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This talk is devoted to the error of Chernoff approximations [1,2,3] to strongly continuous
one-parameter semigroups [4, 5] in the case when Chernoff function has a coefficient at t2 which
is known.

Let (X, ∥·∥) be any Banach space and L (X) denotes the set of all bounded linear operators
on X.

Definition 1 (see, for example, Engel, Nagel [5]). The family {G(t)}t⩾0 of bounded linear
operators on the Banach space X is called the strongly continuous (one-parameter) semigroup
(and also the C0–semigroup), if it is strongly continuous, G(0) = I and for all t, s ⩾ 0 the
equality G(t+ s) = G(t)G(s) is true.

Definition 2 (see, for example: Engel, Nagel [5]). Generator of a strongly continuous semi-
group {G(t)}t⩾0 on the Banach space X is the operator A : D(A) → X, defined by the equality
Ax = lim

t→+0
(G(t)x− x)/t for all x from the domain D(A), where

D(A) = { x ∈ X | lim
t→+0

(G(t)x− x)/t exists }.

In 1968 Paul Chernoff proved the following theorem:
Theorem 1 (Chernoff [6]). Let X be a Banach space, F (t) be a strongly continuous function

from [0,∞) to a subset of the compressing operators from L (X), with F (0) = I. Suppose that
the closure A of the strong derivative F ′(0) is the generator of the contracting C0–semigroup
{etA}t⩾0. Then [F (t/n)]n converges to etA in a strong operator topology.

Let us note that this theorem does not contain an estimate of the rate of convergence, that
is, an estimate of the form

∥[F (t/n)]nx− etAx∥ ≤ C(t, x, n) → 0 (n → ∞).

In 2022 was published the theorem that provides such estimate under certain conditions:
Theorem 2 (Galkin, Remizov [3]). Suppose that:
1) T > 0, M1 ≥ 1, w ≥ 0. (A,D(A)) is generator of C0-semigroup (etA)t⩾0 in a Banach

space X, such that ∥etA∥ ⩽ M1e
wt for t ∈ [0, T ].

2) There are a mapping F : (0, T ] → L (X) and constant M2 ≥ 1 such that we have
∥(F (t))k∥ ⩽ M2e

kwt for all t ∈ (0, T ] and all k ∈ N = {1, 2, 3, . . .}.
3) m ∈ N ∪ {0}, p ∈ N, subspace D ⊂ D(Am+p) is (etA)t⩾0-invariant.
4) There exist such functions Kj : (0, T ] → [0,+∞), j = 0, 1, . . . ,m+p that for all t ∈ (0, T ]

and all f ∈ D we have ∥∥∥∥F (t)f −
m∑
k=0

tkAkf

k!

∥∥∥∥ ⩽ tm+1

m+p∑
j=0

Kj(t)∥Ajf∥.
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Then: for all t > 0, all integer n ≥ t/T and all f ∈ D we have

∥(F (t/n))nf − etAf∥ ≤ M1M2t
m+1ewt

nm

m+p∑
j=0

Cj(t/n)∥Ajf∥,

Cm+1(t) = Km+1(t)e
−wt +M1/(m+ 1)!, Cj(t) = Kj(t)e

−wt (j ̸= m+ 1).

Let us consider particular example. Example 1. Suppose that ∥etA∥ ≤ M1e
wt, ∥F (t)∥ ≤

M2e
wt, where w ≥ 0,

∥F (t)x− x− tAx∥ ≤ K2t
2∥A2x∥

for all x ∈ D(A2) and t ∈ (0; 1]. Then m = 1, K0(t) = K1(t) = 0 for any t ∈ (0; 1]. So
theorem 2 states that for any fixed t > 0, all x ∈ D(A2) and all integer n ≥ t the following
estimate is true, having the following asymptotic behaviour as n → ∞:

∥(F (t/n))nx− etAx∥ ≤ M1M2t
2ewt

n

(
K2e

−wt/n +
M1

2

)
∥A2x∥ ≤

≤ M1M2(K2 +M1/2)
t2ewt

n
∥A2x∥.

So the question arises: what is the lower estimate of the error ∥(F (t/n))nx− etAx∥ ?
In 2018, Ivan Remizov formulated the following conjecture:
Conjecture 1 (Remizov [7]). Let (etA)t≥0 be a C0-semigroup in a Banach space X, and F is

a Chernoff function for operator A (recall that this implies F (0) = I and F ′(0) = A but says
nothing about F ′′(0)) and number T > 0 is fixed. Suppose that vector x is from intersection
of domains of operators F ′(t), F ′′(t), F ′′′(t), F ′′′′(t), F ′(t)F ′′(t), (F ′(t))2F ′′(t), (F ′′(t))2 for
each t ∈ [0, T ], and suppose that if Z(t) is any of these operators then function t → Z(t)x is
continuous for each t ∈ [0, T ]. Then there exists such a number Cx > 0, that for each t ∈ [0, T )
and each n ∈ N the following inequality holds, where B = F ′′(0) :

∥(F (t/n))nx− etAx− t2

2n
etA(B − A2)x∥ ⩽

Cx

n2
.

Unfortunately, this hypothesis can only be true if the operators A and B commute. We
prove the following theorem:

Theorem 3. Suppose that:
1) C0-semigroup (etA)t⩾0 in a Banach space X has bounded generator A ∈ L (X).
2) T > 0 and there are a mapping F : [0, T ] → L (X) and constants M ≥ 1, w ≥ 0 such

that ∥(F (t))k∥ ⩽ Mekwt for all t ∈ [0, T ], k ∈ N.
3) There exist such bounded operator B ∈ L (X) and constant K ≥ 0 that for all t ∈ [0, T ]

we have ∥∥F (t)− I − tA− t2

2
B
∥∥ ⩽ Kt3.

Then: there exists such a number C > 0, that for each t ∈ [0, T ] and each n ∈ N the
following inequality holds:

∥∥(F (t/n))n − etA − t2

2n

∫ 1

0

etsA(B − A2)et(1−s)Ads
∥∥ ≤ C

n2
.

If A and B commute then:∥∥(F (t/n))n − etA − t2

2n
etA(B − A2)

∥∥ ≤ C

n2
.
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