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Introduction

I This is a talk on the research that is only in the very beginning

of it.

I There will be no proved theorems.

I There will be ideas and problem settings.

I There will be a formula that we wish to prove to be a solution

of a generalized Black-Scholes equation.

I This is my second in life talk in English, your kind support is

appreciated :)
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Cherno� theorem
Theorem. Suppose that the following three conditions are met:

1. C0-semigroup (etL)t≥0 with generator (L,D(L)) in Banach space F is
given.

2. There exists a strongly continuous mapping S : [0,+∞)→ L (F) such
that S(0) = I and the inequality ‖S(t)‖ ≤ ewt holds for all t ≥ 0.

3. There exists a dense linear subspace D ⊂ F such that for all f ∈ D there
exists a limit S ′(0)f := limt→+0(S(t)f − f )/t. Moreover, S ′(0) on D has
a closure that coincides with the generator (L,D(L)).

Then the following statement holds:

(C) For every f ∈ F , as n→∞ we have S(t/n)nf → etLf locally uniformly
with respect to t ≥ 0, i.e. for each T > 0 and each f ∈ F we have

lim
n→∞

sup
t∈[0,T ]

‖S(t/n)nf − etLf ‖ = 0.

Above S(t/n)n = S(t/n) ◦ · · · ◦ S(t/n)︸ ︷︷ ︸
n

is the composition of n copies of linear

bounded operator S(t/n) de�ned everywhere on F .
De�nition. Let C0-semigroup (etL)t≥0 with generator L in Banach space F be
given. The mapping S : [0,+∞)→ L (F) is called a Cherno� function for

operator L i� it satis�es the condition (C) of Cherno� theorem above.
In this case expressions S(t/n)n are called Cherno� approximations to the

semigroup etL. 3 / 12



Heat equation and heat semigroup: known facts
Cauchy problem for the heat equation with constant coe�cient

a > 0 is {
ut(t, x) = auxx(t, x), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R.
Let us de�ne operator H by the rule (Hf )(x) = af ′′(x) for all
x ∈ R and all f from some dense subspace of appropriate Banach

space of functions f : R→ R. Let us introduce function-valued

function U by the rule U(t) = u(t, ·) = [x 7−→ u(t, x)]. Then the

above Cauchy problem can be rewritten as{
U ′(t) = HU(t), t > 0,

U(u) = u0.

If H is the generator of C0-semigroup in the space of functions that

we work in, then the solution of both Cauchy problems are given by

the so-called heat semigroup (etH)t≥0:

u(t, x) = (U(t))(x) = (etHu0)(x) =
1√
2at

∫
R
exp

(
−(x − y)2

2at

)
u0(y)dy .
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Heat equation with variable coe�cient
Consider Cauchy problem for the heat equation with variable

coe�cient a(x) > 0{
ut(t, x) = a(x)uxx(t, x), x ∈ R, t > 0,

u(0, x) = u0(x), x ∈ R.

Let us de�ne operator Hv by the rule (Hv f )(x) = a(x)f ′′(x) for all
x ∈ R and all f from some dense subspace of appropriate Banach

space of functions f : R→ R. Let us introduce function-valued

function U by the rule U(t) = u(t, ·) = [x 7−→ u(t, x)]. Then the

above Cauchy problem can be rewritten as{
U ′(t) = HvU(t), t > 0,

U(u) = u0.

As before, the solution is given by the semigroup (etHv )t≥0, but the
analogue of previous formula does not give the semigroup anymore:

u(t, x) = (U(t))(x) = (etHvu0)(x) 6=
1√

2a(x)t

∫
R
exp

(
−(x − y)2

2a(x)t

)
u0(y)dy .
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Heat equation with variable coe�cient
Operator-valued function S

(S(t)u0)(x) =
1√

2a(x)t

∫
R
exp

(
−(x − y)2

2a(x)t

)
u0(y)dy

does not posess the semigroup property, i.e. we should not expect

that S(t1 + t2) = S(t1)S(t2) and etHv 6= S(t), but this function S
is still useful for the following reason. Under sertain conditions it is

known that the semigroup etHv is given in the form

(etHvu0)(x0) =
(
lim
n→∞

S(t/n)nu0
)
(x0) = lim

n→∞

∫
R
· · ·
∫
R︸ ︷︷ ︸

n

n−1∏
k=0

1

(2a(xk)t)n/2
×

× exp

(
n−1∑
k=0

−(xk − xk+1)

2(t/n)a(xk)

)
u0(xn)dx1 . . . dxn

This is a very particular case of what is written in the paper:
Ya.A. Butko, M. Grothaus, O.G. Smolyanov. Lagrangian Feynman
formulas for second-order parabolic equations in bounded and unbounded
domains.// IDAQP vol. 13, No. 3 (2010), 377-392. 6 / 12



Now we are coming to the main topic of the talk!

Our plan is to consider the Black-Scholes equation and do with it

exactly what was done with the heat equation above.
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Consider linear di�erential operator A given by

(Af )(x) = a(x)f ′′(x) + b(x)f ′(x) + c(x)f (x) (1)

If operator A generates a C0-semigroup (etA)t≥0 then Cauchy

problem for parabolic equation{
ut(t, x) = a(x)uxx(t, x) + b(x)ux(t, x) + c(x)u(t, x),

u(0, x) = u0(x)
(2)

has solution u(t, x) = (etAu0)(x). Moreover for each T > 0

Cauchy problem for parabolic equation{
−vt(t, x) = a(x)vxx(t, x) + b(x)vx(t, x) + c(x)v(t, x),

v(T , x) = vT (x)
(3)

has solution v(t, x) = (e(T−t)AvT )(x). Note that (3) becomes the

(useful in mathematical �nance) Black-Scholes equation for option

pricing if we use the following notation: v is the price of the option

as a function of stock price x and time t, a(x) = 1
2
σ2x2 where

σ > 0 is the volatility of the stock, b(x) = rx and c(x) = −r where

r > 0 is the risk-free interest rate.
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Black-Scholes equation and Black-Scholes semigroup
The operator L de�ned as

(Lf )(x) =
1

2
σ2x2f ′′(x) + rxf ′(x)− rf (x)·

is an unbounded operator in Banach space

Y s,τ =

{
u ∈ C (0,∞) : lim

x→∞

u(x)

1+ x s
= 0, lim

x→0

u(x)

1+ x−τ
= 0

}
with respect to the norm

‖u‖Y s,τ = sup
x>0

∣∣∣∣ u(x)

(1+ x s)(1+ x−τ )

∣∣∣∣ .
In the case of constant parameters σ > 0 and r > 0 the solution to the
Cauchy problem for the Black-Scholes equation{

ut(t, x) = Lu(t, x), x > 0

u(0, x) = u0(x), x > 0

with u(t, x) > 0 is given (see e.g. Goldstain-Goldstain papers) as

u(t, x) = (etLu0)(x) = (4πt)−1/2e−rt
∫
R

e−y
2/(4t)u0

(
xe(r−σ

2/2)t−σy/
√
2

)
dy
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Generalized Black-Scholes equation: possible Cherno�
function and Feynman formula

What if the coe�cients σ and r are not constants, but are bounded,
continuous and positive functions?

(S(t)u0)(x) = (4πt)−1/2e−r(x)t

∫
R

e−y2/(4t)u0
(
xe(r(x)−σ

2(x)/2)t−σ(x)y/
√
2
)
dy

If S(t) is a Cherno� function, then Cherno� approximations will be

(S (t/n) u0)
n (x) =

= (−1)n
( n

2πt

)n/2 ∞∫
0

· · ·
∞∫
0

exp

(
−

(
r(x) +

n−1∑
k=1

r(yk)

)
t

n

)
×

× exp

[
− n

2t

(
[t(r(x)− σ2(x)/2)/n − ln (y1/x)]

2

σ2(x)
+

+
n−1∑
k=1

[t(r(yk)− σ2(yk)/2)/n − ln (yk+1/yk)]
2

σ2(yk)

)]
×

× u0(yn) dy1 . . . dyn

σ(x)yn
n−1∏
k=1

σ(yk)yk
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Work in progress

Our plan is to prove, that the function S(t) given by

(S(t)u0)(x) = (4πt)−1/2e−r(x)t
∫
R

e−y
2/(4t)u0

(
xe(r(x)−σ

2(x)/2)t−σ(x)y/
√
2

)
dy

is a Cherno� function. It means we have to show that all the

conditions of Cherno� theorem hold.
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Thank you for your attention!
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