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Generation problems

Problem 1 (Inverse generator problem). Let H be a Hilbert space over C
and let A : D(A) ⊆ H → H be the infinitisimal generator of a bounded
semigroup on H. Assume further that A−1 exists as a densely defined, closed
operator.

Is A−1 the infinitesimal generator of a bounded semigroup?

Comments. This problem was originally posed (for Banach spaces) by R. de
Laubenfels in [1]. However, it is not hard to show that for general Banach
spaces the answer to the problem is negative, see e.g. [4]. The counter ex-
ample can be chosen such that the strongly continuous semigroup generated
by A is a contraction semigroup, whereas in Hilbert spaces the answer to the
problem is positive for a generator of a contraction semigroup (almost trivial
to show).

There is a strong relation between the inverse generator problem and
the question whether the Cayley transform of A is power bounded, i.e. if
supn ∥An

d∥ < ∞, where Ad = (I+A)(I−A)−1, see [3]. The latter question is
related to numerical analysis, since this Cayley transform pops up when ap-
plying the Crank-Nicolson scheme to the differential equation ẋ(t) = Ax(t).
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When the answer to the inverse generator problem is positive, then the
(strong) stability of the semigroup generated byA is equivalent to the (strong)
stability of the semigroup generated by A−1. Furthermore, it is equivalent to
the strong stability of Ad, i.e., limn→∞An

dx = 0 for all x ∈ H, [3].
For finite-dimensional Hilbert spaces H, it is clear that the problem has a

positive answer. For these spaces the question is; if there exists a constant c
independent of the dimension of H such that supt≥0 ∥eA

−1t∥ ≤ c supt≥0 ∥eAt∥.
In 2017, a nice survey on the problem appeared [2]. In that paper, the

interested reader can find more results and references on the inverse generator
problem.
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Problem 2 (An analytic semigroup generation problem). This problem,
arising in the theory of Gaussian open quantum systems, consists in proving
that a dissipative operator G which is quadratic in creation and annihilation
operators (or, after a unitary transformation, a differential operator quadratic
in partial derivatives ∂j and multiplication by coordinates xk) generates an
analytic semigroup. The solution has applications in the proof of strong
positivity, irreducibility and regularity properties of Gaussian open quantum
systems.

Let aj, a
∗
k be the annihilation and creation operators on ℓ2(Nd;C) defined

by closure from their action on the canonical orthonormal basis (e(n1, . . . , nd))n∈Nd

aj e(n1, . . . , nd) =
√
nj e(n1, . . . , nj−1, nj − 1, . . . , nd),

a∗k e(n1, . . . , nd) =
√
nk + 1 e(n1, . . . , nk−1, nk + 1, . . . , nd).
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Let H,Lℓ be the closures of operators defined on the canonical basis by

H =
d∑

j,k=1

(
Ωjka

∗
jak +

κjk

2
a∗ja

∗
k +

κjk

2
ajak

)
+

d∑
j=1

(
ζj
2
a∗j +

ζ̄j
2
aj

)
,

Lℓ =
d∑

k=1

(vℓkak + uℓka
∗
k) ℓ = 1, . . . , 2d

where Ω := (Ωjk)1≤j,k≤d = Ω∗ and κ := (κjk)1≤j,k≤d = κT ∈ Md(C), are d× d
complex matrices with Ω Hermitian and κ symmetric, V = (vℓk)1≤ℓ≤2d,1≤k≤d,
U = (uℓk)1≤ℓ≤2d,1≤k≤d are 2d× d complex matrices ζ = (ζj)1≤j≤d ∈ Cd.

It is not difficult to show (see e.g. [1] Proposition 4.9) that the closure of
the operator G defined on the canonical basis by

G = −iH − 1

2

2d∑
ℓ=1

L∗
ℓLℓ

generates a C0 contraction semigroup P = (Pt)t≥0 on ℓ2(Nd;C).
Suppose that the non-degeneracy condition (block-matrix form)

K =

[
V T

U∗

] [
V U

]
=

[
V TV V TU
U∗V U∗U

]
> 0

holds, then sufficient conditions for P to be an analytic semigroup are also
available.

The problem it to find a classification of the set of parameters Ω, κ, U, V, ζ
for which P is analytic.

Alternatively, by the unitary correspondence of the above basis with mul-
tidimensional Hermite polynomials (multiplied by exp(−|x|2/2) normalized),
one can formulate the problem with differential operators

aj =
1√
2

(
xj +

∂

∂xj

)
, a∗k =

1√
2

(
xk −

∂

∂xk

)
In this case strict positivity of K implies[

1 −1
1 1

]
K
[

1 1
−1 1

]
> 0

from which one finds the strong ellipticity condition for the self-adjoint part
G0 = −(1/2)

∑2d
ℓ=1 L

∗
ℓLℓ of G

Re
d∑

j,k=1

(
U∗U + V TV − V TU − U∗V

)
jk
zjzk > ϵ∥z∥2
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for z = (zj)1≤j≤d ∈ Cd.

Thinking of spectra of G0 and H one wonders if the semigroup P gen-
erated by P is analytic when K > 0 and H is bounded from below or from
above.

Communicated by Franco Fagnola.
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Problem 3 (Lumer–Phillips for transition semigroups). Let Ω be a Pol-
ish space. We call a semigroup T = (T (t))t≥0 of contractions on Cb(Ω) a
transition semigroup if

(i) for every f ∈ Cb(E) we have T (t)f → T (s)f locally uniformly whenever
t → s and

(ii) for every t ≥ 0 and every uniformly bounded sequence (fn)n∈N ⊂ Cb(Ω)
that converges locally uniformly to f , we have that T (t)fn converges
locally uniformly to f .

Is there a chracterization of the generators of such a semigroup akin to the
Lumer–Phillips theorem?

Comments. The name ‘transition semigroup’ is inspired by applications in
probability theory, where semigroups with the above properties frequently
appear as transition semigroups of Markov processes (typically, these semi-
groups are additionally positive). We should point out that semigroups of
this kind (at least at first glance) do not fit into the theory of semigroups on
locally convex spaces (see, e.g. [5]) as this theory requires equicontinuity of
the operators involved. But even the simplest example of the heat semigroup
on Cb(Rd) shows that one cannot expect equicontinuity with respect to the
topology τco of uniform convergence on compact subsets of Rd.

Consequently, in the literature several approaches were developed where
this equicontinuity condition was weakened such as the ‘theory of of weakly
continuous semigroups’ by Cerrai [1] (where instead of Cb(Ω) one works on the
space BUC(Ω)) or the ‘theory of bi-continuous semigroups’ by Kühnemund
[3]; both approaches allow for a Hille–Yosida type generation result. On the
other hand, [4, Theorem 4.4] shows that conditions (i) and (ii) the above
definition already entail equicontinuity: Not with respect to τco but with
respect to the so-called strict topology β0 (which agrees with τco on ∥ · ∥∞-
bounded subsets of Cb(Ω)). This allows us to use the results from [5] after
all to characterize the generators of transition semigroups.
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Thus, characterizations of generators of transition semigroups are avail-
able in the literature. However, to the best of my knowledge, none of these
Hille–Yosida type theorems was ever used to establish that a certain oper-
ator generates a transition semigroup (even though many examples of such
semigroups and also their generators are known). This is not as surprising
as it might seem, for even in the setting of strongly continuous semigroups
the Hille–Yosida theorem is difficult to apply. This is due to the fact that
this result requires us (in the case of bounded semigroups) to prove uniform
boundedness of the family {λnR(λ,A)n : λ > 0, n ∈ N}, which is difficult in
concrete examples. In the case of non-strongly continuous semigroups one
would have to establish equicontinuity of this family of operators – an even
harder task.

The ‘weapon of choice’ to prove that a given operator generates a strongly
continuous semigroup is rather the Lumer–Phillips theorem (see [2, Theo-
rem II.3.15]) which, however, only characterizes the generators of contraction
semigroups. The main advantage of the Lumer–Phillips theorem is that one
does not have to consider powers of the resolvent. Indeed, given dissipativity,
we only need to check the so-called range condition, i.e. we need to prove that
λ− A has dense range for some λ > 0.

It would be very interesting to have a Lumer–Phillips type result for
transition semigroups. Part of the problem is to find out how such a result
should look like. Here, usability is (in my opinion) more important than
generality. If we can obtain a sufficient condition for generation (which might
make use of additional properties that one has at hand in many possible
applications such as positivity of the resolvent or the strong Feller property
for the resolvent or ...) this would be already be very nice.

Communicated by Markus Kunze.
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Long-term behaviour of semigroups

Problem 4 (Tauberian Theorem for Semigroups of Kernel Operators). Let
E := Lp(Ω, µ) for 1 ≤ p ≤ ∞ and a σ-finite measure space (Ω, µ) and let
(Tt)t∈[0,∞) ⊆ L(E) be a strongly continuous semigroup on E such that Tt

is a positive kernel operators for each t > 0, meaning that there exists a
measurable function kt : Ω× Ω → R+ such that

(Ttf)(y) =

∫
Ω

kt(y, x)f(x)dµ(x)

for almost every y ∈ Ω.
Assume that (Tt)t∈[0,∞) is mean ergodic, meaning that the limit

lim
T→∞

1

T

∫ T

0

Ttfdt

exists in E for all f ∈ E. Does it follow that (Tt) is strongly convergent, i.e.
limt→∞ Ttf exists for all f ∈ E?

Comments. It is well known that positive semigroups of kernel operators
are strongly convergent provided that the semigroups possesses a fixed point
f ∈ E satisfying f(x) > 0 for almost every x ∈ Ω. This has been proven
in a very general setting in [1, Theorem 3.5]. The existence of such an
“quasi-interior” fixed point is crucial and cannot be omitted: For instance,
the Gaussian semigroup on L1(R) is not strongly convergent and fulfils all
assumptions of [1, Theorem 3.5] except that it does not possess a quasi-
interior fixed point. On the other hand, the Gaussian semigroup is not mean
ergodic on L1(R). In fact, using [1, Theorem 3.5] it is not difficult to show
the following Tauberian theorem:

Let (Tt)t∈[0,∞) be a positive, bounded and mean ergodic C0-semigroup on
L1(Ω) for any measure space Ω. If Tt0 is kernel operator for some t0 > 0,
then (Tt)t∈[0,∞) is strongly convergent.

The theorem above and similar results for semigroups on spaces of mea-
sures can be found in [2, Theorems 2.1, 4.1, 5.4]. This gives rise to the
conjecture that the existence of a quasi-interior fixed point in [1, Theorem
3.5] can always, i.e. for every 1 ≤ p ≤ ∞ or – more generally – for every Ba-
nach lattice E, be omitted in case of a mean ergodic C0-semigroup (Tt)t∈(0,∞).
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In support of this conjecture one may note that the Gaussian semigroup on
Lp(R) for p ∈ (1,∞) is mean ergodic and converges strongly to 0.

Communicated by Moritz Gerlach.
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Positivity

Problem 5 (Infinite speed of propagation). Let E := Lp(Ω, µ) for 1 ≤ p < ∞
and a σ-finite measure space (Ω, µ) and let := (Tt)t∈[0,∞) ⊆ L(E) be a strongly
continuous semigroup of positive kernel operators on E, meaning that for
each t > 0 there exists a measurable function kt : Ω× Ω → R+ such that

(Ttf)(y) =

∫
Ω

kt(y, x)f(x)dµ(x)

for almost every y ∈ Ω.
Assume that (Tt) is irreducible, i.e. for all non-zero and positive f, g ∈ E+

there exists t ≥ 0 such that Ttf ∧ g ̸= 0 (where ∧ denotes the infimum in the
Banach lattice E). Does it follow that (Tt) is expanding, i.e. Ttf > 0 almost
everywhere for all t > 0 and all non-zero positive f ∈ E+?

Comments. The notion of irreducibility is of great importance – for instance
in the spectral theory of positive semigroups – and obviously, every expanding
semigroup is irreducible. On the other hand, the rotation semigroup on the
unit circle is an easy example of an irreducible semigroup that fails to be
expanding.

However, under certain circumstances the two properties, irreducible and
expanding, are equivalent. For instance, every holomorphic positive semi-
group is known to be expanding if it is irreducible [2, Theorem C-III 3.2].
A surprisingly little known fact is that the same holds for all positive semi-
groups on atomic Banach lattices like ℓp for 1 ≤ p < ∞. This is due to a fact
which is referred to as “Lévy’s Theorem” in literature: for every stochastic
transition matrix (pi,j) one either has pi,j(t) = 0 or pi,j(t) > 0 for all t > 0.
The proof given by K. L. Chung in the appendix of [3] for this statement can
easily be transferred to the setting of semigroups on atomic spaces. Since
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operators on atomic spaces often serve as a prototype for general kernel oper-
ators, it is natural to ask whether the same implication is true for semigroups
of kernel operators.

The notation expanding is not used in a uniform matter in the literature;
the property is, for instance, also referred to as “strongly positive” or “pos-
itivity improving”. We would like to advertise the more systematic naming
convention of [1, Section 9.1].

Communicated by Moritz Gerlach.
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Problem 6 (Positive commutator problem). Let E be a Banach lattice and
let C : E → E be a positive quasinilpotent compact operator. Do there exist
positive operators A,B : E → E such that C = AB−BA with one of A and
B compact?

Comments. Given an associative algebra A, the natural question is to deter-
mine all commutators of A. Shoda [11] proved that a matrix C ∈ Mn(F ) is
a commutator if and only if the trace of C is zero. Wintner [12] proved that
the identity in a unital Banach algebra is not a commutator. By passing to
the Calkin algebra, Wintner’s result immediately implies that a bounded op-
erator on a Banach space which is of the form λI+K for some nonzero scalar
λ and a compact operator K is not a commutator. Henceforth, researchers
tried to characterize which operators on a given Banach space are commuta-
tors. The complete characterization of commutators in the Banach algebra
B(H) of all bounded operators on an infinite-dimensional Hilbert space H is
due to Brown and Pearcy [4]. They proved that a bounded operator C on H
is a commutator if and only if it is not of the form λI +K for some nonzero
scalar λ and some operator K from the unique maximal ideal in B(H). Apos-
tol ([1, 2]) proved that a bounded operator on either ℓp (1 < p < ∞) or c0
is a commutator if and only if it is not of the form λI +K where λ ̸= 0 and
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K is compact. In the case of the Banach space ℓ1 the same characterization
was obtained by Dosev in [5]. In the case of the Banach space ℓ∞ Dosev and
Johnson [6] proved that a bounded operator is a commutator if and only if
it is not of the form λI +K where λ ̸= 0 and K is strictly singular.

The study of positive commutators of positive operators on a given Ba-
nach lattice was initiated in [3]. The assumption on positivity of A,B and
C := AB − BA may lead to some restrictions on the commutator. Namely,
the authors proved that the positive commutator of positive compact opera-
tors is quasinilpotent. They also posed a question whether the same is true
under the assumption that one of operators is compact. This question was
affirmatively and independently solved by R. Drnovšek [7] and N. Gao [9].
Inspired by a result of Schneeberger [10] asserting that a compact operator
acting on a separable Lp space (1 ≤ p < ∞) is a commutator, in [8] au-
thors prove that a positive compact operator acting on a separable Lp space
(1 ≤ p < ∞) is a commutator of positive operators. In [8] authors provide
a technical condition under which the answer to the proposed problem is
affirmative for positive operators on ℓp space (1 ≤ p ≤ ∞) satisfying this
technical condition.
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Eventual Positivity

Problem 7 (Stability of eventually positive semigroups). Let M be a von
Neumann algebra equipped with a normal, semi-finite, and faithful trace τ
and p ∈ [1,∞). Let (etA)t∈[0,∞) be an individually eventually positive C0-
semigroup on Lp(M, τ).

Is s(A) = ω0(A)?

Comments. A C0-semigroup (etA)t∈[0,∞) on an ordered Banach space E is
said to be individually eventually positive if for each 0 ≤ f ∈ E, there exists
t0 ≥ 0 such that etAf ≥ 0 for all t ≥ t0. If the time t0 can be chosen
independently of the initial value f , then we call the semigroup uniformly
eventually positive.

For the case p = 1, 2, the answer is positive as shown in [2, Theorem 6.2.6]
(see also [1, Theorem 7.8]); note that the proofs given in the aforementioned
references are for the commutative Lp-spaces but they can be adapted to the
non-commutative setting. If the semigroup is uniformly eventually positive
and E is the classical Lp-space, then a positive answer is given by Vogt [3].
However, for the non-commutative Lp-spaces with p ̸= 1, 2, the answer is not
known even for positive semigroups.

This problem was posed by Ralph Chill.

Communicated by Sahiba Arora.
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Problem 8 (Characterisation of eventual invariance by means of form meth-
ods). Let (etA)t∈[0,∞) be a C0-semigroup on a Hilbert space H, where the op-
erator −A is associated to a form a : V ×V → H with form domain V ⊆ H.
Let C ⊆ H be closed and convex. Give a characterisation, in terms of a and
V , of one or both of the following properties:

(a) The semigroup leaves C individually eventually invariant, i.e., for each
c ∈ C exists a time t0 ∈ [0,∞) such that etAc ∈ C for all t ≥ t0.

(b) The semigroup leaves C uniformly eventually invariant, i.e., there exists
a time t0 ∈ [0,∞) such that etAc ∈ C for all for each c ∈ C and all t ≥ t0.

An answer would be particularly interesting in the case where H is an L2-
space and C is the usual positive cone in H – in this case, the properties
mentioned in (a) and (b) become the properties individual eventual posi-
tivity and uniform eventual positivity that are mentioned in several further
problems here.

Comments. Invariance rather than eventual invariance can indeed be char-
acterised by means of a and V . This is a very useful result due to Ouhabaz
[?, ...]. The criterion becomes particularly simple if H is an L2-space and C
is the usual positive cone. If, in addition, a is symmetric, this result is much
older and goes back to Beurling and Deny [?, ...].

A characterisation of (individual or uniform) eventual positivity by means
of form methods might have the potential to considerably extent the appli-
cability of the theory of eventual positivity.

Communicated by Jochen Glück.
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L∞-bounds

Problem 9 (L∞-boundedness problem). Let (Ω, µ) be a σ-finite measure
space. Let V be a dense subspace of L2(Ω) (complex-valued functions) and
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suppose that a : V × V → C is a closed sectorial sesquilinar form, i.e. linear
in the first and antilinear in the second argument. Here, sectoriality means
that, for some θ ∈ [0, π

2
),

∀u ∈ V : a(u, u) ∈ Σθ := {z ∈ C \ {0} : |arg z| ≤ θ} ∪ {0},

and closedness of a means that V is complete for the norm

∥u∥a :=
(
Re a(u, u) + ∥u∥2L2(Ω)

)1/2

.

Let the linear operator A in L2(Ω) be associated with a a in the sense that,
for u, h ∈ L2(Ω),

u ∈ D(A) and Au = h ⇐⇒ u ∈ V and ∀v ∈ V : a(u, v) = ⟨u, h⟩,

where ⟨u, h⟩ :=
∫
Ω
fh dµ denotes the usual scalar product in L2(Ω). Then

−A is negative generator of a bounded analytic semigroup (T (·)) in L2(Ω),
which is contractive on the sector Σπ

2
−θ.

The semigroup (T (t))t≥0 is called L∞-bounded, if there exists M > 0 such
that

∥T (t)f∥∞ ≤ M∥f∥∞, for all f ∈ L2(Ω) ∩ L∞(Ω). (1)

Can L∞-boundedness of (T (t))t≥0 be characterized in terms of the sesquilin-
ear form a?

Comments. The problem came up in discussions with Sönke Blunck (at the
end of the 1990s). The case M = 1 in (1), i.e., L∞-contractivity of (T (t))t≥0,
is characterized in terms of the sesquilinear form a by the well-know Beurling-
Deny criterion (see, e.g., [3, Theorem 2.7] or [5, Section 2.2]), namely by the
condition

∀u ∈ V : sgnu(|u| − 1)+ ∈ V and Re a(u, sgnu(|u| − 1)+) ≥ 0. (2)

Here v+ := −((−v) ∧ 0), where ∧ denotes the pointwise minimum, and
sgnu := u

|u|1{u̸=0} denotes the sign of the function u.

A characterization of L∞-boundedness of (T (t))t≥0 could certainly be very
useful (for the restrictions that L∞-contractivity imposes on the coefficients
of second order elliptic operators on domains we refer to [5, Section 4.3]).

It is clear that (T (t))t≥0 is L∞-bounded if there exists a function g ∈
L∞(Ω) with g > 0 µ-a.e. and 1/g ∈ L∞(Ω) satisfying

∥gT (t)f∥∞ ≤ ∥gf∥∞ for all f ∈ L∞(Ω) ∩ L2(Ω), (3)
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since the norm f 7→ ∥gf∥∞ is equivalent to ∥·∥∞. A modification of condition
(2) characterizes (3), namely

∀u ∈ V : sgnu(|u| − g)+ ∈ V and Re a(u, sgnu(|u| − g)+) ≥ 0. (4)

The proof can be done similar to the proof of equivalence of (2) and L∞-
contractivity. One can also resort to invariance results in L2(Ω) and consider
the closed convex set

Kg := {f ∈ L2(Ω) : |f | ≤ g µ-a.e.}.

Then it is not hard to check that the projection Pg of L2(Ω) onto K is given
by Pgf := sgn f(|f | ∧ g) (Pg(f) is the best approximation of f in K). Then
observe u−Pg(u) = sgnu(|u|−g)+ and apply [4, Theorem 2.1] (we also refer
to [5, Section 2.1]).

In view of the comments to Problem 9 the following seems natural to ask.

Problem 10 (L∞-contraction for a weight problem). In the setting of Prob-
lem 9 assume that the semigroup (T (t))t≥0 is L∞-bounded, i.e., satisfies (1)
for some M ≥ 1. Does there exist a function g ∈ L∞(Ω) satisfying g > 0
µ-a.e., 1/g ∈ L∞(Ω), and (3)?

Comments. In general this might be more than one can hope for.

Hence we are lead to the following.

Problem 11 (Characterization of L∞-contraction for a weight). In the set-
ting of Problem 9, can one characterize those L∞-bounded semigroups (T (t))t≥0,
for which a function g ∈ L∞(Ω) satisfying g > 0 µ-a.e., 1/g ∈ L∞(Ω), and
(3) exists?

Comments. The question is whether (T (t))t≥0 can be made to be a con-
tractive semigroup on the ∥ · ∥∞-closure of L2(Ω) ∩ L∞(Ω) in L∞(Ω) for an
equivalent norm of the special form f 7→ ∥gf∥∞. There is, of course and well-
known from semigroup theory, a norm ∥| · ∥| on L2(Ω) ∩ L∞(Ω), equivalent
to ∥ · ∥∞, such that

∥|T (t)f∥| ≤ ∥|f∥| for all f ∈ L∞(Ω) ∩ L2(Ω).

One can take ∥|f∥| := supt≥0 ∥T (t)f∥∞, which satisfies

∥f∥∞ ≤ ∥|f∥| ≤ M∥f∥∞

by assumption (1). So the problem might be seen as an L∞-counterpart to
the question if every bounded C0-semigroup on a Hilbert space can be made
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contractive for an equivalent scalar product. The answer to this question is
known to be negative and there is a nice characterization of those bounded
analytic C0-semigroups that are contractive for an equivalent scalar product
in terms of bounded imaginary powers (and bounded H∞-calculus) for the
negative generator (see [2]).

Still another question seems natural.

Problem 12 (Weight construction for L∞-contraction). In the setting of
Problem 9, assume that a function g ∈ L∞(Ω) satisfying g > 0 µ-a.e., 1/g ∈
L∞(Ω), and (3) exists. How can we find or construct such a function g?

Comments. In the general situation of Problems 9, 10, 11, and 12 it might
well be that positivity of the semigroup (T (t))t≥0 can help, i.e. the assump-
tion that f ≥ 0 a.e. on Ω implies T (t)f ≥ 0 a.e. on Ω for all t > 0.
Recall that positivity of the semigroup can be characterized in terms of the
sesquilinear form a (see [3], [5]).

Assume for the following that the semigroup (T (t))t≥0 is positive and that
the measure space (Ω, µ) is finite. Then L∞(Ω) ⊆ L2(Ω) and hence T (t)f ∈
L2(Ω) is defined for any f ∈ L∞(Ω). In this situation, L∞-contractivity
of (T (t))t≥0 is characterized by T (t)1Ω ≤ 1Ω µ-a.e. for all t > 0 where 1Ω
denotes the characteristic function of Ω.

Now let g ∈ L∞(Ω) such that g > 0 µ-a.e. on and 1/g ∈ L∞(Ω).
Then, consequently, (3) is characterized by T (t)g−1 ≤ g−1 µ-a.e. for all
t > 0 (since this is equivalent to L∞-contractivity of the positive semigroup
(gT (t)g−1)t≥0).

In particular, one has (3) for g ∈ L∞(Ω) with g > 0 µ-a.e. if h := 1/g ∈
L∞(Ω) is an eigenfunction for an eigenvalue λ ≥ 0 of A: Recalling that −A
is the generator of (T (t))t≥0 we obtain T (t)h = e−λth ≤ h µ-a.e. for all t > 0.

Specializing further, take Ω ⊂ Rd a bounded domain (with µ the Lebesgue
measure) and the usual Dirichlet form a(u, v) :=

∫
Ω
∇u · ∇v dx with form

domain V := VN := H1(Ω) (Neumann boundary conditions) or V := VD :=
H1

0 (Ω) (Dirichlet boundary conditions), and denote the associated opera-
tors by AN and AD, respectively (the negative Laplacian on Ω with Neu-
mann/Dirichlet boundary conditions).

Both semigroups are well-known to be positive and L∞-contractive, i.e.
they satisfy (3) for g = 1Ω. Now 1Ω is an eigenfunction of AN for the
eigenvalue 0. However, for AD we do not even have 1Ω ∈ VD. We do have
an eigenfunction h ∈ L∞(Ω), h > 0 µ-a.e. on Ω, for the first eigenvalue
λ0 > 0 of AD, but 1/h ̸∈ L∞(Ω) due to h ∈ VD = H1

0 (Ω). Hence, considering
(positive) eigenfunctions is not sufficient, in general.
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It might be more adequate to consider positive subeigenfunctions, we refer
to [1, II-C Section 3] for the notion of positive subeigenvectors and their role
in the characterization of positivity of semigroups on Banach lattices.

Communicated by Peer Kunstmann.
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Further problems (still need to be ordered)

Problem 13 (Charles J. K. Batty). Prove or disprove that non-analytic
growth bound ζ(T ) of a C0-semigroup T coincides with critical growth bound
ωcrit(T )

Comments. One has

ζ(T ) ≤ ωess(T ) and ζ(T ) = ωcrit(T )

in each of the following cases:

• T is a C0-semigroup on Hilbert space,

• T is a C0-semigroup on a Banach space, T has Lp-resolvent, p ∈ (1,∞),

• T is eventually differentiable.

Comments. (Charles Batty, April 2021)
This problem has not been solved so far. Note that there is some vague

similarity to Open Problem 4.
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Relevance. This problem is interesting because ζ(T ) and ωcrit(T ) are both
candidates to be variants of the exponential growth bound ω0(T ), modulo
analytic functions and spectral bounds of the generator modulo horizontal
strips. Some variants of standard results have been obtained using ζ(T )
instead of ω(T ) have been established. See, for example, Section 5 of my
article in Perspectives in operator theory, 39–53, Banach Center Publ., 75,
Polish Acad. Sci. Inst. Math., Warsaw, 2007.

References:

C. J. K. Batty, M. D. Blake, S. Srivastava: A non-analytic growth bound
of Laplace transforms and semigroup of operators. Int. Eq. Op. Th. 45
(2003), no.2, 125-154.

Source: R. Nagel’s list of problems collected in 2003 in the workshop in Bari.

Problem 14 (Charles J. K. Batty and Klaus-Jochen Engel). Prove or dis-
prove that semigroup is immediatly norm continuous if and only if

∥R(is, A)∥ → 0 as |s| → ∞.

Comment (Charles Batty). Open Problem 3 was answered negatively, by
Ralph Chill and Yuri Tomilov (J. Funct. Anal. 256 (2009), no. 2, 352-384),
and independently by Tamás Mátrai (Israel J. Math. 168 (2008), 1-28).
References:

• O. El-Mennaoui, K.J. Engel: Towards a characterization of eventually
norm continuous semigroup on Banach spaces, Quaest. Math. 19 (1996),
183-190. • O. Blasco, J. Martines: Norm continuity and related notions
for semigroup on Banach spaces, Archiv Math. 66 (1996), 470-478. • V.
Goerrsmeyer, L. Weis: Norm continuity of CO-semigroups, Studia Math.
134 (1999), 169-178.

Source: R. Nagel’s list of problems collected in 2003 in the workshop in Bari.

Problem 15 (Jerome A. Goldstein). Which C0-semigrops are ”asymptoti-
cally analytic”?

Comment. First, we explain the notion of ”asyptotically analytic semi-
groups”. Let B be a positive selfadjoint operator in Hilbert space X, and let
a > 0. Let u be a solution of the graph equation

u′′ + 2au′ +Bu = 0.
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This problem is governed by a C0-semigroup on energy space besed on X.
Eckstein-Goldstein-Leggas [EJDE, Proc, Conf. 03, 1999] proved that

u(t) = v(t) + w(t),

where u satisfies the heat equation

2av′ +Bv = 0

and ∥w(t)∥ = o(∥v(t)∥) as t tends to infinity. This leads to the notion of
”asymptotically analytic”.

Let (T (t))t≥0 be a C0-semigroup on a Banach space X, let S := (s(t))t≥0

be an analytic C0-semigroup on a Banach space Y and let be P a (somehow
natural) bounded linear operator from X to Y . We call S ”asymptotically
analytic” if there exist S, P as above such that from all f ∈ X there is g ∈ Y
so that

T (t)f = S(t)g + w(t), t ≥ 0,

where ∥w(t)∥ = o(∥S(t)g∥) as t tends to infinity.
Thus asymptotically analytic semigroups have the asymptotics of analytic

semigroups, except for errors that are relatively small asymptotically. As a
first step it would be of interest to have some results in the case of Y =
X and P = I. More generally, which C0-groups (such as those governing
second order equations) and which nonanalytic semigroups governing FDE’s
are asyptotically anatilic?
Comments. (Charles Batty, April 2021) Note that Open Problem 2 and Open
Problem 4 have some vague similarity.

Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 16 (Birgit Jacob, Hans Zwart). Let (T (t))t≥0 be a contraction
semigroup with generation A on a Hilbert space H. Consider the following
properties.

(i) There exist m ≥ 0 such that

∥(λ− A)x∥ ≥ m|Reλ|∥x∥ for all Reλ < 0 and all x ∈ H.

(ii) There exist m1 > 0 such that

∥T (t)x∥ ≥ m1∥x∥ for all t ≥ 0, x ∈ H
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Does (i) imply (ii)?

Comment. Condition (ii) always implies (i). This is not true if (T (t))t≥0

is only bounded, but it is true if λ ∈ ρ(A) with Reλ < 0.
Comment (Charles Batty, April 2021) I do not know of an answer to this

problem. In a paper by Xu and Shang ( Systems Control Lett. 58 (2009),
no. 8, 561-566, a related result on Banach spaces is stated in Theorem 2.4.
Their proof is seriously flawed, but a proof is given in a paper by Geyer and
myself (J. Operator Theory 78 (2017), no. 2, 473-500); see Theorem 5.4 and
Example 5.6.
Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 17 (Yuri Latushkin). Consider the following properties of the gen-
eration A of a C0-semigroups (T (t))t≥0.

1. rgA closed.

2. rg(1− T (t)) closed for one t > 0.

Does (ii) imply (i)?

Comment. This is a version of a ”special inclusion theorem”. The con-
verse implication does not hold.
Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 18 (Alessandra Lunardi). Let A and B be generators of C0 semi-
groups. Under which condition does

C := A2 +B2

generate an analytic semigroup?

Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 19 (Alessandra Lunardi). Let (T (t))t≥0 be a not necessary strongly
continious semigroup on a Banach space X and consider the following con-
dition.

(i) (0,∞) ∋ t 7→ T (t) ∈ L(X) is analytic.

(ii) t 7→ T (t) is analytic on a sector containing R+
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(iii) ∥T (t)∥ ≤ Metω, d
dt
T (t) ∈ L(X) and ∥ d

dt
T (t)∥ ≤ M

t
etω for some constants

ω,M .

Under which assumption added to (i), (ii) or (iii) does there exist a sectorial
operator A generating (T (t))t≥0?

Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 20 (Alessandra Lunardi). Study the ”backward uniqueness prop-
erty”, i.e., characterize injective C0-semigroups. Apply the result to the
backward uniqueness property for non-autonomous Cauchy problems u′(t) =
A(t)u(t), A(t) sectorial, by looking at the corresponding evolution semigroup.

Comments. Why this problem is important

Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 21 (Alessandra Lunardi). Consider ”non-C0-semigroups”, e.g., bi-
continious semigroup and describe appropriate regularization properties.

Comments. Compare the Ornstein-Uhlebeck semigroup in Cb(Rn).

Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 22 (R. Nagel). Let A and B the generators of two communiting
C0-semigroups on a Banach space and letG be the generator of corresponding
product semigroup. Find (the most general) conditions implying

D(G) = D(A) ∩D(B).

Comments. This yields abstract ”maximal regularity” results.

Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 23 (R. Nagel). Let (T (t))t≥0 be a C0-semigroup whith growth
bound

ω0 := inf{ω ∈ R : ∥T (t)∥ ≤ Mω · etω for t ≥ 0}

Find condition such that ω0 is minimum, i.e.,

∥T (t)∥ ≤ M0 · etω0 for t ≥ 0
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Comments. This corresponds to a characterization of boundedness for semi-
groups.

Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 24 (H. Zwart). (i) Does every bounded C0-semigroup on a Hilbert
space have a bounded rational calculus?

(ii) When is a C0-semigroups on a Hilbert space similar to a contraction
semigroup?

Comments. The answer to the first question is no. A bounded semigroup
on a Hilbert space has a bounded rational calculus if and only if it has a
bounded H∞-calculus, see thesis of Markus Haase.

Comments.(Charles Batty)
In Problem (i) and the Comment above, the ”boundedness” of the rational

calculus is being interpreted as meaning boundedness with respect to the
H∞-norm. There are one or two issues as to what is the domain of those
functions and whether or not the generator is injective, but basically the
answer is correct. An alternative to Haase’s thesis is his functional calculus
book, Sections 5.3.4 and 5.3.5.

Instead of considering the H∞-norm, one may consider Banach algebras
in different norms that are embedded in H∞(C+), where C+ is the open
right half-plane. One example is the (Hille)-Phillips calculus, where the norm
comes from measures on [0,∞). Alexander Gomilko, Yuri Tomilov and I have
recently shown that if −A is the generator of a bounded C0-semigroup on a
Hilbert space, then there is a bounded B-calculus for A. Here B is a Banach
algebra of “analytic Besov” functions on the right half-plane. This algebra is
considerably bigger than the Phillips algebra, and the B-norm is considerably
smaller than the Phillips norm but it is bigger than the H∞-norm.

On Banach spaces, the B-calculus exists if and only if A satisfies the
condition introduced by Gomilko, and independently by Shi and Feng, in
1999 and 2000. In particular, it exists if A is sectorial of angle less than π/2,
so −A generates a bounded holomorphic C0-semigroup. For those operators,
there are two further calculi, D-calculus and H-calculus, which extend the
calculus to larger classes of functions than B, with smaller norms.

Relevance. This problem was/is related to the inverse generator problem and
questions concerning the powers of the co-generator of bounded semigroups.
For both problems, the answers have been negative in general, and some
positive partial answers have been obtained, but the answer for bounded
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semigroups on Hilbert spaces is unknown. The extended calculi provide
systematic ways to approach such problems, instead of using ad hoc methods
each time. For the functions ((z − 1)(z + 1)−1)n the Hille-Phillips norm
grows like n1/2, the B-norm grows like log n, and the D-norms are uniformly
bounded.

Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 25 (R. Nagel). A + B problem. Let A and B be generators of
C0-semigroups on a Banach space X.

(i) Define the sum C = A + B such that C becomes a (maximal) closed
operator on X and Cx = Ãx+ B̃x for all x ∈ X and some extrapolated
operators A and B.

(ii) Find assumptions on A and B such that C remains a generator on X,
thereby unifying known perturbation results.

(iii) A test case is the following. Let X = C0(R, X) or X = Lp(R, X), and
take Af = f ′ and Bf(s) = C(s)f(s) for appropriate f ∈ X and closed
operator C(s) on X.

Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 26 (R. Nagel). Non-autonomous abstract Cauchy problems.
For unbounded linear operators A(t) on a Banach space X and for a start-
ing time t0, characterize the well-posedness of the non-autonomous Cauchy
problem

ẋ(t) = A(t)x(t) for t ≥ t0

x(t0) = x0

by a Hille-Yosida type condition for an operator G generating an evolution
semigroup on X = C0(R, X) or X = Lp(R, X).

Source: R. Nagel’s list of problems collected in 2003 at the workshop in Bari.

Problem 27 (Communicated by Rainer Nagel). Characterizing Koopman
groups on Hilbert spaces:

Use the Perron Frobenius spectral theory of positive C0-groups to charac-
terize unitary C0-groups on a Hilbert space H that are unitarily isomorphic
to a Koopman group on an L2-space.
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References:

• Alexandre I. Danilenko, and Mariusz Lemańczyk: Spectral multiplic-
ities for ergodic flows. Discrete Contin. Dyn. Syst. 33, No. 9, 4271-
4289 (2013). • D. V. Anosov: pectral multiplicity in ergodic theory,
Proc. Steklov Inst. Math. 290, Suppl. 1, S1-S44 (2015); translation from
Sovrem. Probl. Mat. 2003, No. 3, 3–84 (2003).

Source: Manuscript of R. Nagel provided during OPSO 2021 conference.

Problem 28 (D. Seifert). Let (T (t))t≥0 be a bounded C0-semigroup on a
(complex) Banach space X, and let A denote its generator. Suppose that
σ(A) ∩ iR = ∅ and that there exists α > 0 such that ∥(is−A)−1∥ = O(|s|α)
as |s| → ∞. Find β ∈ [0, 1] depending on the geometric properties of the
space X (for instance its Fourier type, its type or its cotype) such that

∥T (t)A−1∥ = O

(
log(t)β/α

t1/α

)
, t → ∞.

Comments. It was shown by Batty and Duyckaerts (2008) that one may
always take β = 1; see also Chill and Seifert (2016). Batty and Duyckaerts
moreover showed that negative values of β are in general not permissible.
It is reasonable, therefore, to restrict attention to values of β lying in [0, 1].
Borichev and Tomilov (2010) showed that one may take β = 0, yielding the
best possible upper bound, if X is a Hilbert space. This result may be viewed
as a special case of more recent results appearing in papers by Batty, Chill
and Tomilov (2016) and Rozendaal, Seifert and Stahn (2019). Borichev and
Tomilov also showed, by considering the left-shift semigroup on a certain
subspace of BUC(R+) with an appropriate norm, that one may have

lim sup
t→∞

t1/α

log(t)1/α
∥T (t)A−1∥ > 0.

Hence one cannot in general hope to do better than β = 1 unless one imposes
additional assumptions on X; see also Debruyne and Seifert (2019).

Relevance. This problem is important from a theoretical point of view, as
its solution would elegantly complement our current understanding of poly-
nomial stability of C0-semigroups. Furthermore, there are likely to be inter-
esting applications to concrete evolution equations on Lp-spaces and other
(non-Hilbertian) Banach spaces with non-trivial geometric properties.

References:

22



• C.J.K. Batty, R. Chill, and Y. Tomilov. Fine scales of decay of operator
semigroups. J. Eur. Math. Soc. (JEMS), 18(4):853–929, 2016.
• C.J.K. Batty and T. Duyckaerts. Non-uniform stability for bounded
semi-groups on Banach spaces. J. Evol. Equ., 8(4):765–780, 2008.
• A. Borichev and Y. Tomilov. Optimal polynomial decay of functions
and operator semigroups. Math. Ann., 347(2):455–478, 2010.
• R. Chill and D. Seifert. Quantified versions of Ingham’s theorem. Bull.
Lond. Math. Soc., 48(3):519–532, 2016.
• G. Debruyne and D. Seifert. An abstract approach to optimal decay
of functions and operator semigroups. Israel J. Math., 233(1):439–451,
2019.
• G. Debruyne and D. Seifert. Optimality of the quantified Ingham-
Karamata theorem for operator semigroups with general resolvent
growth. Arch. Math. (Basel), 113(6):617–627, 2019.
• J. Rozendaal, D. Seifert, and R. Stahn. Optimal rates of decay for
operator semigroups on Hilbert spaces. Adv. Math., 346:359–388, 2019.

Problem 29 (A.E. Teretenkov). Let B be a Banach space. Let P be a
projection on the finite-dimensional Banach subspace of B. Let L0 + λL
be a generator of C0-semigroup Uλ

t on B for all λ ∈ [0, λsup). Let U0
t leave

both PB and its complement (I − P)B invariant, let PLP = 0. Denote
Lt ≡ (U0

t )
−1LU0

t . Let the integrals∫ t

−∞
dt1 . . .

∫ tk−1

−∞
dtkPLt1 . . .LtkP , k = 1, . . . , n+ 1

finite for all t ⩾ 0. If is it possible to find such a λ-dependent operator rn,λ

on PB , which is polynomial in λ, and λ-dependent semigroup un,λ
t on PB,

whose generator is polynomial in λ, such that

P(U0
t
λ2
)−1Uλ

t
λ2
P = un,λ

t rn,λ +O(λ2n+2), λ → +0

for all t > 0 ? Let us emphasize that we do not assume here asymptotic
behavior to be uniform in t, it is just assumed for each fixed t > 0. If there
are counterexamples, what further restrictions should be assumed to obtain
such asymptotic estimate?

Relevance. This problem is important for derivation of perturbative correc-
tions to Markovian quantum master equations. It seems to be a possible
direction of generalization of the classical results by E.B. Davies to higher
orders of perturbation theory in λ and seems to be hold in a simple example

23



discussed in arXiv:2008.02820. It also seems to be necessary for strict pertur-
bative derivation of master equations recently obtained by A.S. Trushechkin.

References:
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• A.S. Trushechkin. Proc. Steklov Inst. Math. 313 (2021): to appear.
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