exists a bounded self-adjoint operator $P \in \mathcal{L}\left(\mathcal{L}_{m}^{\wedge}\right)$ such that for its quadratic form $V(\Phi):=(\Phi, P \Phi)_{\mathcal{L}_{\hat{m}}}$ and some $\delta_{V}>0$ for the cocycle Ξ_{m} in \mathcal{L}_{m}^{\wedge} corresponding to (40) we have

$$
\begin{equation*}
e^{2 \nu_{0} t} V\left(\Xi_{m}^{t}(\mathfrak{p}, \Phi)\right)-V(\Phi) \leq-\delta_{V} \int_{0}^{t} e^{2 \nu_{0} s}\left|\Xi_{m}^{s}(\mathfrak{p}, \Phi)\right|_{\mathcal{L}_{\hat{m}}}^{2} d s \tag{76}
\end{equation*}
$$

for any $t \geq 0, \mathfrak{p} \in \mathcal{P}$ and $\Phi \in \mathcal{L}_{m}^{\wedge}$.
Moreover, $V(\cdot)$ is positive on the stable subspace $\mathcal{L}_{m}^{s}\left(\nu_{0}\right)$ and negative on the unstable subpsace $\mathcal{L}_{m}^{u}\left(\nu_{0}\right)$ of $A^{[\wedge m]}+\nu_{0} I$.

Exponential stability of Ξ_{m} and gaps in the Sacker-Sell

 spectrumIn the case $j=0$ and $\nu_{0}>0$, from (76) we have the uniform exponential stability of the cocycle Ξ_{m} with the exponent ν_{0}, i.e. for some $M\left(\nu_{0}\right)>0$ we have

$$
\begin{equation*}
\left|\Xi_{m}^{t}(\mathfrak{p}, \Phi)\right|_{\mathcal{L}_{\hat{m}}} \leq M\left(\nu_{0}\right) e^{-\nu_{0} t}|\Phi|_{\mathcal{L}_{m}^{\wedge}} \text { for all } t \geq 0, \mathfrak{p} \in \mathcal{P}, \Phi \in \mathcal{L}_{m}^{\wedge} \tag{77}
\end{equation*}
$$

In the case (\mathcal{P}, π) is a flow, from (76) we obtain that $-\nu_{0}$ is a gap of rank j in the Sacker-Sell spectrum of Ξ_{m}, i.e. the cocycle $e^{\nu_{0} t} \Xi_{m}^{t}$ admits uniform exponential dichotomy with the unstable bundle of rank j. To construct the corresponding bundles, one may use our work [4]. Here it is important that the cocycle Ξ_{m} is uniformly eventually compact.

Numerical computation of frequency inequalities: self-adjoint nonlinearities

Suppose $\mathbb{M}=\mathbb{U}$ and that $F^{\prime}(\mathfrak{p})$ is a self-adjoint operator satisfying $0 \leq\left(F^{\prime}(\mathfrak{p}) M, M\right) \leq \Lambda^{2}(M, M)$ for each $\mathfrak{p} \in \mathcal{P}$ and $M \in \mathbb{M}$. Then for the quadratic form $\mathcal{G}(M, \eta)$ of $M \in \mathbb{M}_{m}^{\wedge}$ and $\eta \in \mathbb{U}_{m}^{\wedge}$ given by

$$
\begin{equation*}
\mathcal{G}(M, \eta):=\Lambda(M, \eta)_{\mathbb{U}_{\hat{m}}}-(\eta, \eta)_{\mathbb{U}_{\hat{m}}}, \tag{78}
\end{equation*}
$$

the associated quadratic form $\mathcal{F}(\Phi, \eta):=\mathcal{G}\left(C_{m}^{\wedge} \Phi, \eta\right)$ of $\Phi \in \mathbb{E}_{m}^{\wedge}$ and $\eta \in \mathbb{U}_{m}^{\wedge}$ defines a quadratic constraint.
Then the frequency inequality associated with \mathcal{F} is equivalent to

$$
\begin{equation*}
\inf _{\omega \in \mathbb{R}} \inf _{\substack{\eta \in\left(\mathbb{U}_{m}^{\hat{m}}\right)^{\mathbb{C}}, \eta \neq 0}} \frac{\left(S_{W}\left(-\nu_{0}+i \omega\right) \eta, \eta\right)_{\left(\mathbb{U}_{m}\right)^{\mathbb{C}}}}{|\eta|_{\left(\mathbb{U}_{m}\right)^{\mathbb{C}}}^{2}}+\Lambda^{-1}>0 \tag{79}
\end{equation*}
$$

where $S_{W}(p):=\frac{1}{2}\left(W(p)+W^{*}(p)\right)$ is the additive symmetrization of $W(p)=-C_{m}^{\wedge}\left(A^{[\wedge m]}-p I\right)^{-1} B_{m}^{\wedge}$.

Numerical computation of frequency inequalities: approximation

Recall the frequency inequality associated with \mathcal{F} is equivalent to

$$
\begin{equation*}
\inf _{\omega \in \mathbb{R}} \inf _{\substack{\eta \in\left(\mathbb{U}_{\hat{m}}\right)^{\mathbb{C}} \\ \eta \neq 0}} \frac{\left(S_{W}\left(-\nu_{0}+i \omega\right) \eta, \eta\right)_{(\mathbb{U} \hat{m})^{\mathbb{C}}}}{|\eta|_{\left(\mathbb{U}_{m}\right)^{\mathbb{C}}}^{2}}+\Lambda^{-1}>0 \tag{80}
\end{equation*}
$$

where $S_{W}(p):=\frac{1}{2}\left(W(p)+W^{*}(p)\right)$ is the additive symmetrization of $W(p)=-C_{m}^{\wedge}\left(A^{[\wedge m]}-p I\right)^{-1} B_{m}^{\wedge}$.
Take an orthogonal basis e_{1}, e_{2}, \ldots in $\left(\mathbb{U}_{m}^{\wedge}\right)^{\mathbb{C}}=\left(\mathbb{M}_{m}^{\wedge}\right)^{\mathbb{C}}$. Let P_{N} be the orthogonal projector onto $\operatorname{Span}\left\{e_{1}, \ldots, e_{N}\right\}$. Let us put

$$
\begin{equation*}
\alpha_{N}(\omega):=\inf _{\substack{\eta \in\left(\mathbb{U}_{\hat{m}}\right)^{\mathbb{C}} \\ \eta \neq 0}} \frac{\left(P_{N} S_{W}\left(-\nu_{0}+i \omega\right) P_{N} \eta, P_{N} \eta\right)_{\left(\mathbb{U}_{\hat{m}}\right)^{\mathbb{C}}}}{\left|P_{N} \eta\right|_{\left(\mathbb{U}_{\hat{m}}\right)^{\mathbb{C}}}^{2}} \tag{81}
\end{equation*}
$$

Numerical computation of frequency inequalities:

 pointwise convergenceRecall

$$
\begin{equation*}
\alpha_{N}(\omega):=\inf _{\substack{\eta \in\left(\mathbb{U}_{\hat{m}}\right)^{\mathrm{C}} \\ \eta \neq 0}} \frac{\left(P_{N} S_{W}\left(-\nu_{0}+i \omega\right) P_{N} \eta, P_{N} \eta\right)_{\left(\mathbb{U}_{\hat{m}}\right)^{\mathrm{C}}}}{\left|P_{N} \eta\right|_{\left(\mathbb{U}_{\hat{m}}\right)^{\mathbb{C}}}^{2}} \tag{82}
\end{equation*}
$$

It can be shown that for each $\omega \in \mathbb{R}$ we have $\alpha_{N}(\omega) \rightarrow \alpha(\omega)$ as $N \rightarrow \infty$, where

$$
\begin{equation*}
\alpha(\omega)=\inf _{\substack{\eta \in\left(\mathbb{U}_{\hat{m}}\right) \\ \eta \neq 0}} \frac{\left(S_{W}\left(-\nu_{0}+i \omega\right) \eta, \eta\right)_{\left(\mathbb{U}_{\hat{m}}\right)^{\mathbb{C}}}}{|\eta|_{\left(\mathbb{U}_{\hat{m}}\right)^{\mathbb{C}}}^{2}} . \tag{83}
\end{equation*}
$$

Numerical computation of frequency inequalities: problems

For each $\omega \in \mathbb{R}$ we have $\alpha_{N}(\omega) \rightarrow \alpha(\omega)$ as $N \rightarrow \infty$, but

1. The convergence depends on ω : the wider interval of ω we want, the larger N we should take.
2. Computing $\alpha_{N}(\omega)$ requires solving the resolvent equation, that is a first-order PDE in the qube $[-\tau, 0]^{m}$ with boundary conditions containing both partial derivatives and delays, for each basis vector upto N th.
3. For large N we deal with highly oscillating functions in the basis that cause high computational errors.
4. Unlike in the case $m=1, \alpha(\omega)$ do not vanish as $\omega \rightarrow \infty$. But, in concrete examples, it seems to display an asymptotically as $\omega \rightarrow \infty$ periodic (or almost periodic) pattern.

References

[1] Anikushin M.M. Frequency theorem and inertial manifolds for neutral delay equations, arXiv preprint, arXiv:2003.12499v5 (2023)
[2] Anikushin M.M., Romanov A.O. Hidden and unstable periodic orbits as a result of homoclinic bifurcations in the Suarez-Schopf delayed oscillator and the irregularity of ENSO. Phys. D: Nonlinear Phenom., 445, 133653 (2023)
[3] Anikushin M.M. Nonlinear semigroups for delay equations in Hilbert spaces, inertial manifolds and dimension estimates, Differ. Uravn. Protsessy Upravl., 4, (2022)
[4] Anikushin M.M. Inertial manifolds and foliations for asymptotically compact cocycles in Banach spaces. arXiv preprint, arXiv:2012.03821v2 (2022)

Thanks for your attention!

demolishka@gmail.com, researchgate.net/profile/Mikhail-Anikushin

[^0]: ${ }^{1}$ Recall that we naturally identify $\mathcal{B}_{\hat{j}}+\theta e_{j}$ with $[-\tau, 0]^{m-1}$ by omitting the j-th

