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Preface
International online conference “One-Parameter Semigroups of Operators” (OPSO 2023),

27 February – 3 March 2023, is organized by the International laboratory of dynamical systems
and applications, and research group Evolution semigroups and their new applications, both
located in Russia, Nizhny Novgorod city, and hosted by the National research university Higher
School of Economics (HSE).

Website of the Laboratory: https://nnov.hse.ru/en/bipm/dsa/
HSE is a young university (established in 1992) which rapidly become one of the leading

Russian universities according to international ratings. In 2023 HSE is a large university focused
not only on economics. There are departments of Economics (including Finance, Statistics etc),
Law, Mathematics, Computer Science, Media and Design, Physics, Chemistry, Biotechnology,
Geography and Geoinformation Technologies, Foreign Languages and some other.

Website of the HSE: https://www.hse.ru/en/
The conference covered the following topics:
1. One-parameter (semi)groups of linear operators, their applications and generalizations;
2. Nonlinear (semi)flows: ergodicity, chaos and other dynamical phenomena;
3. Interplay between linear infinite-dimensional systems and nonlinear finite-dimensional

systems;
4. Quantum physics, quantum information and quantum dynamical semigroups;
5. Infinite-dimensional analysis, probability, stochastic processes and financial mathematics;
6. Related topics;
Website of the OPSO 2023 conference: https://nnov.hse.ru/bipm/dsa/opso2023
Organizing Committee: Ivan Remizov (chairman), Oleg Galkin (vice chairman), Kse-

nia Dragunova, Anna Ivanova, Denis Mineev, Polina Panteleeva, Anna Smirnova, Alexander
Vedenin, HSE University (Russia, Nizhny Novgorod City)

Funding. The conference is partially supported by Laboratory of Dynamical Systems and
Applications NRU HSE, grant of the Ministry of science and higher education of the RF, ag. в„–
075-15-2022-1101. The conference was prepared within the framework of the Academic Fund
Program at HSE University in 2023 (project No 23-00-031 Evolution semigroups and their new
applications).

Version of the text: 2.2.
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Section 1. One-parameter (semi)groups of linear operators,
their applications and generalizations

Eventual positivity of delay semigroups
P. Anuragi 1, S. Rastogi 2. S. Srivastava 3

Keywords: One-parameter semigroups of linear operators; semigroups on Banach lat-
tices; Delay semigroups; eventually positive semigroups; perturbation theory.

MSC2020 codes: 47D06; 47B65; 34G10

Introduction. In a series of papers see [1, 2, 3] Daniel Daners, Jochen Glück and James
B. Kennedy initiated the study of eventually positive C0− semigroups of linear operators on
Banach lattices, that is, of semigroups for which, for every positive initial value, the solution
of the corresponding Cauchy problem becomes positive for large times.They introduced several
notions of eventual positivity such as an individual and a uniform one and also gave character-
isations of such semigroups by means of spectral and resolvent properties of the corresponding
generators. In the paper [4] Daners and Glück studied the eventual positivity of semigroups
under bounded perturbations of the generators and concretely demonstrated that the pertur-
bation theory is much more subtle for eventally positive semigroups than it is for positive
semigroups. They demonstrated that, in sharp contrast to the case of positive semigroups,
eventual positivity of a semigroup is in general lost, if we perturb its generator by a positive
operator of large norm. They also showed that individual eventual positivity is not even stable
with respect to small positive perturbations.
We study the eventual positivity of semigroups under unbounded perturbations of generators.
We prove the eventual positivity of the perturbed semigroups under the unbounded perturba-
tions of generators of analytic, norm continuous and eventually norm continuous semigroups
and apply the same to deduce the eventual positivity of Delay semigroups.
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[1] D. Daners, J. Glück, J.B. Kennedy, Eventually positive semigroups of linear operators, J.

Math. Anal. Appl. 433 (2016), 1561-1593.
[2] D. Daners, J. Glück, J.B. Kennedy, Eventually and asymptotically positive semigroups on

Banach lattices. J. Differ. Equ. 261, 2607В–2649 (2016).
[3] D. Daners, J. Glück, The role of domination and smoothing conditions in the theory of

eventually positive semigroups. Bull. Aust. Math. Soc. 96, 286В–298 (2017).
[4] D. Daners, J. Glück, Towards a perturbation theory for eventually positive semigroups. J.

Operator Theory 79, 345В–372 (2018). https://doi.org/10.7900/jot.2017mar29.2148
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Local Solutions of Quasilinear Equations
with Gerasimov — Caputo Derivatives. Sectorial Case.

K. V.Boyko 4, V. E. Fedorov 5

Keywords: Gerasimov — Caputo derivative; fractional differential equation; analytic resolving
family of operators; multi-term fractional equation; Cauchy problem; initial boundary value problem.

MSC2020 codes: 35R11, 34A08.

Introduction. Over the past few decades, there has been a sharp increase in the interest
of researchers in fractional differential equations, primarily due to their increasing importance
in modeling various phenomena that arise in physics, chemistry, mathematical biology, and
engineering [1,2].

The unique solvability issues for initial problems to some types of equations in Banach
spaces with the Gerasimov — Caputo time-fractional derivative were researched in the works
[3–7].

In this paper, we study the Cauchy problem z(l)(t0) = zl, l = 0, 1, . . . ,m−1, for a differential
equation with several fractional derivatives in the linear and nonlinear parts

Dαz(t) =
n∑
k=1

DαkAkz(t) +B(t,Dγ1z(t), Dγ2z(t), . . . , Dγrz(t)). (1)

Here Dβ is the Gerasimov — Caputo derivative of the order β > 0, or the Riemann — Liouville
integral of the order −β in the case β ≤ 0, m − 1 < α ≤ m ∈ N, n, r ∈ N ∪ {0}, α1 < α2 <
· · · < αn < α, γ1 < γ2 < · · · < γr < α, Z — Banach space, Ak, k = 1, 2, . . . , n, are linear closed

operators with domains DAk
⊂ Z, the non-linear mapping B : [t0, T ]× Zr → D :=

n⋂
k=1

DAk
is

continuous in the norm ∥·∥D = ∥·∥Z+
n∑
k=1

∥Ak ·∥Z . The unique solvability of the Cauchy problem

for the linear inhomogeneous equation (1) (B = f(t)) in the case when the operators Ak are
bounded, k = 1, 2, . . . , n, was proved in [7]. In the case when the set of unbounded operators
(A1, A2, . . . , An) belongs to the class An

α,G, the unique solvability of the Cauchy problem for
linear inhomogeneous equation (1) was studied in [8, 9]. Under the condition that the nonlinear
operator B is locally Lipschitz, we obtain a theorem on the local unique solvability of the Cauchy
problem for quasilinear equation (1). For this, the fixed point theorem in a specially constructed
metric space is used.

Local solution. Denote D :=
⋂n
k=1DAk

, Rλ :=

(
λαI −

n∑
k=1

λαkAk

)−1

: Z → D. We

endow the set D with the norm ∥ · ∥D = ∥ · ∥Z +
n∑
k=1

∥Ak · ∥Z , with respect to which D is

a Banach space, since it is the intersection of the Banach spaces DA1 , DA2 , . . . , DAn with the
corresponding graph norms.

Denote nl := min{k ∈ {1, 2, . . . , n} : l ≤ mk − 1} for l = 0, 1, . . . ,m − 1. If the set
{k ∈ {1, 2, . . . , n} : l ≤ mk − 1} is empty for some l ∈ {0, 1, . . . ,m − 1} (this holds exactly
when αn ≤ m− 1), then we set nl := n+ 1.

Definition 1. The set of operators (A1, A2, . . . , An) belongs to the class An
α,G(θ0, a0) for some

θ0 ∈ (π/2, π), a0 ≥ 0, if
4Chelyabinsk State University, Department of Mathematical Analysis, Russia, Chelyabinsk. Email:

kvboyko@mail.ru
5Chelyabinsk State University, Department of Mathematical Analysis, Russia, Chelyabinsk. Email:

kar@csu.ru
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(i) D is dense in Z;
(ii) for all λ ∈ Sθ0,a0 := {µ ∈ C : | arg(µ− a0)| < θ0, a ̸= a0}, l = 0, 1, . . .m− 1 we have

Rλ ·

(
I −

n∑
k=nl

λαk−αAk

)
∈ L(Z);

(iii) for any θ ∈ (π/2, θ0), a > a0 there exists K(θ, a) > 0, such that for all λ ∈ Sθ,a,
l = 0, 1, . . .m− 1

∥Rλ∥L(Z) ≤
K(θ, a)

|λ− a||λ|α−1
,

∥∥∥∥∥Rλ

(
I −

n∑
k=nl

λαk−αAk

)∥∥∥∥∥
L(Z)

≤ K(θ, a)

|λ− a||λ|α−1
.

Let γ1 < γ2 < · · · < γr < α, ri − 1 < γi ≤ ri ∈ Z, i = 1, 2, . . . , r, U be an open set in
R×Zr, B : U → Z. Consider the Cauchy problem

z(l)(t0) = zl, l = 0, 1, . . . ,m− 1, (2)

Dαz(t) =
n∑
k=1

DαkAkz(t) +B(t,Dγ1z(t), Dγ2z(t), . . . , Dγrz(t)). (3)

A solution of problem (2), (3) on a segment [t0, t1] is a function z ∈ C((t0, t1];D)∩Cm−1([t0, t1];Z)
for which Dαz ∈ C((t0, t1];Z), DαkAkz ∈ C((t0, t1];Z), k = 1, 2, . . . , n, Dγiz ∈ C([t0, t1];Z),
i = 1, 2, . . . , r, the inclusion (t,Dγ1z(t), Dγ2z(t), . . . , Dγrz(t)) ∈ U for t ∈ [t0, t1] and the equal-
ity (2) for all t ∈ (t0, t1], as well as the conditions (3) are satisfied.

Denote x̄ := (x1, x2, . . . , xr) ∈ Zr, Sδ(x̄) = {ȳ ∈ Zr : ∥yl − xl∥Z ≤ δ, l = 1, 2, . . . , r}. A
mapping B : U → Z is called locally Lipschitz in x̄, if for any (t, x̄) ∈ U there exist δ > 0, q > 0
such that [t− δ, t+ δ]×Sδ(x̄) ⊂ U and for any (s, ȳ), (s, v̄) ∈ [t− δ, t+ δ]×Sδ(x̄) the inequality

∥B(s, ȳ)−B(s, v̄)∥Z ≤ q
r∑
i=1

∥yi − vi∥Z holds.

Using the initial data z0, z1, . . . , zm−1, we define the polynomial

z̃(t) = z0 + (t− t0)z1 +
(t− t0)

2

2!
z2 + · · ·+ (t− t0)

m−1

(m− 1)!
zm−1

and vectors z̃i = Dγi |t=t0 z̃(t), i = 1, 2, . . . , r. Note that z̃i = 0 if γi /∈ {0, 1, . . . ,m− 1}. In the
case γi ∈ {0, 1, . . . ,m− 1} we have z̃i = zγi . Thus, the value of the argument of the nonlinear
operator B at the initial moment of time is (t0, z̃1, z̃2, . . . , z̃r).

Lemma 1. [10]. Let l − 1 < β ≤ l ∈ N. Then

∃C > 0 ∀h ∈ C l([t0, t1];Z) ∥Dβ
t h∥C([t0,t1];Z) ≤ C∥h∥Cl([t0,t1],Z).

Lemma 2. Let α1 < α2 < · · · < αn < α, γ1 < · · · < γr < α, m − 1 < α ≤ m ∈ N,
(A1, A2, . . . , An) ∈ An

α,G(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0, zl ∈ D, l = 0, 1, . . . ,m − 1,
U be an open set in R × Zr, B ∈ C(U ;D), (t0, z̃1, z̃2, . . . , z̃r) ∈ U . Then the function z is a
solution to the problem (2), (3) on the segment [t0, t1] if and only if z ∈ Cm−1([t0, t1];Z), Dγiz ∈
C([t0, t1];Z), i = 1, 2, . . . , r, and for all t ∈ [t0, t1] the inclusion (t,Dγ1z(t), Dγ2z(t), . . . , Dγrz(t)) ∈
U and equality

z(t) =
m−1∑
l=0

Zl(t− t0)zl +

t∫
t0

Z(t− s)B(s,Dγ1z(s), Dγ2z(s), . . . , Dγrz(s))ds (4)

7
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are valid.
Denote i∗ := min{i ∈ {1, 2, . . . , r} : γi > m− 1} if the set {i ∈ {1, 2, . . . , r} : γi > m− 1} is

not empty, otherwise i∗ := r + 1. For t1 > t0 we define the space Cm−1,{γi}([t0, t1];Z) := {z ∈
Cm−1([t0, t1];Z) : Dγiz ∈ C([t0, t1];Z), i = i∗, i∗+1, . . . , r} and equip this space with the norm

∥z∥Cm−1,{γi}([t0,t1];Z) = ∥z∥Cm−1([t0,t1];Z) +
r∑

i=i∗

∥Dγiz∥C([t0,t1];Z).

Remark 1. For the function z ∈ Cm−1([t0, t1];Z), by Lemma 1 Dγiz ∈ C([t0, t1];Z), i =
1, 2, . . . , i∗ − 1. Therefore, functions from Cm−1([t0, t1];Z) for which Dγiz ∈ C([t0, t1];Z),
i = 1, 2, . . . , r referred to in the Lemma 2 are exactly functions from Cm−1,{γi}([t0, t1];Z).

Lemma 3. Cm−1,{γi}([t0, t1];Z) is a Banach space.

Theorem 1. Let α1 < α2 < · · · < αn < α, γ1 < · · · < γr < α, m − 1 < α ≤ m ∈ N,
(A1, A2, . . . , An) ∈ An

α,G(θ0, a0) for some θ0 ∈ (π/2, π), a0 ≥ 0, zl ∈ D, l = 0, 1, . . . ,m− 1, U be
an open set in R×Zr, B ∈ C(U ;D) be locally Lipschitz in x̄, (t0, z̃1, z̃2, . . . , z̃r) ∈ U . Then for
some t1 > t0 problem (2), (3) has a unique solution on the interval [t0, t1].

Acknowledgments. Authors are thankful to Russian Science Foundation, project number
22-21-20095.
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On Trotter–Kato type inductive limits in the category of
C0-semigroups

C. Budde 6

Keywords: C0-semigroups; Banach inductive limits;Trotter–Kato conditions.

MSC2020 codes: 47D06, 46M10, 46M15, 46M40

We will show that the category of C0-semigroups possesses inductive limits under certain
Trotter–Kato type conditions. Recently, the theory of C0-semigroups firstly has been ap-
proached by A. Ng by means of category theory [2]. We want to jump on the bandwagon
and continue the study of this approach. In particular, we want to study a specific construc-
tion the category theory of C0-semigroups, the so-called inductive limits. We will, see that the
typical Trotter–Kato approximation conditions appear naturally when constructing the desired
limit. Evolution equations in their own right in connection with category already appeared
earlier in the work of Liu [1]. Category theory in the framework of functional analysis appears
in different areas and also with different perspectives, see for example [2,4].
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A class of fractional quasilinear equations in the sectorial case
V. E. Fedorov 7

Keywords: Riemann — Liouville fractional derivative, Riemann — Liouville fractional integral,
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Introduction. In the operator semigroup theory [1] the introduction of fractional powers
Aγ for a continuously invertible generator −A of an analytic resolving semigroup and of spaces
Zγ as the domains of Aγ with the graph norm allows to study the solvability issues of partial
differential equations with nonlinearity, which depends on lower order derivatives with respect
to spatial variables. In this work we consider complex powers of an operator A, such that
−A generates an analytic resolving family of operators of a fractional order equation Dαz(t) +
Az(t) = 0, and use them for a quasilinear equation

Dαz(t) + Az(t) = B
(
Dα1z(t), Dα2z(t), . . . , Dαnz(t), Dα−m−rz(t), . . . , Dα−1z(t)

)
,

where m − 1 < α ≤ m ∈ N, r ∈ N0 := N ∪ {0}, n ∈ N, α1 < α2 < · · · < αn < α − 1,
mk − 1 < αk ≤ mk ∈ Z, αk −mk ̸= α −m, k = 1, 2, . . . , n, Dβ is the fractional Riemann —
Liouville derivative of an order β > 0, or the fractional Riemann — Liouville integral of an order
−β, if β ≤ 0, operator B is locally Lipschitzian with respect to the norm in Zγ, γ ∈ (0, 1).
Abstract result we apply to the study of an initial boundary value problem with a nonlinear
part, containing partial derivatives in spatial variables in the nonlinear part.

Fractional sectorial operators and their complex powers. Denote by ρ(A) the resol-
vent set of an operator A, Rλ(A) := (λI −A)−1, Sθ0,a0 := {λ ∈ C : | arg(λ− a0)| < θ0, λ ̸= a0},
Σφ := {τ ∈ C : | arg τ | < φ, τ ̸= 0}.

Let θ0 ∈ (π/2, π), a0 ≥ 0, denote by Aα(θ0, a0) a class of linear, closed and densely defined
in Z operators A, acting into Z, such that the following conditions are satisfied [2]:

(i) for every λ ∈ Sθ0,a0 the inclusion λα ∈ ρ(A) is valid;
(ii) for any θ ∈ (π/2, θ0), a ≥ a0 there exists K = K(θ, a) > 0, such that

∀λ ∈ Sθ,a ∥Rλα(A)∥L(Z) ≤
K(θ, a)

|λα−1(λ− a)|
.

If α > 0, −A ∈ Aα(θ0, a0), β ∈ R, then the operators

Zβ(t) :=
1

2πi

∫
Γ

µα−1+βRµα(−A)eµtdµ, t ∈ R+,

are defined and analytically extendable on Σθ0−π/2, where Γ := Γ+ ∪ Γ− ∪ Γ0, Γ± := {µ ∈ C :
µ = a + re±iθ, r ∈ (δ,∞)}, Γ0 := {µ ∈ C : µ = a + δeiφ, φ ∈ (−θ, θ)} for δ > 0, a > a0,
θ ∈ (π/2, θ0) (see [3]). The estimates

∥Zβ(t)∥L(Z) ≤ Cβ(θ, a)e
at(t−1 + a)β, t > 0, β ≥ 0,

∥Zβ(t)∥L(Z) ≤ Cβ(θ, a)e
att−β, t > 0, β < 0,

hold for every a > a0 [3].
Theorem 1. Let α > 0, −A ∈ Aα(θ0, a0). Then for all β < 1, δ < 1, t, s > 0

Zβ(s)Zδ(t) = − 1

α
Zβ+δ(s+ t) +

t−δ

2πi

∫
Γ

µα−1+βRµα(−A)Eα,1−δ(µαtα)eµsdµ+

7Chelyabinsk State University, Mathematical Analysis Department, Russia, Chelyabinsk. Email: @karcsu.ru
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+
s−β

2πi

∫
Γ

µα−1+δRµα(−A)Eα,1−β(µαsα)eµtdµ.

It is known that for α = 1 {Z0(t) ∈ L(Z) : t ∈ R+} is an analytic semigroup of operators [1].
Take in Theorem 1 α = 1, β = δ = 0 and obtain the semigroup property Z0(t)Z0(s) = Z0(t+s),
t, s > 0. Thus, Theorem 1 gives some generalization of the semigroup property for resolving
families of operators, which are generated by an operator from the class Aα(θ0, a0).

As in [1] complex powers Aγ, γ ∈ C, of such A can be defined.
Theorem 2. Let α > 0, −A ∈ Aα(θ0, 0), 0 ∈ ρ(A). Then
(i) for γ ∈ C Aγ is a closed operator;
(ii) if Reγ > Reβ ≥ 0, then DAγ ⊂ DAβ ;
(iii) DAγ = Z for every Reγ ≥ 0;
(iv) if γ, β ∈ C, then Aγ+βz = AγAβz for every z ∈ DAγ ∩DAβ ∩DAγ+β ;
(v) Zβ(t) : Z → D(Aγ) for all β ∈ R, Reγ ∈ [0, 1), t > 0;
(vi) Zβ(t)Aγz = AγZβ(t)z for β ∈ R, γ ∈ C, z ∈ D(Aγ);
(vii) for β ∈ R, Reγ < 1, t > 0 the operator AγZβ(t) is bounded;
(viii) for β < 1, Reγ ∈ (0, 1)

A−γ =
α sin πγ

sin(π(α + γβ))Γ(αγ + β)

∞∫
0

tαγ+β−1Zβ(t)dt;

(ix) for β ∈ R, t > 0 ∥AZβ(t)∥L(Z) ≤ Ct−α−β;
(x) for β ∈ (−αReγ, 1), Reγ ∈ (0, 1), t > 0 ∥AγZβ(t)∥L(Z) ≤ Cγt

−αReγ−β;
(xi) for β < 1, Reγ ∈ (0, 1), z ∈ D(Aγ)

∥D−βZβ(t)z − z∥Z ≤ Cγt
αReγ∥Aγz∥Z .

Incomplete Cauchy type problem for a quasilinear equation. Consider a quasilinear
equation

Dαz(t) + Az(t) = B
(
Dα1z(t), Dα2z(t), . . . , Dαnz(t), Dα−m−rz(t), . . . , Dα−1z(t)

)
, (1)

where m−1 < α ≤ m ∈ N, r ∈ N0, n ∈ N, α1 < α2 < · · · < αn < α−1, mk−1 < αk ≤ mk ∈ Z,
αk−mk ̸= α−m, k = 1, 2, . . . , n. Some of αk may be negative. As in [4] denote α := max{αk :
αk−mk < α−m, k = 1, 2, . . . , n}, m := ⌈α⌉, α := max{αk : αk−mk > α−m, k = 1, 2, . . . , n},
m := ⌈α⌉, m∗ := max{m− 1,m}, m∗∗ := max{m∗ + 1, 0}. For the study of an initial problem
to (1) we need the existence of finite limits lim

t→t0
Dαlz(t) := Dαlz(t0), l = 1, 2, . . . , n, therefore,

as it follows from results of [4], problem

Dα−m+kz(t0) = zk, k = m∗∗,m∗∗ + 1, . . . ,m− 1, (2)

will be considered with the necessary condition Dα−m+kz(t0) = 0, k = 0, 1, . . . ,m∗∗. Since
αn < α− 1, we have m∗ ≤ m− 2, m∗∗ ≤ m− 1, therefore, (2) contains one condition at least.

Let γ ∈ (0, 1), Zγ := DAγ is a Banach space with the norm ∥ · ∥γ := ∥Aγ · ∥Z , since Aγ is a
continuously invertible closed operator. Let U be an open subset of R × Zn+m+r

γ , a mapping
B : U → Z is given, for every (t, x1, x2, . . . , xn+m+r) ∈ U there exists a neighbourhood V ⊂ U ,
C > 0, δ ∈ (0, 1] such that for all (t, y1, y2, . . . , yn+m+r), (s, v1, v2, . . . , vn+m+r) ∈ V

∥B(t, y1, y2, . . . , yn+m+r)−B(s, v1, v2, . . . , vn+m+r)∥Z ≤ C

(
|t− s|δ +

n+m+r∑
k=1

∥yk − vk∥γ

)
. (3)
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A function z ∈ C((t0, t1];DA), such that Jα−mz ∈ Cm−1([t0, t1];Z) ∩ Cm((t0, t1];Z), Dα1z,
Dα2z, . . . , Dαnz ∈ C([t0, t1];Z), is called a solution of Cauchy type problem (1), (2) on a
segment [t0, t1], if it satisfies conditions (2), for all t ∈ (t0, t1] (D

α1z(t), Dα2z(t), . . . , Dα−1z(t)) ∈
U and (1) holds.

Theorem 3. Let α > 0, α1 < α2 < · · · < αn < α − 1, −A ∈ Aα(θ0, 0), 0 ∈ ρ(A), a
map B : U → Z satisfy condition (3), γ > 1 − 1/α, (t0, 0, . . . , 0, zm∗∗ , zm∗∗+1, . . . , zm−1) ∈ U ,
zk ∈ Z1+γ, k = m∗∗,m∗∗ + 1, . . . ,m − 1. Then for some t1 > t0 there exists a unique solution
of problem (1), (2) on [t0, t1].

Application. Let Ω ⊂ R3 be a bounded region with a smooth boundary ∂Ω, α ∈ (1, 2),
then m∗∗ = 0, or m∗∗ = 1. Consider the initial boundary value problem

Dα−m+kv(ξ, t0) = vk(ξ), k = m∗∗, 1, ξ ∈ Ω, (4)

v(ξ, t) = 0, ξ ∈ ∂Ω, t > t0, (5)

for an equation

Dα
t v(ξ, t) = ∆v(ξ, t) +

n∑
l=1

Dαl
t v(ξ, t)

3∑
i=1

∂

∂ξi
Dαl
t v(ξ, t)+

+
m−1∑
k=−r

Dα−m+k
t v(ξ, t)

3∑
i=1

∂

∂ξi
Dα−m+k
t v(ξ, t), ξ ∈ Ω, t > t0, (6)

where Dβ
t v are the partial fractional derivatives for β > 0 or integrals for β ≤ 0 with respect to

t. Take Z = L2(Ω), A = −∆, DA = H2(Ω)∩H1
0 (Ω), then −A ∈ Aα(θ0, 0) for any θ0 ∈ (π/2, π),

since α ∈ (1, 2) (see Theorem 4 in [5] for n = 0, P0 ≡ 1, p = 1, Q1(λ) = λ). Reasoning as in

[1, §8.8.3], obtain that the nonlinear operators of the form fl(v) = Dαl
t v

3∑
i=1

∂
∂ξi
Dαl
t v satisfy the

conditions of Theorem 3 at γ > 3/4. Therefore, for all vk ∈ DA1+γ , k = m∗∗, 1, there exists a
unique solution of problem (4)–(6) in Ω× [t0, t1] with some t1 > t0.
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Let L(Z) be the Banach space of all linear continuous operators on a Banach space Z,
denote by Cl(Z) the set of all linear closed operators, densely defined in Z, acting in the space
Z. Introduce the notations Sθ,a := {µ ∈ C : | arg(µ− a)| < θ, µ ̸= a} for θ ∈ [π/2, π], a ∈ R.

Let b, c ∈ R, b < c, µ : [b, c] → C is a function with a bounded variation. Introduce the

notations of the complex-valued function W (λ) :=
c∫
b

λαdµ(α). Here the integral is understood

in the sense of Riemann — Stieltjes.
We define a class AW (θ0, a0) as the set of all operators A ∈ Cl(Z) satisfying the following

conditions:

(i) there exist θ0 ∈ (π/2, π], a0 ≥ 0, such that W (λ) ∈ ρ(A) for every λ ∈ Sθ0,a0 ;

(ii) for every θ ∈ (π/2, θ0), a > a0 there exists K(θ, a) > 0, such that for all λ ∈ Sθ,a

∥(W (λ)I − A)−1∥L(Z) ≤
|λ|K(θ, a)

|W (λ)||λ− a|
.

Theorem 1. [1]. Let b, c ∈ R, b < c, m − 1 < c ≤ m ∈ N, µ : [b, c] → C is a function
with a bounded variation, c be a variation point of the measure dµ(t), θ0 ∈ (π/2, π], a0 ≥ 0,
A ∈ AW (θ0, a0), g ∈ C([0, T ];DA) ∪ Cγ([0, T ];Z), γ ∈ (0, 1], zk ∈ DA, k = 0, 1, . . . ,m − 1.
Then there exists a unique solution of problem

z(k)(0) = zk, k = 0, 1, . . . ,m− 1, (1)

for the inhomogeneous equation

c∫
b

Dαz(t)dµ(α) = Az(t) + g(t), t ∈ (0, T ]. (2)

This work was supported by the grant of President of the Russian Federation for the state
support of leading scientific schools, project no. NSh-2708.2022.1.1.
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This talk is devoted to the error of Chernoff approximations [1,2,3] to strongly continuous
one-parameter semigroups [4, 5] in the case when Chernoff function has a coefficient at t2 which
is known.

Let (X, ∥·∥) be any Banach space and L (X) denotes the set of all bounded linear operators
on X.

Definition 1 (see, for example, Engel, Nagel [5]). The family {G(t)}t⩾0 of bounded linear
operators on the Banach space X is called the strongly continuous (one-parameter) semigroup
(and also the C0–semigroup), if it is strongly continuous, G(0) = I and for all t, s ⩾ 0 the
equality G(t+ s) = G(t)G(s) is true.

Definition 2 (see, for example: Engel, Nagel [5]). Generator of a strongly continuous semi-
group {G(t)}t⩾0 on the Banach space X is the operator A : D(A) → X, defined by the equality
Ax = lim

t→+0
(G(t)x− x)/t for all x from the domain D(A), where

D(A) = { x ∈ X | lim
t→+0

(G(t)x− x)/t exists }.

In 1968 Paul Chernoff proved the following theorem:
Theorem 1 (Chernoff [6]). Let X be a Banach space, F (t) be a strongly continuous function

from [0,∞) to a subset of the compressing operators from L (X), with F (0) = I. Suppose that
the closure A of the strong derivative F ′(0) is the generator of the contracting C0–semigroup
{etA}t⩾0. Then [F (t/n)]n converges to etA in a strong operator topology.

Let us note that this theorem does not contain an estimate of the rate of convergence, that
is, an estimate of the form

∥[F (t/n)]nx− etAx∥ ≤ C(t, x, n) → 0 (n→ ∞).

In 2022 was published the theorem that provides such estimate under certain conditions:
Theorem 2 (Galkin, Remizov [3]). Suppose that:
1) T > 0, M1 ≥ 1, w ≥ 0. (A,D(A)) is generator of C0-semigroup (etA)t⩾0 in a Banach

space X, such that ∥etA∥ ⩽M1e
wt for t ∈ [0, T ].

2) There are a mapping F : (0, T ] → L (X) and constant M2 ≥ 1 such that we have
∥(F (t))k∥ ⩽M2e

kwt for all t ∈ (0, T ] and all k ∈ N = {1, 2, 3, . . .}.
3) m ∈ N ∪ {0}, p ∈ N, subspace D ⊂ D(Am+p) is (etA)t⩾0-invariant.
4) There exist such functions Kj : (0, T ] → [0,+∞), j = 0, 1, . . . ,m+p that for all t ∈ (0, T ]

and all f ∈ D we have ∥∥∥∥F (t)f −
m∑
k=0

tkAkf

k!

∥∥∥∥ ⩽ tm+1

m+p∑
j=0

Kj(t)∥Ajf∥.

Then: for all t > 0, all integer n ≥ t/T and all f ∈ D we have

∥(F (t/n))nf − etAf∥ ≤ M1M2t
m+1ewt

nm

m+p∑
j=0

Cj(t/n)∥Ajf∥,

10HSE University, Russian Federation, Nizhny Novgorod city. Email: olegegalkin@yandex.ru
11HSE University, Russian Federation, Nizhny Novgorod city. Email: svetlana.u.galkina@mail.ru
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Cm+1(t) = Km+1(t)e
−wt +M1/(m+ 1)!, Cj(t) = Kj(t)e

−wt (j ̸= m+ 1).

Let us consider particular example. Example 1. Suppose that ∥etA∥ ≤ M1e
wt, ∥F (t)∥ ≤

M2e
wt, where w ≥ 0,

∥F (t)x− x− tAx∥ ≤ K2t
2∥A2x∥

for all x ∈ D(A2) and t ∈ (0; 1]. Then m = 1, K0(t) = K1(t) = 0 for any t ∈ (0; 1]. So
theorem 2 states that for any fixed t > 0, all x ∈ D(A2) and all integer n ≥ t the following
estimate is true, having the following asymptotic behaviour as n→ ∞:

∥(F (t/n))nx− etAx∥ ≤ M1M2t
2ewt

n

(
K2e

−wt/n +
M1

2

)
∥A2x∥ ≤

≤M1M2(K2 +M1/2)
t2ewt

n
∥A2x∥.

So the question arises: what is the lower estimate of the error ∥(F (t/n))nx− etAx∥ ?
In 2018, Ivan Remizov formulated the following conjecture:
Conjecture 1 (Remizov [7]). Let (etA)t≥0 be a C0-semigroup in a Banach space X, and F is

a Chernoff function for operator A (recall that this implies F (0) = I and F ′(0) = A but says
nothing about F ′′(0)) and number T > 0 is fixed. Suppose that vector x is from intersection
of domains of operators F ′(t), F ′′(t), F ′′′(t), F ′′′′(t), F ′(t)F ′′(t), (F ′(t))2F ′′(t), (F ′′(t))2 for
each t ∈ [0, T ], and suppose that if Z(t) is any of these operators then function t → Z(t)x is
continuous for each t ∈ [0, T ]. Then there exists such a number Cx > 0, that for each t ∈ [0, T )
and each n ∈ N the following inequality holds, where B = F ′′(0) :

∥(F (t/n))nx− etAx− t2

2n
etA(B − A2)x∥ ⩽

Cx
n2
.

Unfortunately, this hypothesis can only be true if the operators A and B commute. We
prove the following theorem:

Theorem 3. Suppose that:
1) C0-semigroup (etA)t⩾0 in a Banach space X has bounded generator A ∈ L (X).
2) T > 0 and there are a mapping F : [0, T ] → L (X) and constants M ≥ 1, w ≥ 0 such

that ∥(F (t))k∥ ⩽Mekwt for all t ∈ [0, T ], k ∈ N.
3) There exist such bounded operator B ∈ L (X) and constant K ≥ 0 that for all t ∈ [0, T ]

we have ∥∥F (t)− I − tA− t2

2
B
∥∥ ⩽ Kt3.

Then: there exists such a number C > 0, that for each t ∈ [0, T ] and each n ∈ N the
following inequality holds:

∥∥(F (t/n))n − etA − t2

2n

∫ 1

0

etsA(B − A2)et(1−s)Ads
∥∥ ≤ C

n2
.

If A and B commute then:∥∥(F (t/n))n − etA − t2

2n
etA(B − A2)

∥∥ ≤ C

n2
.
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Heat kernels play crucial roles [1–3] in modern theoretical physics and mathematics, for
example, in the Atiyah–Patodi–Singer theorem or in the renormalization of quantum field
models. Their explicit construction is possible only in some special cases, so investigation of
asymptotic expansions is an important task.

In this talk I am going to discuss a local heat kernel [4] on a smooth Riemannian manifold
M, which actually is the main part of the standard heat kernel. In our case the locality means
that we work in some smooth open convex domain U ⊂ M, and the new object does not
depend on information from M\ U and any boundary conditions.

This presentation contains a definition of the local heat kernel, its asymptotic expansion,
properties of the Seeley–DeWitt coefficients, construction of some useful special functions, and
discussion of open questions.

Acknowledgments. Author is supported by the Ministry of Science and Higher Education
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The Hoff equation
(λ+∆)u̇ = αu+ βu3 (3)

is a model of buckling of an I-beam from the equilibrium position. Consider the stochastic
analogue of the equation (3). The operators L, M and N are defined by formulas

L : χ→ (λ+∆)χ, χ ∈ UWKL2, M : χ→ α∆χ, N : η → βχ3, χ ∈ UKL2. (4)

Then the stochastic analogue of the Hoff equation (3) is represented as an equation

L
o
χ=Mχ+N(χ). (5)

This work is a continuation [1], [2] on the study of local stability of a semilinear stochastic
equation.

Theorem 1. Let α, β, λ ∈ R+.
(i) If λ ≤ −λ1 then the equation (5) has only a stable invariant manifold that coincides

with MKL2;
(ii) If −λ1 < λ then there are a finite-dimensional unstable invariant the manifold M+

KL2 and
an infinite-dimensional stable invariant manifold M−

KL2 of the equation (5) in the neighborhood
of point zero.
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Abstract. We study elliptic and parabolic problems governed by the singular elliptic
operators

L = yα1∆x + yα2

(
Dyy +

c

y
Dy −

b

y2

)
, α1, α2 ∈ R

in the half-space RN+1
+ = {(x, y) : x ∈ RN , y > 0}. We prove elliptic and parabolic Lp-estimates

and solvability for the associated problems. In the language of semigroup theory, we prove that
L generates an analytic semigroup, characterize its domain as a weighted Sobolev space and
show that it has maximal regularity.
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We consider the Cauchy problem for a second order parabolic equation

Lεu
ε = f in Rd × (0, T ), uε(x, 0) = 0 for x ∈ Rd.

Here, Lε = ∂t−divx a(x/ε)∇x, the measurable real-valued coefficient matrix a(x/ε) is ε-periodic
and is not necessarily symmetric; ε is a small positive parameter tending to zero; and the right-
hand side function f belongs to L2(Rd× (0, T )). We find approximations for the solution uε in
the norm ∥ · ∥L2(Rd×(0,T )) with the remainder term of order ε2. These approximations are of the
form

uε(x, t) = u(x, t) + εU(x, x/ε, t) +O(ε2),

where the main term u(x, t) is the solution to the well-known homogenized problem

L0u = f in Rd × (0, T ), u(x, 0) = 0 for x ∈ Rd,

with the parabolic operator L0 = ∂t − divx a
0∇x having the constant coefficient matrix a0

defined via solutions to the auxiliary problems on the periodicity cell which is the unit cube
in Rd; the corrector U(x, x/ε, t), generally, has the three-part structure, that is, U(x, x/ε, t) =
U1(x, x/ε, t) + U2(x, x/ε, t) + U3(x, t), and the each part of it is defined with the help of the
solutions to the aforementioned cell problems. In the selfadjoint case, the corrector U becomes
simpler, because its third term vanishes: U3 = 0.

The above asymptotic for the solution uε(x, t) admits the operator formulation in terms
of the resolvent operators L−1

ε , L−1
0 and the corresponding correcting operator, which can be

restored in accordance with the above corrector U(x, x/ε, t). Namely,

∥L−1
ε f − L−1

0 f − εKεf∥L2(Rd×(0,T )) ≤ Cε2∥f∥L2(Rd×(0,T )),

where the constant C depends only on the dimension d, the ellipticity constants of the matrix
a(·) and the value T .

To obtain these results, we use the so-called shift method proposed firstly in [1,2] and applied
to the parabolic homogenization earlier in [3,4].
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In this talk we study a well–posed Cauchy problem with a fractional Caputo derivative of
the order α ∈ (0, 1) in time in a Banach space E :

Dαu(t) = Au(t) + f(t), u(0) = u0. (1)

It is well–known [1] that the order of convergence in the approximation by a difference scheme
with uniform grid of such equations has an order controlled by the exponent α. Here we first
investigate the well-posedness of (1) on a Holder class of functions [2] and the second we consider
the non-uniform grid of the scheme. The stability and accuracy estimates for a proposed finite
difference scheme [3] are obtained.
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Summary of the talk. The method of Chernoff approximation [1] is an extremely effective
tool for expressing etL in terms of variable coefficients of operator L. The talk shows that this
method can be also be used for expressing (λI−L)−1 in terms of variable coefficients of operator
L, and for finding the solution of the corresponding differential equation λf − Lf = g. We
demonstrate this on the second order differential operator L. As a corollary, we obtain two new
representations of the solution of an inhomogeneous second order linear ordinary differential
equation in terms of functions that are the coefficients of this equation playing the role of
parameters for the problem. This reasoning also works in the multi-dimensional situation,
where we have an elliptic PDE instead of ODE. Full proofs are available in the preprint [2].

Let us recall the Chernoff theorem.
Chernoff theorem, one of the wordings. Suppose that the following three conditions are met:

1. C0-semigroup (etL)t≥0 with generator (L,D(L)) in Banach space F is given, such that for
some w ≥ 0 the inequality ∥etL∥ ≤ ewt holds for all t ≥ 0.

2. There exists a strongly continuous mapping S : [0,+∞) → L (F) such that S(0) = I
and the inequality ∥S(t)∥ ≤ ewt holds for all t ≥ 0.

3. There exists a dense linear subspace D ⊂ F such that for all f ∈ D there exists a limit
S ′(0)f := limt→+0(S(t)f − f)/t. Moreover, S ′(0) on D has a closure that coincides with the
generator (L,D(L)). Then the following statement holds:

(C) For every f ∈ F , as n → ∞ we have S(t/n)nf → etLf locally uniformly with respect
to t ≥ 0, i.e. for each T > 0 and each f ∈ F we have limn→∞ supt∈[0,T ] ∥S(t/n)nf − etLf∥ = 0.

Remark 1. Above S(t/n)n = S(t/n) ◦ · · · ◦ S(t/n)︸ ︷︷ ︸
n

is the composition of n copies of linear

bounded operator S(t/n) defined everywhere on F .
Definition 1. Let C0-semigroup (etL)t≥0 with generator L in Banach space F be given. The

mapping S : [0,+∞) → L (F) is called a Chernoff function for operator L iff it satisfies the
condition (C) of Chernoff theorem above. In this case expressions S(t/n)n are called Chernoff
approximations to the semigroup etL.

Main idea of the talk. Thanks to Chernoff theorem we have etLf = limn→∞ S(t/n)nf for
all vectors f and for properly selected operator-valued function S. Also, there is a standard fact
that for λ with Reλ large enough for the resolvent of L we have the followng representation:
(λI − L)−1f =

∫∞
0
e−λtetLfdt, so we can substitute etL by S(t/n)n and get approximations for

the resolvent:

(λI − L)−1f=

∫ ∞

0

e−λtetLfdt=

∫ ∞

0

e−λt lim
n→∞

S(t/n)nfdt= lim
n→∞

∫ ∞

0

e−λtS(t/n)nfdt.

Above the first (left) equality is a classical fact, the second inequality is due to Chernoff theorem,
and the last (the right) equality is the main idea of all results that follow below.

Theorem 1. Let F be real or complex Banach space, and let L (F) be the set of all linear
bounded operators in F . Suppose that linear operator L : F ⊃ D(L) → F generates C0-
semigroup (etL)t≥0 satisfying for some constants M ≥ 1 and ω ≥ 0 inequality ∥etL∥ ≤Meωt for
all t ≥ 0. Suppose that function S : [0,+∞) → L (F) is given and ∥S(t)k∥ ≤Meωtk for all t ≥ 0

20HSE University, International Laboratory of Dynamical Systems and Applications, Russia, Nizhny Nov-
gorod. Email: ivremizov@yandex.ru
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and all k = 1, 2, 3, . . . Let us denote the resolvent of (L,D(L)) by the symbol Rλ = (λI −L)−1

for all λ ∈ ρ(L). Suppose that the number λ ∈ C is given and Reλ > ω. Then λ ∈ ρ(L) and:
1. If for all T > 0 we have limn→∞ supt∈[0,T ]

∥∥etLf − (S(t/n))nf
∥∥ = 0 for all f ∈ F , then

for all f ∈ F we have

lim
n→∞

∥∥∥∥Rλf −
∫ ∞

0

e−λt(S(t/n))nfdt

∥∥∥∥ = 0.

2. If for all T > 0 we have limn→∞ supt∈[0,T ]
∥∥etL − (S(t/n))n

∥∥ = 0, then we have

lim
n→∞

∥∥∥∥Rλ −
∫ ∞

0

e−λt(S(t/n))ndt

∥∥∥∥ = 0.

Theorem 2. Consider second order ordinary differential equation for function f : R → R

a(x)f ′′(x) + b(x)f ′(x) + (c(x)− λ)f(x) = −g(x) for all x ∈ R, (1)

where functions a, b, c, g : R → R are known parameters and number λ ∈ C is also a known
parameter. Assume that there exists constant a0 > 0 such that a(x) > a0 for all x ∈ R. Assume
that there exists β ∈ (0, 1] such that function c is bounded and Hölder continuous with Hölder
exponent β, and functions a, x 7→ 1/a(x), b are bounded and Hölder continuous with Hölder
exponent β with derivatives of order one and two. Assume that function g is continuous and
vanishes at infinity. Assume that R ∋ λ > max(0, supx∈R c(x)).

Then for equation (1) there exists a unique continuous and vanishing at infinity solution f
given for all x0 ∈ R by the formula

f(x0) = lim
n→∞

∫ ∞

0

e−λt

[∫
R
· · ·
∫
R︸ ︷︷ ︸

n

exp

(
t

n

n∑
j=1

(
c(xj−1)−

b(xj−1)
2

2a(xj−1)

))
×

× exp

(
n∑
j=1

b(xj−1)(xj − xj−1)

a(xj−1)

)
× pa(t/n, x0, x1) . . . pa(t/n, xn−1, xn)g(xn)dx1 . . . dxn

]
dt,

where the limit lim
n→∞

exists uniformly in x0 ∈ R, and we denoted

pa(t, x, y) =
1√

2πta(x)
exp

(
−(x− y)2

2ta(x)

)
for all x, y ∈ R, t > 0.

Some notation. Let us use symbol UCb(R) to denote Banach space of all bounded and
uniformly continuous functions f : R → R with the uniform norm ∥f∥ = supx∈R |f(x)|. Let us
use symbol C∞

b (R) for the subspace of UCb(R) consisting of all infinitely differentible functions
that are bounded and have bounded derivatives of all orders.

Theorem 3. Suppose that functions a, b, c ∈ UCb(R) are bounded with their derivatives
up to order 3, and there exists such a constant a0 > 0 that estimate infx∈R a(x) ≥ a0 > 0 is
satisfied for all x ∈ R. For each function ϕ ∈ C∞

b (R) = D(A) define Aϕ = aϕ′′ + bϕ′ + cϕ. For
each t ≥ 0, each x ∈ R and each f ∈ UCb(R) define

(S(t)f)(x) =
1

4
f
(
x+ 2

√
a(x)t

)
+

1

4
f
(
x− 2

√
a(x)t

)
+

1

2
f
(
x+ 2b(x)t

)
+ tc(x)f(x). (2)

Assume also that R ∋ λ > supx∈R |c(x)| = ∥c∥. Then:
1. Closure A of operator A generates a C0-semigroup in UCb(R).
2. For each g ∈ UCb(R) the solution f : R → R of the equation

a(x)f ′′(x) + b(x)f ′(x) + (c(x)− λ)f(x) = −g(x) for all x ∈ R,
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exists, is unique in UCb(R) and is given for all x ∈ R by the formula

f(x) =

∫ ∞

0

e−λt
(
eAg
)
(x)dt = lim

n→∞

∫ ∞

0

e−λt ((S(t/n))ng) (x)dt, (3)

where S(t/n) is obtained by substitution of t with t/n in (2), and (S(t/n))n is the composition
of n copies of linear bounded operator S(t/n).

Suppose additionally that function g is bounded with derivatives up to order 5. Then:
3. There exist nonnegative constants C0, C1, . . . , C4 such that for all t > 0 and all n ∈ N

the following inequality holds:

∥S(t/n)ng − etAg∥ ≤ t2e∥c∥t

n

(
C0∥g∥+ C1∥g′∥+ C2∥g′′∥+ C3∥g′′′∥+ C4∥g(IV )∥

)
.

4. Error bound in (3) for all n ∈ N is given by inequality

sup
x∈R

∣∣∣∣f(x)− ∫ ∞

0

e−λt ((S(t/n))ng) (x)dt

∣∣∣∣ ≤ 2Cg
n · (λ− ∥c∥)3

,

where Cg = C0∥g∥+ C1∥g′∥+ C2∥g′′∥+ C3∥g′′′∥+ C4∥g(IV )∥.
5. Integral in item 2 can be calculated over [0, T ] instead of [0,∞) with controlled level of

error. This means that for each ε > 0 there exists T = max
(
0, 1

λ−∥c∥ ln
2

(λ−∥c∥)ε

)
such that for

all n ∈ N we have

sup
x∈R

∣∣∣∣f(x)− ∫ T

0

e−λt ((S(t/n))ng) (x)dt

∣∣∣∣ ≤ 2Cg
n · (λ− ∥c∥)3

+ ε.

Remark 2. Independently of Chernoff function used (is it based on integral operators as in
theorem 2 or on translation operators as in theorem 3), Chernoff approximations are allowing
to calculate value of the solution in only one point of the domain of solution (in one point x ∈ R
in our examples). Meanwhile methods based on a computational grid calculate values of the
solution in all points of the computational grid. Moreover, values of Chernoff approximations
at different points of the domain can be calculated in parallel, using multi-core processors and
GPU which is an advantage of this approach.
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In our talk, we consider the well–known differential operator — the one–dimensional Dirac
operator. We define this operator on a finite interval, adding arbitrary Birkhoff–regular bound-
ary conditions. The difference from the classical theory is that the matrix potential of the
operator is assumed to be non–smooth — we will require only Lebesgue summability of the po-
tential on the entire interval. Our main goal is to define an operator exponent (operator group).
The potential is assumed to be complex, and the boundary conditions may not be self–adjoint,
so that the operator is not, in general, self–adjoint. So the question of the existence of a group
turns out to be non–trivial. Nevertheless, the group exists, and not only in the space L2, but
also in the scale of Sobolev spaces, as well as in the spaces Lp. The issue of estimating the
growth of this group for large values of time will be considered separately. It naturally leads to
questions about the localization of the spectrum and estimates of the Riesz constant.
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theorems
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We study real interpolation, but instead of interpolating between Banach spaces (or actually
norms on Banach spaces), we interpolate between general functions on Banach spaces taking
values in [0,∞]. We also proved some general Reiteration theorems.
This is a joint work with my Ph.D. supervisors Prof. Ralph Chill from Institut fur Analysis,
Fakult at Mathematik, TU Dresden, 01062 Dresden and Prof. Sachi Srivastava from Depart-
ment of Mathematics, University of Delhi.
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Let A1, A2, . . . , Am−1, B1, B2, . . . , Bn, C1, C2, . . . , Cr be closed linear operators in a Banach
space Z with domains DA1 , DA2 , . . . , DAm−1 , DB1 , DB2 , . . . , DBn , DC1 , DC2 , . . . , DCr respec-
tively, m − 1 < α ≤ m ∈ N, n, r, ϱ, q ∈ N ∪ {0}, Z be an open subset in R × Zm+ϱ+q,
B ∈ C(Z;Z). Consider the quasilinear multi-term fractional equation

Dαz(t) =
m−1∑
j=1

AjD
α−m+jz(t) +

n∑
l=1

BlD
αlz(t) +

r∑
s=1

CsJ
βsz(t)+

+F (t,Dα−m−ϱz(t), . . . , Dα−1z(t), Dγ1z(t), Dγ2z(t), . . . , Dγqz(t)).

(1)

Here Dδ
t is the Riemann — Liouville derivative with δ > 0 and the Riemann — Liouville

integral with γ < 0, 0 < α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ Z, αl −ml ̸= α −m,
l = 1, 2, . . . , n, γ1 < γ2 < · · · < γq < α, ni − 1 < γi ≤ ni ∈ Z, γi − ni ̸= α −m, i = 1, 2, . . . , q.
Some γi may be negative. Let us define µ∗ := m∗(α, α1, α2, . . . , αn, γ1 + 1, γ2 + 1, . . . , γq + 1)
(see [1]), µ∗

0 := max{µ∗, 0}, so for solving the Cauchy type problem

Dα−m+kz(t0) = zk, k = 0, 1, . . . ,m− 1, (2)

for equation (1) conditions are met

Dα−m+kz(t0) = 0, k = −r,−r + 1, . . . , µ∗
0 − 1;

Dαl−ml+kz(t0) = 0, k = 0, 1, . . . ,ml − 1, l = 1, 2, . . . , n;

Dγi−ni+kz(t0) = 0, k = 0, 1, . . . , ni, i = 1, 2, . . . , q.

Define by L(Z) the Banach space of all linear bounded operators on Z,

D :=
m−1⋂
j=1

DAj
∩

n⋂
l=1

DBl
∩

r⋂
s=1

DCs , ∥ · ∥D =
m−1∑
j=1

∥ · ∥DAj
+

n∑
l=1

∥ · ∥DBl
+

m−1∑
s=r

∥ · ∥DCs
.

A solution to problem (1), (2) on (t0, t1] is a function z : (t0, t1] → D, such that Jm−αz ∈
Cm((t0, t1];Z) ∩ Cm−1([t0, t1];Z), Dα−m+jz ∈ C((t0, t1];DAj

), j = 1, 2, . . . ,m − 1, Dαlz ∈
C((t0, t1];DBl

), l = 1, 2, . . . , n, Dγiz ∈ C([t0, t1];Z), i = 1, 2, . . . , q, condition (2) are satis-
fied, inclusion (t,Dα−m−ϱz(t), Dα−m−ϱ+1z(t), . . . , Dα−1z(t), Dγ1z(t), Dγ2z(t), . . . , Dγqz(t)) ∈ Z
for t ∈ [t0, t1] and equality (1) for t ∈ (t0, t1] hold.

Definition 1. A tuple of operators (A1, A2, . . . , Am−1, B1, B2, . . . , Bn, C1, C2, . . . , Cr), which
are linear and closed in a Banach space Z, belongs to the class An,r

α (θ0, a0) for some θ0 ∈
(π/2, π), a0 ≥ 0, if

(i) D is dense in Z;
24Chelyabinsk State University, Department of Mathematical Analysis, Chelyabinsk, Russia, Chelyabinsk.
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(ii) for all λ ∈ Sθ0,a0 := {µ ∈ C : | arg(µ− a0)| < θ0}, p = 0, 1, . . . ,m− 1 we have

Rλ ·

(
I −

m−1∑
j=p+1

λj−mAj

)
∈ L(Z);

(iii) for any θ ∈ (π/2, θ0), a > a0, there exists such a K(θ, a), that for all λ ∈ Sθ,a,
p = 0, 1, . . . ,m− 1 we have∥∥∥∥∥Rλ ·

(
I −

m−1∑
j=p+1

λj−mAj

)∥∥∥∥∥
L(Z)

≤ K(θ, a)

|λ− a||λ|α−1
.

Definition 2. Let p ∈ {0, 1, . . . ,m− 1}; a strongly continuous family of operators {Sp(t) ∈
L(Z) : t > 0} is called p-resolving for equation (1), if next conditions are satisfied:

(i) for t > 0 Sp(t)[DAj
] ⊂ DAj

, Sp(t)Ajx = AjSp(t)x for all x ∈ DAj
, j = 1, 2, . . . ,m − 1;

Sp(t)[DBl
] ⊂ DBl

, Sp(t)Blx = BlSp(t)x for all x ∈ DBl
; Sp(t)[DCs ] ⊂ DCs , Sp(t)Csx = CsSp(t)x

for all x ∈ DCs ;
(ii) for every zp ∈ D Sp(t)zp is a solution of linear (B ≡ 0) problem (1), (2) with zl = 0 for

every l ∈ {0, 1, . . . ,m− 1} \ {p}.
A p-resolving family of operators for p ∈ {0, 1, . . . ,m − 1} is called analytic, if it has the

analytic extension to a sector Σψ0 := {t ∈ C : | arg t| < ψ0, t ̸= 0} for some ψ0 ∈ (0, π/2]. An
analytic p-resolving family of operators {Sp(t) ∈ L(Z) : t > 0} has a type (ψ0, a0) for some
ψ0 ∈ (0, π/2], a0 ∈ R, if for all ψ ∈ (0, ψ0), a > a0 there exists such a C(ψ, a), that for all
t ∈ Σψ the inequality ∥Sp(t)∥L(Z) ≤ C(ψ, a)|t|α−m+peaRe t is satisfied.

Theorem 1. Let m − 1 < α ≤ m ∈ N, α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
αl −ml ̸= α−m, m∗ := m∗(α, α1, α2, . . . , αn), β1 > β2 > · · · > βr ≥ 0, Aj, j = 1, 2, . . . ,m− 1,
Bl, l = 1, 2, . . . , n, Cs, s = 1, 2, . . . , r, are linear and closed operators, D dense Z. Then there are
p-resolving families of operators {Sp(t) ∈ L(Z) : t > 0} of the type (θ0, a0) for equation (1) for
all p = m∗,m∗+1, . . . ,m−1, if and only if (A1, A2, . . . , Am−1, B1, B2, . . . , Bn, C1, C2, . . . , Cr) ∈
An,r
α (θ0, a0). Moreover,

Sp(t) = Zp(t) :=
1

2πi

∫
Γ

λm−1−pRλ

(
I −

m−1∑
j=p+1

λj−mAj

)
eλtdλ, p = m∗,m∗ + 1, . . . ,m− 1,

where Γ := Γ+ ∪ Γ− ∪ Γ0, Γ0 := {λ ∈ C : λ = a + r0e
iφ, φ ∈ (−θ, θ)}, Γ± := {λ ∈ C : λ =

a+ r0e
±iθ, r ∈ [r0,∞)}, θ ∈ (π/2, θ0), a > a0, r0 > 0.

Theorem 2. Let m− 1 < α ≤ m ∈ N, 0 < α1 < α2 < · · · < αn < α, ml − 1 < αl ≤ ml ∈ N,
αl−ml ̸= α−m, γ1 < γ2 < · · · < γq < α−1, ni−1 < γi ≤ ni ∈ Z, γi−ni ̸= α−m, i = 1, 2, . . . , q,
(A1, A2, . . . , Am−1, B1, B2, . . . , Bn, C1, C2, . . . , Cr) ∈ An,r

α (θ0, a0), zk ∈ D, k = µ∗
0,µ∗

0 + 1,. . . ,
m−1, Z be open in R×Zm+ϱ+q, (t0, 0, 0, . . . , 0, zµ∗0 , zµ∗0+1, . . . , zm−1, 0, 0, . . . , 0) ∈ Z, the mapping
B ∈ C(Z;D) be locally Lipschitz continuous with respect to the phase variables. Then there
exists t1 > t0, such that problem (1), (2) has a unique solution on (t0, t1].
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On divergence-free (form-bounded type) drifts
R. Vafadar 26

We develop regularity theory for elliptic Kolmogorov operator with divergence-free drift in
a large class. A key step in our proofs is new “Caccioppoli’s iterations”, used in addition to the
classical De Giorgi’s iterations and Moser’s method.
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Inversion of the Pompeiu transform associated to spherical means
N. P.Volchkova,27, Vit. V.Volchkov.28

Keywords: distributions; convolution equations; Pompeiu transform; inversion formulas.

MSC2010 codes: 44A35, 46F12, 53C35, 45E10

Let n ≥ 2, D′(Rn) be the space of distributions on Rn, σr be the surface delta function
concentrated on the sphere Sr = {x ∈ Rn : |x| = r}. The problem of L. Zalcman on reconstruc-
tion of a distribution f ∈ D′(Rn) by known convolutions f ∗ σr1 and f ∗ σr2 is studied (see [1],
Sect. 8). The result obtained (see Theorem 2 below) significantly simplifies known procedures
for recovering a function f from given spherical means f ∗ σr1 and f ∗ σr2 .

Let r > 0 be fixed and λr be an arbitrary positive zero of the Bessel function J0. Then,
for any k ∈ Z, the function Jk(λρ)eikφ (ρ, φ are the polar coordinates in R2) has zero integrals
over all circles of radius r in R2 (see [2], Sect. C). Similar examples related to the zeros of the
Bessel function Jn/2−1 can also be constructed for spherical means in Rn for n ≥ 2. This shown
that knowing the averages of a function f over all spheres of the same radius is not enough to
uniquely reconstruct f . Subsequently, the class of functions f ∈ C(Rn) that have zero integrals
over all spheres of fixed radius in Rn was studied by many authors (see [3]–[6] and the references
to these works). A well-known result in this direction is the following analogue of Delsarte’s
famous two-radius theorem for harmonic functions.

Theorem 1 ([1], [3]). Let r1, r2 ∈ (0,+∞), Υn = {γ1, γ2, . . .} be the sequence of all positive
zeros of the function Jn/2−1 numbered in ascending order, Mn be the set of numbers of the form
α/β, where α, β ∈ Υn.

1) If r1/r2 /∈Mn, f ∈ C(Rn) and∫
|x−y|=r1

f(x)dσ(x) =

∫
|x−y|=r2

f(x)dσ(x) = 0, y ∈ Rn (1)

(dσ is the area element), then f = 0.
2) If r1/r2 ∈ Mn, then there exists a nonzero real analytic function f : Rn → C satisfying

the relations in (1).
In terms of convolutions Theorem 1 means that the Pompeiu transform

Pf = (f ∗ σr1 , f ∗ σr2), f ∈ C(Rn)

is injective if and only if r1/r2 /∈Mn. Here we present a new inversion formula for the operator P
under the condition r1/r2 /∈Mn.

Let E ′(Rn) be the space of compactly supported distributions on Rn, E ′
♮(Rn) be the space

of radial (invariant under rotations of the space Rn) distributions in E ′(Rn). If T1, T2 ∈ D′(Rn)
and at least one of these distributions has compact support then their convolution T1 ∗ T2 is a
distribution in D′(Rn) acting according to the rule

⟨T1 ∗ T2, φ⟩ = ⟨T2(y), ⟨T1(x), φ(x+ y)⟩⟩ , φ ∈ D(Rn),

where D(Rn) is the space of finite infinitely differentiable functions on Rn. The spherical
transform T̃ of a distribution T ∈ E ′

♮(Rn) is defined by

T̃ (z) = 2
n
2
−1Γ

(n
2

) 〈
T, In

2
−1(z|x|)

〉
, z ∈ C,
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where
Iν(z) =

Jν(z)

zν
, ν ∈ C.

We note that T̃ is an even entire function of exponential type and the Fourier transform T̂ is
expressed in terms of T̃ by

T̂ (ζ) = T̃
(√

ζ21 + . . .+ ζ2n
)
, ζ ∈ Cn.

The set of all zeros of the function T̃ that lie in the half-plane Re z ≥ 0 and do not belong to
the negative part of the imaginary axis will be denoted by Z+(T̃ ).

Using the well-known properties of the zeros of the Bessel functions one can obtain the
corresponding information about the set Z+(σ̃r). In particular, all the zeros of σ̃r are simple,
belong to R\{0} and

Z+(σ̃r) =
{γ1
r
,
γ2
r
, . . .

}
.

In addition, since the functions Jn
2
−1 and Jn

2
do not have common zeros on R\{0}, the function

σλr (x) = − 1

rλ2
In

2
−1(λ|x|)
In

2
(λr)

χr(x), λ ∈ Z+(σ̃r),

is well defined, where χr is the indicator of the ball Br = {x ∈ Rn : |x| < r}.
Let

Pr(z) =

[n+5
4

]∏
j=1

(
z −

(γj
r

)2)
, Ωr = Pr(∆)σr,

where ∆ is the Laplace operator. Then, by virtue of the formula

p̃(∆)T (z) = p(−z2)T̃ (z) (p is an algebraic polynomial),

we have
Ω̃r(z) = Pr(−z2)σ̃r(z),

Z+

(
Ω̃r

)
=
{γ1
r
,
γ2
r
, . . .

}
∪
{
iγ1
r
,
iγ2
r
, . . . ,

iγm
r

}
,

and all zeros of Ω̃r are simple. In addition,

Z+

(
Ω̃r1

)
∩ Z+

(
Ω̃r2

)
= ∅ ⇔ r1

r2
/∈Mn.

For λ ∈ Z+

(
Ω̃r

)
, we set

Ωλ
r = Pr(∆)σλr if λ ∈ Z+(σ̃r),

and
Ωλ
r = Qr,λ(∆)σr if Pr(−λ2) = 0,

where
Qr,λ(z) = − Pr(z)

z + λ2
.

Theorem 2. Let
r1
r2

/∈Mn, f ∈ D′(Rn), n ≥ 2. Then

f =
∑

λ∈Z+(Ω̃r1 )

∑
µ∈Z+(Ω̃r2 )

4λµ

(λ2 − µ2)Ω̃
′
r1
(λ)Ω̃

′
r2
(µ)

(
Pr2(∆)

(
(f ∗ σr2) ∗ Ωλ

r1

)
−
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−Pr1(∆)
(
(f ∗ σr1) ∗ Ωµ

r2

))
, (2)

where the series in (2) converges unconditionally in the space D′(Rn).
Equality (2) reconstruct an arbitrary distribution f from its known convolutions f ∗σr1 and

f ∗ σr2 (see formulas above). For other results related to the inversion of the spherical mean
operator, see [6], [7].
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Introduction. Let (T (t))t≥0 be a strongly continuous semigroup on the Hilbert space Z.
It is well-know that if the operator T (t) is surjective for one t > 0, then it is surjective for
all t ≥ 0, see [1]. In this paper we study the question if other properties of the range of T (t)
are independent of t. By means of a counter example we show that the range of a semigroup
can be change from non-closed to closed and back again. Thus properties of the range will be
time-dependent, in general.

An illustrative example
In this section we construct an example showing that the range of a strongly continuous

semigroup can change from closed to non-closed, and back again.
Let H1

0 (0, 3) denote the Sobolev space consisting of all functions in L2(0, 3) whose first
derivative exists in L2(0, 3) and which are zero at ζ = 3. It is a Hilbert space with the norm

∥f∥2H1 = ∥f∥2 + ∥ḟ∥2,

where the later norms denote the standard L2-norms of f and its derivative. It is well-known
that H1

0 (0, 3) is a Hilbert space with this norm.
As Hilbert space Z we take Z = H1

0 (0, 3)⊕ L2(−1, 1), and as semigroup we define

T (t)

(
x1
x2

)
=

(
y1
y2

)
with

y1(ζ) = x1(t+ ζ)1[0,3](t+ ζ), ζ ∈ [0, 3]

y2(ζ) = x1(t+ ζ)1[−1,0](t+ ζ) + x2(t+ ζ)1[−1,1](t+ ζ), ζ ∈ [−1, 1],

where 1[a,b] denotes the indicator function on the interval [a, b], and we have extended x1 and
x2 by zero “outside their own interval”.

Next we study the range at different time instances.

• t = 1. At t = 1, the second component equals zero for ζ ∈ (0, 1), whereas in the interval
(−1, 0) it consists of a function in H1 plus an L2-function. Since this L2 function can
be constructed freely by using a proper choice of x2, the range of the second component
is closed. It is easy to see that the range of the first component is closed, and thus the
range of T (1) is closed.

• t = 2.5. For t = 2.5 we see that x2(t+ ζ)1[−1,1](t+ ζ) equals zero for all ζ ∈ [−1, 1], and
the second component of the semigroup consists out of shifted H1 functions. Since H1 is
not closed in L2, the range cannot be closed.

• t > 3. For time instances larger than 3, the semigroup equals zero, and thus its range is
closed.

The above example shows that the range of a semigroup can change from closed to non-
closed and back again. Using the above idea for the construction, it is not hard to see how
examples can be constructed for which this change happens (infinitely) many times.
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An open problem
In [2] it is shown that if the semigroup is left invertible, then its left inverse can be chosen

to be a strongly continuous semigroup as well. Until now this result is only known for Hilbert
spaces, and although the proof uses Hilbert space techniques, the problem is well-formulated
in a general Banach space. Hence the research question is to investigate whether this results
extends to Banach spaces.

Note that when T (t) is surjective, its adjoint is left invertible, and so there is a direct
connection with the range of the semigroup.
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Introduction.
Usually, dimension estimates for global attractors are obtained via the Liouville trace for-

mula (see S. Zelik [9]), possibly with the use of adapted metrics (see N.V. Kuznetsov and
V. Reitmann [7]). In our paper [3], we showed that this approach provides rough bounds and
does not allow to obtain effective estimates in the case of delay equations. This is caused
not only by the non-self-adjointness of arising operators, but also by the specificity of delay
equations where we deal with boundary perturbations.

It is also shown in [3] that a resolution to the problem can be given in the case of scalar
equations with monotone feedback by combining results of J. Mallet-Paret and R.D. Nussbaum
[8] with the ergodic variational principle and Poincaré-Bendixson trichotomy satisfied in these
equations. However, there are many scalar equations, not to mention systems of equations, that
exhibit chaotic behavior such as the Mackey-Glass equation or periodically forced Suarez-Schopf
oscillator [2]. These models go beyond the described approach.

Main results. We are going to discuss our recent result [1] concerned with cocycles gen-
erated by the following class of nonautonomous delay equations in Rn over a semiflow π on a
complete metric space P :

ẋ(t) = Ãxt + B̃F ′(πt(p))Cxt, (6)

where Ã : C([−τ, 0];Rn) → Rn, C : C([−τ, 0];Rn) → M are bounded linear operators; B̃ : U →
Rn is a linear operator and F ′ : P → L(M;U) is a continuous mapping such that for some Λ > 0
we have

∥F ′(p)∥L(M;U) ≤ Λ for all p ∈ P . (7)

Here U and M are finite-dimensional Euclidean spaces.
Equations such as (6) arise as linearizations of nonlinear delay equations.
It can be shown that (6) generates a cocycle Ξ over (P , π) in the Hilbert space H =

L2([−τ, 0];µ;Rn), where µ is the sum of the Lebesgue measure on [−τ, 0] and the δ-measure con-
centrated at 0 (see [3]). We study the m-fold compound cocycle Ξm given by the multiplicative
extension of Ξ to the m-fold exterior power H∧m of H.

To the operator Ã from (6) there corresponds an operator A in H which generates an
eventually compact C0-semigroup G. It can be shown that the m-fold multiplicative extension
G∧m of G onto H∧m is an eventually compact C0-semigroup in H∧m. Its generator A[∧m] is
called the additive (antisymmetric) compound of A. Using the Spectral Mapping Theorem for
Semigroups, one can describe the spectrum of A[∧m] through the spectrum of A.

We provide conditions for the uniform exponential stability or, more generally, for the exis-
tence of gaps in the Sacker-Sell spectrum of Ξm by considering it as a perturbation of G∧m. On

30Saint Petersburg State University, Department of Applied Cybernetics, Russia, St. Petersburg. Email:
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the infinitesimal level, we have that the generator of Ξm is given by a nonautonomous bound-
ary perturbation of A[∧m]. Such perturbations can be described via unbounded in H quadratic
constraints leading to the associated infinite-horizon quadratic regulator problem posed for a
proper control system. The latter is resolved via the Frequency Theorem developed in our ad-
jacent work [5] (see also [6]). As a consequence, we obtain frequency-domain conditions which
guarantee the existence of a proper (indefinite) bounded quadratic Lyapunov-like functional.
Such functionals can be used to obtain the desired dichotomy properties for Ξm (see [4]).

Our frequency-domain conditions are given by strict frequency inequalities involving resol-
vents of additive compound operators A[∧m]. Computing such operators requires solving a first
order PDE with boundary conditions containing both partial derivatives and delays that makes
it hard to deal with it analytically. However, verification of frequency inequalities reduces to
the optimization of a Rayleigh quotient that is feasible to numerical investigation and reflects
the computational complexity of the problem.
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Abstract The aim of this work is to study asymptotically and numerically the interaction
of solitons with an external forcing with a variable speed using the forced modified Korteweg-de
Vries equation (mKdV). We show that the asymptotic predictions agree well with numerical
solutions for forcings with constant speed and linear variable speed. Regarding forcing with
linear variable speed, we find regimes in which the solitons are trapped at the external forcing
and its amplitude increases or decreases in time depending on whether the forcing accelerates
or decelerates.
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Application of the Kantorovich-Galerkin method for the analysis of resonant
systems

V. L. Litvinov,33 K.V. Litvinova.34

Keywords: emerging mechanical systems, differential operator, resonant amplitude, moving bound-
aries.

MSC2020 codes: 74H45, 74K05

The article considers the resonant characteristics of nonlinear oscillations of a rope with
moving boundaries. The phenomena of resonance and passage through resonance are analyzed.
An approximate method has been developed in relation to taking into account the influence
of resistance forces and viscoelastic properties on the system. This method also allows con-
sidering a wider class of boundary conditions compared to other approximate methods for
solving boundary value problems with moving boundaries. The resonance characteristics of
viscoelastic rope with moving boundaries using the Kantorovich вЂ“ Galerkin method are ex-
amined in the article. The phenomenon of resonance and steady passage through resonance
are analyzed. One-dimensional systems whose boundaries move are widely used in engineering
[1вЂ“5]. The presence of moving boundaries causes considerable difficulties in describing such
systems. Exact methods for solving such problems are limited by the wave equation and rel-
atively simple boundary conditions. Of the approximate methods, the Kantorovich-Galerkin
method described in [5] is the most efficient. However, this method can also be used in more
complex cases. This method makes it possible to take into account the effect of resistance
forces on the system, the viscoelastic properties of an oscillating object, and also the weak non-
stationarity of the boundary conditions. The paper considers the phenomena of steady-state
resonance and passage through resonance for transverse oscillations of a rope of variable length,
taking into account viscoelasticity and damping forces. Performing transformations similar to
transformations [5], an expression is obtained for the amplitude of oscillations corresponding
to the n-th dynamic mode. Expressions are also obtained that describe the phenomenon of
steady state resonance and the phenomenon of passage through resonance. The expression
that determines the maximum amplitude of oscillations when passing through the resonance
was numerically investigated to the maximum. The dependence of the rope oscillation ampli-
tude on the boundary velocity, viscoelasticity, and damping forces is analyzed. The results of
numerical studies allow us to draw the following conclusions: - with a decrease in the velocity
of the boundary, viscoelasticity and damping forces, the amplitude of oscillations increases; - as
the boundary velocity, viscoelasticity and damping forces tend to zero, the oscillation amplitude
tends to infinity; In conclusion, we note that the above results make it possible to carry out
a quantitative analysis of the steady state resonance and the phenomenon of passage through
the resonance for systems whose oscillations are described by the formulated problem.
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3. Interplay between linear infinite-dimensional systems and
nonlinear finite-dimensional systems
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4. Quantum physics, quantum information and quantum
dynamical semigroups
On informational completeness of covariant positive operator-valued

measures
G. G.Amosov 35

Keywords: locally compact Abelian groups, Pontryagin duality, projective unitary representa-
tions, covariant positive operator-valued measures

MSC2010 codes: 81P18, 20C25

Let G be a locally compact Abelian group with the Haar measure ν. Due to the Pontraygin
duality there exists the unique Haar measure ν̂ on the group of characters Ĝ such that the
composition of forward and inverse Fourier transforms of functions from H = L2(G) gives the
identity transformation. Following to [1-2] define a projective unitary representation of the
group G = Ĝ×G in H by the formula

(Uχ,gf)(a) = χ(a)f(a+ g), χ ∈ Ĝ, g ∈ G, f ∈ H.

Then, the following statement holds true.
Theorem 1 [2]. Let f be a cyclic vector for the representation (Uχ,g). Then,

M(B) =

∫
B

|Uχ,gf⟩ ⟨Uχ,gf | dν̂(χ)dν(g), B ⊂ G,

is a positive operator-valued measure (POVM) on the space G.
Any POVM M determines an affine map Φ from the set S(H) consisting of all states

(positive unit trace operators) in H to the set Π(G) of all probability distributions on G
defined by the formula

Φ(ρ)[B] = Tr(ρM(B))

for measurable B ⊂ G. The map Φ is known as a measurement channel. We call a POVM
M informationally complete if given a probability distribution π ∈ Φ(S(H)) there exists the
unique state ρ such that Φ(ρ) = π.

We introduced a family of contractions

Tχ,g =

∫
Ĝ×G

χ′(g)χ(g′)dν̂(χ′)dν(g′), χ ∈ Ĝ, g ∈ G,

and proved that [3] there is a family of complex-valued functions f(χ, g), 0 < |f(χ, g)| ≤ 1
such that

Tχ,g = f(χ, g)Uχ,g, χ ∈ Ĝ, g ∈ G,

and has shown that the following theorem takes palce.
Theorem 2 [3]. The POVM M is informationally complete. Moreover, the inverse formula

for restoring a state ρ is given by

ρ =

∫
G

dν̂(χ)dν(g)f(χ, g)−1U∗
χ,g

∫
G

dν̂(χ′)dν(g′)χ(g′)χ′(g)pρ(χ
′, g′),

35Steklov Mathematical Institute, Moscow, Russia. Email: gramos@mi-ras.ru
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where
pρ(χ, g) = ⟨Uχ,gf, ρUχ,gf |Uχ,gf, ρUχ,gf⟩

is the density of probability distribution π = Φ(ρ).
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Introduction. In quantum information theory, the notions of the channel and its capacity,
giving a measure of ultimate information-processing performance of the channel, play a cen-
tral role. For a comprehensive introduction to quantum channels, see [1]. Diagonal quantum
channels have significant applications in communication and physics. There are some studies
on different types of diagonal channels, for instance depolarizing channels [2, 3] and diagonal
channels with constant Frobenius norm [4].

Definition 1. Quantum channel Φ : Cn×n → Cn×n is called diagonal, if its representation
with respect to an orthonormal basis β (constructed by the generalized Pauli matrices) is
diagonal, i.e. Φ = diag(1, a1, a2, ..., an2−1).

Theorem 1. ([5]) For every diagonal quantum channel Φ, there is a collection of transition
probabilities {Pkj}nj=1 , i.e. Pkj ≥ 0,

∑n
j=1 Pkj = 1 such that

Φ(|k⟩⟨k|) =
n∑
j=1

Pkj|j⟩⟨j| (k = 1, 2, ..., n).

Kraus representation for diagonal channel. Before we formulate the result of this section,
we need to prove the following two lemmas [5].

Lemma 1. Let κ = (x1, x2, ..., xn) where xi’s are rows of n×nmatrix K, then (K∗EijK)1≤i,j≤n =
(x∗ixj)1≤i,j≤n = κ∗κ.

Lemma 2. Let Φ : Cn×n → Cn×n be a quantum channel, CΦ be its Choi matrix, and
CΦ = R∗R for some matrix R. If κi’s are rows of R, and Ki’ s are associated matrices to κi’s
in lemma 1 (1 ≤ i ≤ n2) then {Ki}n

2

i=1 is a set of Kraus operators of Φ.
Now we are in a position to assert the main result of this section:
Theorem 2. ([5]) For hybrid depolarizing classical quantum channel

Φ = diag(1,−p, ...,−p︸ ︷︷ ︸
N

,−p, ...,−p︸ ︷︷ ︸
N

, p, ..., p︸ ︷︷ ︸
n−1

),

Kraus operators can be determined in the following explicit form:

K1 =


√
a0 0 ... 0
0 b0√

a0
... 0

... ... ... ...
0 0 ... b0√

a0

 , K2 =


0
√

1−p
n

... 0

0 0 ... 0
... ... ... ...
0 0 ... 0

 ,

..., Kn =


0 0 ...

√
1−p
n

0 0 ... 0
... ... ... ...
0 0 ... 0

 , Kn+1 =


0 0 ... 0√
1−p
n

0 ... 0

... ... ... ...
0 0 ... 0

 ,
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Kn+2 =


0 0 ... 0
0

√
a1 ... 0

... ... ... ...
0 0 ... b1√

a1

 , ..., K2n =


0 0 ... 0

0 0 ...
√

1−p
n

... ... ... ...
0 0 ... 0

 ,

..., Kn2−1 =


0 ... 0 0
0 ... 0 0
... ... ... ...

0 ...
√

1−p
n

0

 , Kn2 =


0 0 ... 0
0 0 ... 0
... ... ... ...
0 0 ...

√
an−1

 ,

where am = (2p + 1−p
n
)(1 + −p

−pm+2p+ 1−p
n

) for m = 1, 2, ..., n − 1; bm = (2p + 1−p
n
)( −p

−pm+2p+ 1−p
n

)

for m = 1, 2, ..., n− 2; a0 = p+ 1−p
n

, and b0 = −p.
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Growth and divisor of complexified horocycle eigenfunctions
M. Dubashinskiy 37

Furstenberg Theorem on unique ergodicity of horocycle flow over compact hyperbolic surfaces
can be passed through a semiclassical quantization. We then arrive to a plenty of horocycle
eigenfunctions u defined at the hyperbolic plane C+. They enjoy(

−y2
(
∂2

∂x2
+

∂2

∂y2

)
+ 2iτy

∂

∂x

)
u(x+ iy) = s2u(x+ iy), x+ iy ∈ C+,

with τ → ∞, s = o(τ), s, τ ∈ R, and possess Quantum Unique Ergodicity (ℏ = 1/τ). At the
left-hand side, we recognize magnetic Hamiltonian at hyperbolic plane.

Such functions can be analytically continued to a neighborhood of C+ in its complexification.
The latter is just {(X, Y ) : X, Y ∈ C}. We establish asymptotic estimates for the growth of
these continuations as τ → ∞, and for de Rham currents given by their divisors.
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Problem setting and main result. Entanglement distribution task encounters a problem
of how the initial entangled state should be prepared in order to remain entangled the longest
possible time when subjected to local noises. In the realm of continuous-variable states and
local Gaussian channels it is tempting to assume that the optimal initial state with the most
robust entanglement is Gaussian too [1,2]; however, this is not the case [3,4]. In Ref. [5] we
rigorously prove that specific non-Gaussian two-mode states remain entangled under the effect
of deterministic local attenuation or amplification (Gaussian channels with the attenuation
factor/power gain κi and the noise parameter µi for modes i = 1, 2) whenever κ1µ2

2 + κ2µ
2
1 <

1
4
(κ1+κ2)(1+κ1κ2), which is a strictly larger area of parameters as compared to where Gaussian

entanglement is able to tolerate noise. These results shift the “Gaussian world” paradigm
in quantum information science (within which solutions to optimization problems involving
Gaussian channels are supposed to be attained at Gaussian states).

Semigroup dynamics. A considered quantum channel Φ(κ, µ) with fixed parameters κ
and µ represents a snapshot of the dynamical map at a particular time moment t, which may
correspond to a finite propagation time through a communication line. In a true time evolution
the parameters κ and µ become functions of time t, κ(t) and µ(t). For instance, in the semigroup
attenuation or amplification dynamics Φ = eLt with the generator L [6] we obtain the following
dependencies:

κ(t) = e±Γt, µ(t) = ±
(
e±Γt − 1

)(
n̄+

1

2

)
,

where the sign + (−) describes amplification (attenuation), Γ ≥ 0 is the process rate, and n̄ is
the average number of thermal photons in the environment. For such a semigroup dynamics the
one-parameter family of maps Φ

(
κ(t), µ(t)

)
is associated with a straight line in the parameter

space (κ, µ).
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The Kossakowski Matrix and Strict Positivity of Markovian Quantum Dynamics
F. Franco 38

We investigate the relationship between strict positivity of the Kossakowski matrix, irre-
ducibility and positivity improvement properties of Markovian Quantum Dynamics. We show
that for a Gaussian quantum dynamical semigroup strict positivity of the Kossakowski matrix
implies irreducibility and, with an additional technical assumption, that the support of any
initial state is the whole space for any positive time
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Quantum decoherence via Chernoff averages
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In this talk we study averages of Feynman-Chernoff iterations [1]

e−iĤn
t
n ◦ ... ◦ e−iĤ1

t
n

for operator-valued quantum evolution functions.
The basic example is provided by Hamiltonians of the form

Ĥ(t) = g(t)â+â+ f(t)â+ + f(t)â+ h(t), (1)

where g(t) and h(t) are real-valued functions of time, f(t) is a complex-valued function of time,
â+ and â are the creation and annihilation operators.

In the works of Glauber [2], Meta and Sudarshan [3] it was shown that in the case of canonical
commutation relations the formula (1) defines the general form of Hamiltonians, under which
states that are initially coherent remain coherent during the time evolution. By coherent states
we mean states corresponding to eigenvectors of the annihilation operator: â |z⟩ = z |z⟩ , z ∈ C.

Further note that if the Hamiltonian is of the form (1) than the action of the time evolution
operator

Ŝ(t) = T
{
exp

(
−i
∫ t

0

Ĥ(τ) dτ

)}
, t > 0,

on any initial coherent state is described by the formulas:

|z(t)⟩ = Ŝ(t) |z(0)⟩ ,

z(t) = e−iϕ(t)z(0)− ie−iϕ(t)
∫ t

0

f(τ)eiϕ(τ)dτ,

where ϕ(t) =
∫ t
0
g(τ)dτ . The symbol T denotes the operation of time-ordering.

In some problems [4,5] it becomes necessary to take into account the accumulated common
phase factor. Substituting the vector eiγ(t) |z(t)⟩ into the Schrödinger equation leads to the
equation (

i
dγ(t)

dt
+
d

dt

)
|z(t)⟩ = −iĤ(t) |z(t)⟩ ,

from which it follows that

γ(t)− γ(0) =

∫ t

0

⟨z(τ)| Ĥ(τ) |z(τ)⟩+ i

∫ t

0

⟨z(τ)| d
dτ

|z(τ)⟩ ,

where the first term on the right hand side is called a dynamic phase, and the second is called
a geometric or Berry phase.

Thus the time evolution of the vectors of the Hilbert space H corresponding to coherent
states under the action of the family of operators Ŝ(t) is completely described by the operator-
valued function with values in the affine group of R3 ∼= C× R.

We consider the time evolution of quantum oscillator, which is given by compositions of
random transformations described above, and the diffusion limit of such compositions in the
sense of Feynman-Chernoff iterations. We provide the Fokker-Planck equation for the evolution

39Keldysh Institute of Applied Mathematics, Russia, Moscow. Email: kalmetev@phystech.edu
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of densities of mixed states, and numerically investigate the problem of decoherence of quantum
states in interference experiments.

The talk is based on joint work with Y.N. Orlov and V.Z. Sakbaev.
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Dynamic law of large numbers for quantum stochastic filtering and
related new nonlinear stochastic Schrodinger equations

V. N.Kolokoltsov 40

As a far reaching extension of the quantum large number limit leading to the basic nonlinear
Schrodinger equations, we derive the new nonlinear stochastic Schrödinger equations, as the
limits of continuously observed and controlled systems of a large number of interacting quantum
particles, evolving according to the Belavkin quantum filtering equation. This construction is
a starting point for the quantum extension of the theory of quantum mean-field games. Our
introduction of a new class of equations suggests many open problems concerning e.g. existence,
uniqueness, regularity, etc. Ideas of the talk are taken from the papers
[1] Vassili N. Kolokoltsov. The law of large numbers for quantum stochastic filtering and control

of many particle systems. Theoretical and Mathematical Physics. 2021. Vol. 208, no. 1.
P. 97-121.
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Control of quantum systems, e.g., individual atoms, molecules is an important direction in
modern quantum technologies [1–5]. Often open quantum systems with Markovian dynamics
are described via the Gorini–Kossakowski–Sudarshan–Lindblad (GKSL) master-equation, and
controlling such a system is modelled in terms of coherent control entering in the system’s
Hamiltonian. However, there is known the approach (see the fundamental works [6, 7] and,
e.g., [8–12]), where such a system’s environment can be considered as a resource via introducing
incoherent control in the superoperator of dissipation and also in the effective Hamiltonian.

The talk considers some one- and two-qubit open quantum systems whose dynamics is
described via the GKSL master equation in the weak coupling limit (WCL) approach, and
coherent u and incoherent n controls are used:

dρ(t)

dt
= −i[H0 +Heff,n(t) +Hu(t), ρ(t)] + Ln(t)(ρ(t)), ρ(0) = ρ0, (1)

where H0, Heff,n(t), and Hu(t) are, correspondingly, some free, effective, and interaction Hamil-
tonians; density matrix of the system ρ(t) ∈ CN×N is a Hermitian positive semi-definite matrix,
ρ(t) = ρ†(t) ≥ 0, with unit trace, Trρ(t) = 1; Ln(t)(ρ(t)) is the WCL type’s superoperator of
dissipation acting on ρ(t); [A,B] denote the commutator [A,B] = AB+BA of operators A,B.
Consider N = 2 and N = 4, i.e., correspondingly, for one- and two-qubit cases.

The talk discusses several directions related to some various control problems for the sys-
tem (1). First, for the problem of generation of a given density matrix ρtarget for the one-qubit
system, we discuss, based on the article [13], a modification of the two-stage method [7] by using
piecewise constant incoherent controls and the two-step gradient projection method at the first
(incoherent) stage, where we obtain the possibility to decrease duration of this stage at the cost
of complicating the first stage and losing the simplicity of the original method. Second, also
for the one-qubit system, we consider such the steering control problem that initial and target
density matrices have the same spectrum. We show when we can numerically obtain such a
coherent control that, for some initial and target density matrices with the same spectrum,
approximately solve the problem and can be used for such an another pair of initial and target
density matrices that are related to the first pair due to the certain property. Also we show
that increasing the dissipation rate breaks this possibility, and considering both coherent and
incoherent controls can help here. This can be considered as a possible modification of the
second stage of the two-stage method, and here we consider some special class of incoherent
controls for avoiding large variations for each of them. Third, the talk considers the two-qubit
system and the problems of minimizing the Hilbert-Schmidt distance between the final and tar-
get density matrices, maximizing the Hilbert-Schmidt overlap for them, steering the overlap to
a given value [14, 15]. Here we outline the use of the Pontryagin maximum principle, gradient
projection methods, stochastic optimization. For the problem of maximizing the overlap, we
describe constructing some Krotov’s type methods (in terms of density matrices) based on the
special exact formulas for the increment of the objective functional [15].

Moreover, the talk notes, as an important direction, the problem of estimating the effec-
tiveness of local and global methods for controlling one- and two-qubit systems.
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Introduction. Control of quantum systems is an important branch of modern quantum
physics, whose development is motivated both by fundamental reasons and by existing and
prospective applications to quantum technologies [1]. In many experimental circumstances,
controlled quantum systems are interacting with the environment [2,3]. The environment is
often considered as having deleterious effect on the ability to control the system. However, it
can be also exploited as a useful resource. Various approaches for using the environment as a
resource exist. In this talk we will discuss the incoherent control method proposed in [4]. This
method, when combined with coherent control, was shown to provide approximate controlla-
bility of generic N–level open quantum systems in the set of all density matrices [5].

Incoherent control by the engineered environment. Density matrix ρt at time t of a
quantum system under the action of coherent and incoherent controls evolves according to the
master equation (we set Planck constant as ℏ = 1)

dρt
dt

= −i[H0 +Hc(t), ρt] + γLn(t)(ρt), ρt=0 = ρ0 .

In this equation, H0 is the free system Hamiltonian, Hc(t) is the Hamiltonian describing inter-
action of the system with coherent control u(t) [e.g., a laser field; a typical situation is when
Hc(t) = V u(t)], n(t) ≥ 0 is generally time-dependent incoherent control (e.g., spectral density
of incoherent photons). The key feature here is that the dissipator Ln(t) becomes dependent on
incoherent control. Various physical forms of this dependence were considered in [4]. Equiv-
alently, this master equation was written in [4] as a master equation with time dependent
decoherence rates γk(t),

dρt
dt

= −i[H0 +Hc(t), ρt] +
∑
k

γk(t)Dk(ρt) .

Here k denotes all possible different pairs of energy levels in the controlled system and Dk

is a Gorini–Kossakowski–Sudarshan–Lindblad dissipator, for which two physical classes were
exploited — incoherent photons and quantum gas, with two explicit forms of Dk derived in the
weak coupling (describing atom interacting with photons) and low density (describing quantum
system interacting with a quantum gas) limits, respectively [4]. Generally, coherent control can
also enter in the dissipator, and in opposite, incoherent control also modifies the Hamiltonian
via Lamb shift. Non-Markovian master equations can be considered for incoherent control as
well.

Applications of incoherent control. The method of incoherent control was found to
be successful when applied to various quantum systems. In [5], it was shown that for the
explicit form of Dk derived in the weak coupling limit, generic N -level quantum systems subject
to coherent and incoherent controls become approximately controllable in the set of density
matrices. The original proposed scheme was significantly speed-up for a two-level case by
minimizing time of the incoherent stage [6]. The set of reachable states for a single qubit was
described analytically using methods of geometric control theory in [7]. Recently, incoherent

42Steklov Mathematical Institute of Russian Academy of Sciences, Department of Mathematical Methods
for Quantum Technologies, Russia, Moscow; National University of Science and Technology “MISiS”, Russia,
Moscow. Email: apechen@gmail.com
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control by the environment was combined with speed gradient approach to manipulate energy of
a quantum oscillator interacting with the environment [8], where convergence of the differential
form of the speed gradient approach to optimal solution was rigorously proved and moreover, the
conditions which guarantee that the obtained incoherent control is physical (i.e., non-negative)
were found. Various aspects of pure and mixed state preparation using coherent and incoherent
controls were investigated also in two-qubit systems [9,10]. All of this show high capabilities of
incoherent control [4] for controlling quantum systems.

Acknowledgments. Partial support from the RSF No 22-11-00330, Minobrnauki No 075-
15-2020-788, K2-2022-025 and “Priority 2030”.
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Quantum control which studies methods for manipulation of individual quantum systems is
an important tool necessary for development of quantum technologies [1]. Often in experimental
circumstances controlled systems can not be isolated from the environment, so that they are
open quantum systems. Moreover, in some cases the environment can be used for actively
controlling quantum systems, as for example in incoherent control [2,3]. While in some cases
the solution for the optimal shape of the control can be obtained analytically, often it is not
the case and various numerical optimization methods are needed. A large class of methods
are gradient-based numerical optimization algorithms, one of which is GRadient Ascent Pulse
Engineering (GRAPE) developed originally for design of NMR pulse sequences [4] and later
applied to various problems, e.g. [5,6].

In this talk, we consider the state-to-state transfer control problem for an open two-level
quantum system (qubit) whose evolution is governed by the GKSL master equation with coher-
ent and incoherent controls [7,8]. General form of the GKSL master equation in the absence of
controls was derived in particular in the weak coupling limit and in the stochastic limit of quan-
tum theory. We consider the specific model of such master equation which includes coherent
and incoherent controls. The state of the system is represented by a vector in the Bloch ball.
We consider piecewise constant control as it commonly used in gradient optimization methods.
Then we derive expressions for dynamics and objective functional gradient using matrix expo-
nentials. Due to low dimension of the system, the corresponding 3× 3 matrix exponentials can
be analytically diagonalized. For that we find eigenvalues and eigenvectors of the right-hand
side matrix of the system evolution equation. Roots of the third order characteristic equation
can be analytically found using the Cardano’s formula. This enables obtaining exact form of
matrix exponentials included in the dynamics and functional gradient expressions necessary for
control landscape analysis.

This talk presents the work partially funded by Russian Science Foundation grant No.22-
11-00330 and “Priority 2030” K2-2022-025 project.
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Feynman Integrals in Quantum 2D Gravity
E. T. Shavgulidze 45

The enormous popularity of 2D gravity in the last several decades motivated by its role in
string theory and studies of BH physics in the dimensional reduction approach has grown after
realizing the Schwarzian nature of the JT dilaton gravity and the relation of this theory to SYK
model.

The general form of the 2D gravity action up to the terms quadratic in curvature K is

Ã = c0

∫ √
G d2x+ c1

∫
K

√
G d2x+ c2

∫
K2

√
G d2x . (8)

The first two terms do not determine the dynamics of 2D gravity. While the part of the
action quadratic in the Gaussian curvature does.

Commonly it is transformed to the dilaton gravity action. An alternative way is to deal
only with the geometric structures of the surface.

The action (8) is invariant under general coordinate transformations. Here, we reduce the
set of coordinate transformations and consider the action restricted to the conformal gauge,
where the metric of the 2D surface looks like

dl2 = g(u, v)
(
du2 + dv2

)
= g(z, z̄) dz dz̄

√
G = g . (9)

K = − 1

2g
∆ log g , (10)

where ∆ stands for the Laplacian.
We consider the specific form of the action (8)

A =
λ2

2

∫
d

(K + 4)2 g(z, z̄) dz dz̄ =
λ2

2

∫
d

(∆ψ)2 dz dz̄ (11)

where
∆ψ = q∆ log q +

4

q
, q =

1
√
g
. (12)

Now path integrals in the theory∫
F̃ (g) exp{−Ã(g)} dg (13)

are path integrals ∫
F (ψ) exp{−A(ψ)} dψ (14)

over the Gaussian functional measure

µλ(dψ) =
exp{−A(ψ)} dψ∫
exp{−A(ψ)} dψ

. (15)

We consider a model of 2D gravity with the action quadratic in curvature and represent path
integrals as integrals over the SL(2, R) invariant Gaussian functional measure. We reduce these
path integrals to the products of Wiener path integrals and calculate the correlation function
of the metric in the first perturbative order.

Talk is based on V. V. Belokurov and E. T. Shavgulidze, An approach to quantum 2D
gravity, Physics Letters B Volume 836, 10 January 2023, 137633

45Lomonosov Moscow State University, Russia, Moscow.
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Introduction. In the theory of open quantum systems the Markovian approximation
is very widespread. Usually it assumes the Gorini-Kossakowski-Sudarshan-Lindblad equation
for density matrix dynamics and some specific formulae for correlation functions in terms of
dynamical map for this equation [1]. These formulae are usually called regression formulae.
We will call such a correlation functions the Markovian correlation functions, and we give
more explicit definition of them below. Here we construct an explicit and simple example of
a model, for which dynamics of the density matrix is defined by a dynamical semigroup with
the Gorini-Kossakowski-Sudarshan-Lindblad generator, but exact correlation functions do not
coincide with the Markovian correlation functions.

Model and definitions. We consider a unitary evolution with a random time-dependent
Hamiltonian

H̃(t) = ξ
1

2
√
t
H,

where H is a fixed n-dimensional Hermitian matrix, ξ is a real random variable with the
standard normal distribution.

Let U(t) be a solution of the equation

d

dt
U(t) = −iH̃(t)U(t)

for t > 0 such that U(+0) = I.
Definition 1. Suppose that A and B are n × n matrices and t ⩾ s ⩾ 0. Then the exact

correlation function ⟨A(t)B(s)⟩ is defined by the formula

⟨A(t)B(s)⟩ ≡ ETrAUt(Us)−1(B(Usρ)),

where Ut is a superoperator denfined as Ut(X) = U(t)X(U(t))† for an arbitrary n × n matrix
X.

Definition 2. Let us define
Φt ≡ EUt.

Suppose that A, B1, B2 are n×n matrices and t ⩾ s ⩾ 0. Then Markovian correlation function
⟨B2(s)A(t)B1(s)⟩ is defined by the formula

⟨B2(s)A(t)B1(s)⟩M ≡ TrAΦt(Φs)
−1(B1(Φsρ)B2),

in particular for B2 = I, B2 = B

⟨A(t)B(s)⟩M ≡ TrAΦt(Φs)
−1(B(Φsρ)).

46Steklov Mathematical Institute of Russian Academy of Sciences, Department of Mathematical Methods for
Quantum Technologies, Moscow, Russia. Email: taemsu@mail.ru
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Theorem 1. The operator-valued function Φt has the explicit form

Φt = eLt,

where L has the Gorini-Kossakowski-Sudarshan-Lindblad form, namely,

L(ρ) = HρH − 1

2
H2ρ− 1

2
ρH2.

The semigroup Φt defines evolution of the density matrix as ρ(t) = Φt(ρ(0)).

Main result. The main result of the talk consists in the explicit formula, which expands
the exact correlation functions in terms of Markovian correlation functions.

Theorem 2. Let A, B be n× n matrices, t ⩾ s ⩾ 0, then

⟨A(t)B(s)⟩ = ⟨A(t)B(s)⟩M + ⟨(Φ2(
√
ts−s)(A)− A)(t)B(s)⟩M

∞∑
k=1

(
√
ts− t))k

k!

k∑
m1,m2=0

(
k

m1

)(
k

m2

)
⟨(Hk−m1)(s)(Hk−m2Φ2(

√
ts−s)(A)H

m2)(t)(Hm1B)(s)⟩M .

Thus, we have obtained non-trivial corrections to Markovian correlation functions for this
simple model. These corrections are also repesented as sums of Markovian correlation functions,
hence the exact correlation functions are still defined by Markovian correlation functions (but
not only of the same operators), but there relation is much more complex than for the Markovian
case.

Acknowledgments. This work was performed at the Steklov International Mathemat-
ical Center and supported by the Ministry of Science and Higher Education of the Russian
Federation (agreement no. 075-15-2022-265).
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Quantum control, that is control of single quantum systems such as atoms or molecules,
attracts now high interest both due to fundamental reasons and applications in modern quantum
technologies [1]. Controlled dynamics of an N -level closed quantum system (H0, V ) is described
by the Schrödinger equation.

i
dU f

t

dt
= (H0 + f(t)V )U f

t , U f
t=0 = I. (16)

Here H0 and V ([H0, V ] ̸= 0) are free and interaction Hamiltonians respectively (i.e., Hermi-
tian N ×N -matrices), f ∈ L2([0, T ],R) is coherent control, and T > 0 is some target time. A
typical quantum control problem can be formulated as the problem of maximizing the objec-
tive functional. In our talk, we consider the following Mayer type quantum control objective
functionals:

1. Let O be a quantum observable (system’s Hermitian operator) and ρ0 an initial quan-
tum density matrix (so that ρ0 ≥ 0 and Tr(ρ0) = 1). The objective functional for the
expectation of the system observable O is:

JO[f ] = Tr(OU f
Tρ0U

f†
T ) → max . (17)

2. The objective functional for generation of a quantum gate W ∈ SU(N) is:

JW [f ] =
1

N2
|Tr(W †U f

T )|
2 → max . (18)

The goal of global optimization is to find a control which realizes global maximum of the
objective. For global optimization, an important question for a controllable system is to estab-
lish whether or not the objective has trapping behaviour [2]. Trap for an objective functional is
a point of local but not global optimum of this functional. The analysis for traps is important
since traps, if they exist, determine the level of difficulty for the search for globally optimal
controls. If N = 2 and [H0, V ] ̸= 0 then the quantum system (H0, V ) is completely controllable.
In this case, the absence of traps was proved in [3,4] for large times. In [5,6], some examples of
third order traps were discovered for special N–level degenerate quantum systems with N ≥ 3.
Traps were discovered for some systems with N ≥ 4 in [7].

In this talk, for the problem of controlled generation of single-qubit phase shift quantum
gates we show that control landscape for small times is free of traps [8]. We also discuss the
detailed structure of the quantum control landscape for this problem [9]. For the problem of
maximizing or minimizing the expectation of a system observable O, we introduce the notion
of trap of n-th order. We find the conditions under which the control landscape for a strongly
degenerate controllable N -level system has trap of the order 2N − 3 with N ≥ 3 [10]. It
is known that this special quantum system is completely controllable [11,12]. Properties of

47Steklov Mathematical Institute of Russian Academy of Sciences, Department of Mathematical Methods for
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control landscapes for open quantum systems are related to optimization on complex Stiefel
manifolds [13].

Acknowledgments. The work is partially supported by the project of the Russian Science
Foundation grant No. 22-11-00330 and «Priority 2030» federal leadership program.
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5. Infinite-dimensional analysis, probability, stochastic pro-
cesses and financial mathematics

A class of fractional Ornstein-Uhlenbeck processes mixed with a
Gamma distribution

S. Bonaccorsi 49

We aim to discuss the convergence of the empirical means of a sequence of realizations of
the solution of a (fractional, in our case) stochastic differential equation (SDE) with random
coefficients as a mean to construct new classes of stochastic processes. The talk is based on a
recent paper by L. A. Bianchi, S. Bonaccorsi, L. Tubaro (Modern Stoch. Theory Appl. 10, no.
1, 37-57, 2023).
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New Applied Stochastic Models
E. V.Bulinskaya 50

Keywords: Optimization, Limit behavior, Stability.

In order to study real-life processes or systems it is necessary to choose an appropriate
mathematical model for their description, see, e.g. [1], [2]. The usual procedure includes
the following steps: 1) Formulate a real problem. 2) Make assumptions. 3) Formulate a
mathematical problem. 4) Solve the mathematical problem. 5) Interpret the solution. 6)
Validate the model. If one establishes that the model describes correctly the real-life situation
the solution can be used to explain, design, predict etc., that is, to make a necessary decision.
Otherwise, one has to return to the second step (assumptions) and repeat the procedure once
more. This explains, in particular, why there can exist a lot of models describing more or less
precisely the same system. The applied probability models have input-output form, that is,
they are specified by the following six-tuple (T, Z, Y, U,Ψ,L). Here T is a planning horizon,
Z = {Z(t), t ∈ [0, T ]} is input process, whereas Y = {Y (t), t ∈ [0, T ]} and U = {U(t), t ∈ [0, T ]}
are output and control processes, respectively. Ψ represents the system configuration and
operation mode, hence, X = Ψ(Z, Y, U) is the system state, while LT (U) = L(Z, Y, U,X, T ) is
objective function (target, valuation criterion, risk measure) evaluating the system performance
quality. According to the choice of objective function there exist two main approaches, namely,
reliability and cost ones, see, e.g., [3].

The aim of all investigations is to find the optimal control providing extremum (max or min)
of the objective function. We are going to explain further procedures in terms of insurance,
since it is the oldest applied probability research domain involving risk. So, the most frequently
employed controls are reinsurance, investment, bank loans and dividends, see, e.g., [4]-[7]. We
study the limit behavior of the insurance company capital under optimal control and carry out
the sensitivity analysis of the models under consideration to small fluctuations of parameters
and perturbations of underlying processes using the methods proposed in [8], [9].

It is interesting to mention that another interpretation of input and output processes enables
us to use the obtained results for other application fields such as communications, inventory,
finance, reliability or queueing theory.
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A mild Girsanov formula
G. Da Prato 51

(Work in progress in collaboration with Enrico Priola (Pavia) and Luciano Tubaro (Trento))

ABSTRACT

We consider the SPDE

dZ = AZ + b(Z)dt+ dW (t), Z(0) = x

on a Hilbert space H, where A : H → H is self-adjoint, negative and such that A−1 is of trace
class, b : H → H is Lipschitz continuous and bounded, and W is a cylindrical process on H.
Setting PTφ(x) = E[φ(Zx(T ))] we prove, with the help of formula for nonlinear transformations
of infinite dimensional Gaussian measures due to R. Ramer (J. Functional Analysis, 15, 166–
187, 1974), the identity

PTφ(x) =

∫
X

φ(k(T ) + eTAx) ρ(x, k)NQT
(dk), (1)

where NQT
is the law of W in L2(0, T,H),

ρ(x, k) = exp
{
−1

2
|Q−1/2

T γx(k)|2X +M∗(γx(k))
}
,

[γx(k)](t) =

∫ t

0

e(t−s)Ab(k(s) + esAx)ds

and M∗ is the adjoint of the Malliavin derivative in X. Finally, letting T → ∞ in (1), we find
an explicit formula for the invariant measure ν of PT , which is ergodic, strongly mixing and
absolutely continuous with respect the Gaussian measure µ = N−1/2A−1 .
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Non-Equilibrium States in a Harmonic Crystal coupled to a
Klein–Gordon Field

T. V.Dudnikova 52

Keywords: harmonic crystal coupled to a Klein–Gordon field; Cauchy problem; random initial
data; weak convergence of measures; Gibbs measures; energy current density; non-equilibrium states.
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In the talk, we discuss the long-time behavior of distributions of solutions for infinite-
dimensional Hamiltonian systems and the existence of a nonzero heat flux in them. As a
model, we consider a linear Hamiltonian system consisting of a real scalar Klein–Gordon field
ψ(x) and its momentum π(x), x ∈ Rd, and a harmonic crystal described by the deviations
u(k) ∈ Rn of the particles (atoms, ions, etc.) and their velocities v(k) ∈ Rn, k ∈ Zd. The
Hamiltonian functional of the coupled field–crystal system reads

H(ψ, π, u, v) =
1

2

∫
Rd

(
|∇ψ(x)|2 +m2

0|ψ(x)|2 + |π(x)|2
)
dx

+
1

2

∑
k∈Zd

( ∑
k′∈Zd

u(k) · V (k − k′)u(k′) + |v(k)|2
)
+
∑
k∈Zd

∫
Rd

R(x− k) · u(k)ψ(x) dx.

Here m0 > 0, the coupled function R(·) ∈ Rn is a smooth vector-valued function, exponen-
tially decaying at infinity, “·” denotes the inner product in Rn, V is a real interaction matrix,
V (k) ∈ Rn × Rn, d, n ≥ 1. This model can be considered as the description of the motion of
electrons (so-called Bloch electrons) in the periodic medium which is generated by the ionic
cores. Understanding of this motion is one of the central problem of solid state physics.

We study the Cauchy problem with the initial data Y0 = (ψ0, π0, u0, v0). We assume that Y0
belong to the phase space Esα ≡ Hs+1

α ⊕Hs
α⊕ ℓ2α⊕ ℓ2α, where Hs

α ≡ Hs
α(Rd) denotes the weighted

Sobolev space, ℓ2α ≡ ℓ2α(Zd) is the Hilbert space of vector-valued sequences u(k) ∈ Rn, k ∈ Zd,
with finite norm ∥⟨k⟩αu(k)∥ℓ2(Zd) <∞, ⟨k⟩ :=

√
k2 + 1, s, α < −d/2.

We assume that Y0 is a random function of the form Y0(p) =
∑
±
ζ±(p1)Y±(p), where p =

(p1, . . . , pd) ∈ Pd ≡ Rd ∪ Zd, ζ± are nonnegative cut-off functions equal to one for ±p1 > a and
zero for ±p1 < −a with some a > 0, the random functions Y±(p) have Gibbs distributions gβ± ,
β± = T−1

± , with temperatures T± > 0. Given t ∈ R, denote by µt the probability Borel measure
in Esα that gives the distribution of the random solution Y (t) ≡ (ψ(·, t), π(·, t), u(·, t), v(·, t))
with the random initial data Y0. The main result is the following theorem.

Theorem. The measures µt weakly converge to a Gaussian measure µ∞ as t → ∞ on the
space Esα, s, α < −d/2. The correlation matrix of µ∞ is translation-invariant w.r.t. shifts in
Zd. The explicit formulas for the limiting correlation functions are given.

In non-equilibrium statistical mechanics, the heat flux is often calculated in models, which
are an open system coupled to at least two reservoirs with different temperatures. These models
differ in the description of the system, reservoirs and the type of interaction between them, see,
e.g., [1]. Similar to these models, our system can be represented as a “system + two heat
reservoirs”, where “reservoirs” are described by the solutions Y (p, t) with coordinates lying in
two regions with p1 ≤ −a and p1 ≥ a, and an “open system” by the solutions with coordinates
from the remaining part of the space. Initially, the reservoirs are assumed to be in thermal
equilibrium with different temperatures T− and T+. The limiting energy current density is

52Keldysh Institute of Applied Mathematics, Russian Academy of Sciences. 125047 Moscow, Russia. Email:
tdudnikov@mail.ru
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J = −c (T+ − T−, 0, . . . , 0), c > 0, i.e., the heat flows (on average) from the “hot reservoir”
to the “cold” one. Thus, we prove that there exist stationary non-equilibrium states, i.e., the
probability limiting measures µ∞, in which there is a non-zero heat flux in the model under
consideration.

For initial measures which are translation-invariant w.r.t. shifts in Zd, the weak convergence
of µt was proved in [2]. The similar results were obtained in [3, 4] for the Klein–Gordon fields
and in [5, 6] for the harmonic crystals.
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On a class of functionals Feynman integrable
in the sense of analytic continuation

E. S.Kolpakov 53
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Introduction. This report is devoted to a method for calculating the Feynman integrals
of some class of functional. In this case, the integration is carried out over some space E
containing both continuous trajectories and trajectories with jumps. The integral over the
space E is defined in the sense of analytic continuation. We also obtain a formula is that makes
it possible to reduce the calculations of such an integral to calculations of some other integral
with respect to the Wiener measure, and this integral is considered on the space of continuous
trajectories.

The relationship between the integral over the space E and the integral over the space of
continuous trajectories was first found by Belokurov and Shavgulidze [1], but the integral over
the space E was considered not in the sense of analytic continuation.

We now recall the definition of the space E introduced in [2]:
Definition 1. E = ∪∞

n=0Xn, where Xn is the space of functions x(t) of the form x(t) =∑n
j=1

1
t−t∗j

+ γ(t) where the function γ is Holder on [0, 1] with coefficient θ ∈ (0; 1
2
) and γ(0) =

n∑
i=1

1
t∗i

and γ(t∗k) = −
∑
i ̸=k

1
t∗k−t

∗
i

for 1 ≤ k ≤ n.

Definition 2. Consider the functional f(x) = h(
1∫
0

(
t2∫
0

x(t1)dt1)φ(t2)dt2) where φ - is a

complex-valued continuously differentiable function and h analytic in the whole complex plane
function is either of order at most 1 and of a finite type or is of order strictly less than 1. It
was proved in [3] that this functional exists on functions of space E. Define G as the space of
linear combinations of finite products of such functionals.

We now use the definition of the Feynman integral in terms of analytic continuation from
the monographs by Smolyanov and Shavgulidze [4].

Theorem 1. Let f ∈ G. The functional integral

I(α) =

∫
E

f(x)e
− 1

2
α2

1∫
0

(x′(t))2dt−
1∫
0

x4(t)dt+ 1
3
x3(1)

dx

∫
E

e
− 1

2
α2

1∫
0

(x′(t))2dt−
∫ 1
0 x

4(t)dt+ 1
3
x3(1)

dx

)

has an analytic continuation in the parameter α to the domain

{α|0 ≤ argα ≤ π

4
,
1

2
≤ |α| ≤ 2}).

Acknowledgments. Author are thankful to E.T. Shavgulidze and O.G. Smolyanov.
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Averaging of random groups
associated with random nonlinear differential equation

A. Malikov 54

In this work, we study groups of transformations associated with nonlinear first-order partial
differential equation

∂u

∂t
= γ

∂u

∂x
+ u2. (1)

Here γ is random variable. Expected value of random group Uγ(t), t ∈ R, associated with
differential equation (1), is described. Low of large numbers for composition independent
random group Uγ is obtained.
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Semigroup methods in regularization of ill-posed stochastic problems
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Introduction. The conference report is devoted to regularization of ill-posed stochastic
Cauchy problems in Hilbert spaces:

du(t) = Au(t)dt+BdW (t), t ≥ 0, u(0) = ξ, (19)

where the operator A, in general, is the generator of an R-semigroup in Hilbert space H, in
particular, with −A generating a strongly continuous semigroup. The linear operator B acts
from the space H, where the process W = {W (t), t ≥ 0} is defined in the form of series with
respect to independent one dimensional Brownian motions, into the space H.

The need for regularization is connected with the fact that the operator A is not supposed
to generate a strongly continuous semigroup and with the divergence of the series defining the
infinite-dimensional Wiener process W .

We consider regularization of the problem (19) with the operator A, which is the generator of
anR-semigroup in a Hilbert spaceH. The condition for A to be the generator of anR-semigroup
in a Banach space means that the solution operators of the corresponding homogeneous Cauchy
problem:

u′(t) = Au(t), t > 0, u(0) = ξ, (20)

are generally unbounded in the space and defined only on some subset from the domain D(A),
but there is a family of bounded operators called a regularized semigroup or R-semigroup. This
family gives a solution to some well-posed problem related to the homogeneous problem, but
is not a semigroup in general.

The regularization of ill-posed stochastic Cauchy problems, as in the case of inhomogeneous
deterministic problems, is closely related to the regularization of the corresponding homoge-
neous Cauchy problems.

The conference report consists of four sections.
Section 1 is devoted to the regularization of ill-posed homogeneous problems (20) with

sectorial and half-strip operators A such that −A generates a strongly continuous semigroup.
In continuation of earlier papers (see, e.g. [1], [2]) two types of regularizing operators Rα,t are
considered, that give fundamentally different error estimates of the exact solution to (20) from
the solution to a regularized problem with initial data given with an error: ∥ξ − ξδ∥ ≤ δ.

In section 2 a new approach to constructing regularizing operators Rα,t in terms of Rα-
semigroups is introduced. It is shown the connection between regularizing operators Rα,t and
Rα-semigroups depending on the regularization parameter α. Nevertheless, the construction of
such Rα-semigroups in the general case is not an easy problem.

In section 3 the Cauchy problem (20) with differential operators A = A
(
i ∂
∂x

)
is considered.

Depending on whether A belongs to different classes in the Gelfand–Shilov classification, Rα-
semigroups {Sα(t), t ≥ 0} with the generator A and matching regularizing operators Rα,t are
constructed.

Section 4 is devoted to correctness of infinite-dimensional stochastic problems and regu-
larization of ill-posed stochastic problems.
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Finitely-additive measures invariant to the action of the group of shifts on a separable
infinite-dimensional real Hilbert space are considered (see [1]). A considered invariant measure
is locally finite, σ-finite, but it is not countably additive. The analog of ergodic decomposition
of invariant finite-additive measure with respect to the group of shifts are obtained. The
set of different invariant with respect to a group measures is parametrized by the obtained
decomposition. A ring-ergodic component of this decomposition is used to obtain the irreducible
representation of a group.
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Introduction. In this work, some weighted Chebyshev type inequalities are obtained by
using a more general fractional integral operator, than the Riemann-Liouvile one.

Let 0 ≤ a < b <∞, f and g be two integrable functions on [a, b] and

T (f, g) :=

∫ b

a

f(t)g(t)dt− 1

(b− a)

(∫ b

a

f(x) dx

)(∫ b

a

g(x)dx

)
. (1)

The Chebyshev functional (1) has many applications in numerical quadrature, transform
theory, probability, study of existence of solutions of differential equations and in statistical
problems.

In the following we give some basic definitions.
Definition 1. For 1 ≤ p < ∞ we denote by Lp := Lp(0,∞) the set of all Lebesgue

measurable functions f such that

∥f∥p =
(∫ ∞

0

|f(x)|pdx
) 1

p

<∞.

Definition 2. The Riemann-Liouville fractional integral operators of order α ≥ 0 of function
f(x) ∈ L1[a, b],−∞ < a < b < +∞ are defined by

Jαa+f(x) =
1

Γ(α)

∫ x

a

(x− t)α−1f(t)dt, x > a, (2)

Jαb−f(x) =
1

Γ(α)

∫ b

x

(t− x)α−1f(t)dt, x < b. (3)

The following definition was introduced in [3].
Definition 3. Let α > 0, β ≥ 1, 1 ≤ p <∞ and the integral operator Kα,β

u,v of the form

Kα,β
u,v f(x) =

v(x)

Γ(α)

∫ x

0

(x− t)α−1
[
ln
(x
t

)]β−1

f(t)u(t)dt, (4)

defined from Lp to Lp space,with locally integrable non-negative weight functions u and
v on (0,∞).

Remark 1. If v(x) = u(x) = 1, β = 1, the operator Kα,1
1,1 coincides with the classical

Riemann-Liouville fractional integral operator.
The following theorem was proved in [2].
Theorem 1. Let f and g be two synchronous functions on (0,∞). Then for all t > 0, α > 0,

Jα(fg)(t) ≥ Γ(α + 1)

tα
Jαf(t)Jαg(t). (5)

The inequality (5) is reversed if the functions are asynchronous on (0,∞).
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The following theorem was proved in [1].
Theorem 2. Let {fi}1≤i≤n be n positive increasing functions on (0,∞) then for all

x > 0, α > 0,

Jα

(
i=n∏
i=1

fi

)
(x) ≥ (Jα(1)(x))(1−n)

i=n∏
i=1

Jαfi(x). (6)

To simplify we denote by K := Kα,β
u,v , and k(x, t) := (x − t)α−1 lnβ−1

(x
t

)
̸= 0, thus the

integral operator in the inequality (4) takes the following form

Kf(x) =
v(x)

Γ(α)

∫ x

0

k(x, t) f(t)u(t)dt, x > 0. (7)

Theorem 3. Let f, g be two synchronous functions on (0,∞), u and v locally integrable
non-negative weight functions.Then

K(fg)(x) ≥ (K(1))−1 Kf(x)Kg(x), (8)

where K(1)(x) =
v(x)

Γ(α)

∫ x
0
k(x, t)u(t) dt.

The inequality (8) is reversed if the functions are asynchronous on (0,∞).

Remark 2. By applying Theorem 3, for v(x) = u(x) = 1, β = 1, we obtain Theorem 1.

Theorem 4. Let {fi}1≤i≤n be n positive increasing functions on [0,∞[ u and v locally
integrable non-negative weight functions, then for all x > 0

K

(
i=n∏
i=1

fi

)
(x) ≥ (K(1)(x))(1−n)

i=n∏
i=1

Kfi(x). (9)

Remark 3. By applying Theorem 4, for v(x) = u(x) = 1, β = 1,, we obtain Theorem 2.
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Introduction.
Consider the following equations:
– the Barenblatt–Zheltov–Kochina equation [1] (λ − ∆)ut = α∆u, which is a model of

dynamics of a fluid filtering in a fractured-porous environment;
– the Dzektser equation [2] (1 − κ∆)φt = α∆φ − β∆2φ, which is a model of flow of a

viscous-elastic incompressible zero-order Kelvin–Voigt fluid in the first approximation;
– the Ginzburg – Landau equation [3] (λ−∆)ut = α∆u+ id∆2u from the phenomenological

theory of superconductivity.
In the functional spaces U, F chosen by us, this equations are reduced to the linear equation

of Sobolev type
Lu̇ =Mu

with the irreversible operator L.
Earlier in school on Sobolev type equations the Cauchy problem and the Showalter–Sidorov

problem
u(0) = u0, P (u(0)− u0) = 0

for abstract equations were considered.
We propose a transition of linear equation of Sobolev type to the stochastic Sobolev type

equations
L

◦
η=Mη

with the condition
η(0) = η0, P (η(0)− η0) = 0

in spaces of Wiener stochastic processes in the case of an abstract (L, p)-bounded operator M ,
(L, p)-sectorial operator M and (L, p)-radial operator M , respectively. Since Wiener processes
are continuous, but non-differentiable in the usual sense at each point, we use the Nelson–
Gliklikh derivative. In this article, we study numerical solutions to all three equations (the
Barenblatt – Zheltov – Kochina equation, the Dzektser equation and the Ginzburg – Landau
equation in spaces of differential forms defined on a torus.
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A new approach for evaluating convergence rate for general linear and nonlinear Markov
chains (MC) will be presented, on the base on the recently developed spectral radius technique
for linear MC and on the idea of small nonlinear perturbations for nonlinear MC, [2]–[6].

For linear MC this approach uses a so called markovian coupling which provides naturally
a certain sub-stochastic matrix or operator, say, V , and the rate of convergence under investi-
gation is determined by its spectral radius r(V ). This value is in all cases no greater than the
“supremum norm” ∥V ∥, which norm coincides with the so called Markov – Dobrushin ergodic
coefficient. The latter coefficient was introduced by Markov for finite matrices in 1906, then it
was used by Kolmogorov in 1938, and later by Dobrushin in 1956 in their famous papers; in
the literature it is often called Dobrushin’s ergodic coefficient, although, in the opinion of the
author the name of Markov as the founder of this characteristic is a must. Since the spectral
radius is always no greater and often is strictly less than the norm of the operator, the new
bound is usually better than the one due to Markov and Kolmogorov: see examples in [5].

To evaluate the rate of convergence for nonlinear MC, a new important additional charac-
teristic was proposed in [1]. It was later extended in [3], and eventually a way of using it for
nonlinear MC in a combination with the spectral radius approach via small perturbations from
linear ones was offered in [6]. The structure of the operator V will be explained in the talk.

Acknowledgments. The work is supported by the Theoretical Physics and Mathematics
Advancement Foundation “BASIS”. The talk is based on joint papers with O.A. Butkovsky61,
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6. Related topics
Clark measures and composition operators in several variables
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Introduction. Let Bn denote the open unit ball of Cn, n ≥ 1, and let ∂Bn denote the unit
sphere. We also use symbols D and T for the unit disk B1 and the unit circle ∂B1, respectively.

Given k ∈ N and nj ∈ N, j = 1, 2, . . . , k, let

D = D[n1, n2, . . . , nk] = Bn1 ×Bn2 · · · ×Bnk
⊂ Cn1+n2+···+nk .

Model examples of D are Bn and the polydisk Dn. Let C(z, ζ) = CD(z, ζ) denote the Cauchy
kernel for D. Let ∂D denote the distinguished boundary ∂Bn1 × ∂Bn2 · · · × ∂Bnk

of D. Then

CD(z, ζ) =
k∏
j=1

1

(1− ⟨zj, ζj⟩)nj
, z = (z1, z2, . . . , zk) ∈ D, ζ = (ζ1, ζ2, . . . , ζk) ∈ ∂D,

where zj = (zj,1, zj,2, . . . , zj,nj
) ∈ Bnj

and ζj = (ζj,1, ζj,2, . . . , ζj,nj
) ∈ ∂Bnj

. The corresponding
Poisson type kernel is given by the formula

P (z, ζ) =
C(z, ζ)C(ζ, z)

C(z, z)
, z ∈ D, ζ ∈ ∂D.

Clark measures. Let M(∂D) denote the space of complex Borel measures on ∂D. Given
an α ∈ T and a holomorphic function φ : D → D, the quotient

1− |φ(z)|2

|α− φ(z)|2
= Re

(
α + φ(z)

α− φ(z)

)
, z ∈ D,

is positive and pluriharmonic. Therefore, there exists a unique positive measure σα = σα[φ] ∈
M(∂D) such that

P [σα](z) = Re

(
α + φ(z)

α− φ(z)

)
, z ∈ D.

After the seminal paper of Clark [3], various properties and applications of the measures σα
on the unit circle T have been obtained; see [1] for further details and references in several
variables.

Let Σ denote the normalized Lebesgue measure on ∂D. Specific properties of Clark measures
are illustrated by the following theorem on disintegration of Lebesgue measure.

Theorem 1. Let φ : D → D be a holomorphic function and let σα = σα[φ], α ∈ T. Then∫
T

∫
∂D
f dσα dm1(α) =

∫
∂D
f dΣ

for all f ∈ C(∂D).
64St. Petersburg Department of Steklov Mathematical Institute of Russian Academy of Sciences, Russia,
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Essential norms of composition operators. Let Hol(D) denote the space of holomor-
phic functions in D. For 0 < p < ∞, the classical Hardy space Hp = Hp(D) consists of those
f ∈ Hol(D) for which

∥f∥pHp = sup
0<r<1

∫
∂D

|f(rζ)|p dΣ(ζ) <∞.

Each holomorphic function φ : D → D generates the composition operator Cφ : Hol(D) →
Hol(D) by the following formula:

(Cφf)(z) = f(φ(z)), z ∈ D.

It is well known that Cφ maps H2(D) into H2(D). So, a natural problem is to characterize the
compact operators Cφ : H2(D) → H2(D). A more general problem is to compute or estimate
the essential norm of the composition operator under consideration. For the unit disk D, a
solution to this problem in terms of the Nevanlinna counting function was given in the seminal
paper of Shapiro [4]. A solution in terms of the family σα[φ], α ∈ T, was later obtained by
Cima and Matheson [2]. Extending the theorem of Cima and Matheson to several variables,
we prove the following result:

Theorem 2. Let φ : D → D be a holomorphic function. Then the essential norm of the
composition operator Cφ : H2(D) → H2(D) is equal to the following quantity:√

sup{∥σsα∥ : α ∈ T},

where σsα denotes the singular part of the Clark measure σα = σα[φ].
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Introduction. Multicomponent gas mixtures are widespread in nature and industry.
Therefore, dynamics of these mixtures is of great theoretical and applied interest. The com-
pressible multicomponent gas mixture dynamics is described by various complicated systems
of equations and under different assumptions, for example, in [1]. For considered models, the
fulfillment of the entropy balance equation with non-negative entropy production plays the key
role in both their physical and mathematical aspects. This property confirms physical correct-
ness of the derived equations and allows one to prove basic a priori estimates of solutions.

Numerical simulation of the gas dynamics is performed by research teams around the world,
and a large number of numerical methods was proposed during last decades, for example, in
[2]. Methods based on preliminary regularizations of these equations include quasi-gasdynamic
(QGD) and quasi-hydrodynamic (QHD) regularizations which are presented, in particular, in
[3]. The QGD and QHD equations for the general (multi-velocity and multi-temperature) as
well as one-velocity and one temperature gas mixture dynamics were developed and thoroughly
studied, and the validity of the entropy balance equations with non-negative entropy production
for these systems was proved, see [3-6].

In this report, one-dimensional regularized systems of equations for the general and one-
velocity and one-temperature compressible multicomponent inert gas mixture dynamics are
considered. Two types of the regularization are studied, and the entropy balance equation
is obtained in both cases. The discretization from [7] is generalized, and new nonstandard
symmetric three-point spatial discretizations are performed. The suggested discretizations are
conservative in mass, momentum, and total energy. Semi-discrete balance equations for the
mass, kinetic and internal energies of the mixture are derived as well. The discretizations also
satisfy semi-discrete counterparts of the entropy balance equations, and the property of non-
negativity of the entropy-production is also proven. The basic discretization in the one-velocity
and one-temperature case is constructed by aggregation of the discretization in the case of
general mixture, which is a new approach. In addition, an adequate discretization is performed
for the terms describing the diffusion fluxes between the mixture components to ensure the
non-negative entropy production. The results are obtained together with A.A. Zlotnik and are
published in [8].
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Introduction. In the article [1], in order to describe heat and diffusion processes, a new
fourth-order partial differential equation was introduced

α1(∂t − κ2∆)u(t,x) + α2(∂t − κ2∆)2u(t,x) = f(t,x), (1)

where x = (x1, x2, . . . , xn), α1 and α2 are some real parameters, κ > 0 is a physical constant
characteristic of the medium, and ∆ is the Laplace operator. Also, in the paper [1], the
solution of the Cauchy problem for Eq. (1) was formally constructed in the one-dimensional
case. However, in the article [1], the most important thing about the Cauchy problem for
equation (1) is not presented: the uniqueness class and the correctness class.

Main result. The uniqueness class for the Cauchy problem for Eq. (1) consists of functions
g which satisfy the inequality

g(x) ⩽ C exp
(
b|x|2

)
. (2)

The correctness class for the Cauchy problem for Eq. (1) is the is the class of locally inte-
grable functions g, which satisfy the inequality (2).

Thus, Eq. (1) does not improve the uniqueness class and correctness class of the heat
equation [3].
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Abstract. The present paper discusses a method for finding self-consistent external influ-
ences on a nonlinear oscillator that lead to the phenomenon of resonance as in the linear case.
It is shown that for bounded nonlinear systems it is possible to find such a self-consistent exter-
nal force. To illustrate the search for self-consistent external influences, the simplest nonlinear
systems are selected.

Introduction. Resonant phenomena in linear oscillatory systems are well studied and
described in all books on general physics and oscillation theory. If the external force fre-
quency coincides with one of the partial natural frequencies of the linear system, the oscillation
amplitude in the absence of attenuation increases according to the linear law and can reach
significant values, thus, leading to the structure destruction. In the case of nonlinear systems,
the monochromatic effect does not lead to a significant increase in the oscillation amplitude,
since their frequency depends on the amplitude and, consequently, the equality of the frequen-
cies of the external force and natural oscillations is violated. This problem was encountered
during the construction of the first cyclotrons [1], [2]. As a result, the resonance curve becomes
limited and asymmetric with respect to the linear oscillation frequency. This process in weakly
nonlinear systems is also well described in literature; see, for example, [3], [4], [5], [6].

One of the ways to overcome the movement of the natural frequency of a nonlinear system
from resonance is to control the external force by adjusting its frequency to the local natural
frequency. Such a mechanism is called autoresonance, it has become widespread in discrete [7]
and distributed systems [8], [9].

The purpose of this study is to search for self-consistent external influences that make it
possible to swing oscillations in nonlinear systems. Here we will limit ourselves to the simplest
nonlinear oscillator models and show that it is possible to select limited external influences that
lead to the resonant phenomena similar to those existing in the linear system.

Self-consistent source in a bounded nonlinear oscillator. Let us consider the follow-
ing bounded nonlinear system which are described by the equation:

d2u

dt2
+ u+ F (u) = 0 (1)

where F (u) is some continuous nonlinear function. We will consider the nonlinearity
bounded by |F (u)| < F0, F0 ∈ R, F (0) = 0 and F (u) → µu2 for u → 0, µ ∈ R, for the
nonlinearity to be infinitely small of a higher order than u, in order for a linear resonance to
be obtained in this neighborhood with a sinusoidal effect with a unit frequency.

Then, instead of solving this equation, we can assume that we will be able to obtain a
resonant solution, as in the linear case, due to an some external force f(t).

d2u

dt2
+ u+ F (u) = 2 cos t+ f(t) (2)

68Institute of Applied Physics, Nizhny Novgorod, Russia. National Research University-Higher School of
Economics, Moscow, Russia. Email: pelinovsky@appl.sci-nnov.ru

69Institute of Applied Physics, Nizhny Novgorod, Russia. National Research University-Higher School of
Economics, Nizhny Novgorod, Russia. Email: melnicovioann@gmail.com

83



International Online Conference “One-Parameter Semigroups of Operators 2023”

Assuming that the solution of this equation is u(t) = t sin t, we can find out expression for the
function f(t):

f(t) = F (t sin t)

The resulting external force is continuous and limited, but not monochromatic, as in the linear
case, but with a wide spectrum.

Examples of finding a self-consistent source. As an illustration of this approach, we
chose a system with sinusoidal nonlinearity (3), as well as with saturation-type nonlinearity
(4).

d2u

dt2
+ u+ a sin2 bu = 0 (3)

The phase portrait of system (3) consists of a finite number of alternating centers and saddles,
the number of which depends on the parameters of this system. In this case, the external effect
will look like this

f(t) = a sin2(bt sin t) (5)

It is shown in [10] that the amount of energy to maintain this system in a state of resonance
increases linearly over time, and the external force becomes more and more high-frequency.

Along with sinusoidal nonlinearity, we also analyzed an example of saturation type non-
linearity. The saturation nonlinearity systems are very common in technical applications [11],
[12].

d2u

dt2
+ u+

au2

1 + b2u2
= 0 (4)

The phase portrait in this case has only 2 possible positions - it is only the center or 2 centers
and the saddle. And in this case external force will be

f(t) = a
t2 sin2 t

1 + b2t2 sin2 t
(6)

We have numerically shown that with a small deviation of the parameters of the external force
from the parameters of the original system, it will still cause resonance. It is shown that as the
amplitude of the nonlinear saturation function increases, the system becomes more sensitive to
changes in the amplitude of a self-consistent external force.

In our opinion, the search and study of resonance in nonlinear isochronous systems, which are
not rare or exceptional examples of nonlinear systems, is an interesting subject for subsequent
research.
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Tensor invariants (differential forms) for homogeneous dynamical systems on tangent bun-
dles of smooth finite-dimensional manifolds are presented. The connection between the presence
of these invariants and the full set of first integrals necessary for the integration of geodesic,
potential, and dissipative systems is shown. The force fields introduced into the considered
systems make them dissipative with dissipation of different signs and generalize previously
considered force fields.

It is well known [1, 2, 3] that a system of differential equations can be completely integrated
when it has a sufficient number of not only first integrals (scalar invariants) but also tensor
invariants. For example, the order of the considered system can be reduced if there is an
invariant form of the phase volume. For conservative systems, this fact is natural. However, for
systems having attracting or repelling limit sets, not only some of the first integrals, but also
the coefficients of the invariant differential forms involved have to consist of, generally speaking,
transcendental (in the sense of complex analysis) functions [4, 5, 6].

For example, the problem of a n-dimensional pendulum on a generalized spherical hinge
placed in nonconservative force field leads to a system on the tangent bundle of the (n − 1)-
dimensional sphere with a special metric on it induced by an additional symmetry group.
Dynamical systems describing the motion of such a pendulum have the various dissipation, and
the complete list of first integrals consists of transcendental functions expressed in terms of a
finite combination of elementary functions. There are also problems concerning the motion of
a point over n-dimensional surfaces of revolution, the Lobachevsky spaces, etc. The results
obtained are especially important in the context of a nonconservative force field present in the
system.

In this activity, we present tensor invariants for homogeneous dynamical systems on tangent
bundles of smooth finite-dimensional manifolds. The relation between the existence of these
invariants and the existence of a complete set of first integrals necessary for the integration
of geodesic, potential, and dissipative systems is shown. The force fields introduced into the
considered systems make them dissipative with dissipation of different signs and generalize
previously considered force fields.
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The concept of soliton gas, soliton or integrable turbulence appeared shortly after the dis-
covery of outstanding properties of solitons – isolated waves, maintained by a stable balance
between the counteracting effects of nonlinearity and dispersion. They exhibit an exceptional
stability which becomes apparent through elastic interactions with other solitons and quasilinear
waves. The existence of solitons originates from the fact of integrability of a series of nonlinear
equations, such as the Korteweg-de Vries equation or the Nonlinear Schrödinger equation, by
the Inverse Scattering Transform. From this perspective, solitons correspond to waves of the
discrete spectrum of the associated scattering problem, which do not disperse and represent the
large-time asymptotic solution of the Cauchy problem for localized initial conditions. Solitons
exist in various fields of physics: hydrodynamics, plasma and optics, and play a particular
role in the dynamics of nonlinear waves. They are deeply intertwined with the problem of the
emergence of rogue waves, represented by extreme deviations from the average wave amplitude.

For the description of the soliton gas dynamics kinetic equations were derived [1,2]. They
characterize the transport of the soliton spectral density, but due to the violation of the wave
linear superposition principle, do not provide information about the wave solution itself (which
can be water surface displacement, intensity of electromagnetic fields, etc.). In particular,
the questions about the probability distribution for wave amplitudes or about the values of
the wave field statistical moments remain unanswered. Multisoliton solutions, which can be
formally written in a closed form using the Inverse Scattering Transform or related methods
for integrable equations, are very cumbersome, what makes their analytical and even numerical
analysis difficult. The direct numerical simulation of evolution equations is commonly used to
study the soliton gas evolution, which also becomes complicated in the case of a dense gas (i.e.
when many solitons interact simultaneously) [3].

The focus of this study is made on the dynamics of soliton interactions governed by the
classic Korteweg – de Vries (KdV) equation, which has the standard dimensionless form

ut + 6uux + uxxx = 0, (21)

where the real functions u(x, t) describes the wave field, the variable x ∈ (−∞,+∞) serves as
a space coordinate, t ∈ (−∞,+∞) is the time. Its exact N -soliton solution uN(x, t) can be
obtained via consecutive Darboux transformations, which allow a compact representation

uN(x, t) = 2
∂2

∂x2
lnWN(Ψ1,Ψ2, ...ΨN). (22)

Here W (·) denotes the Wronskian for N “seed” functions ψ2s−1 = cosh θ2s−1, ψ2s = sinh θ2s for
integer s ≥ 1, where the phases are θj = kj(x − Vjt − xj), j = 1, 2, ..., N . The parameters
kj specify the soliton amplitudes Aj = 2k2j and velocities Vj = 4k2j , while the constants xj
are responsible for the respective positions of solitons at a given time. The solution (22) is
always positive, uN(x, t) > 0. The use of an ultra-high-precision procedure made it possible to
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compute the exact N -soliton solutions (22) when N is large [4] and to calculate their statistical
moments µn(t) =

∫ +∞
−∞ unN(x, t)dx, n ∈ N, with high accuracy.

In this work we present a general idea that dense ensembles of KdV-type solitons of the
same sign can be considered as strongly-nonlinear / small-dispersion wave states, what allows to
express the statistical moments in terms of the spectral parameters of the associated scattering
problem. A particular case when dense soliton states can occur is synchronous multisoliton
collisions (see Fig. 1), for which the reference locations of all the solitons at t = 0 coincide
with the coordinate origin, xj = 0, j = 1, ..., N . This property can be formalized through
the following symmetry condition, uN(−x,−t) = uN(x, t). The soliton amplitudes are set
decaying exponentially, so that they form a geometric series with the ratio d > 1, Aj = 1/dj−1,
j = 1, ..., N .
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Figure 1: Interaction of N = 20 KdV solitons with d = 1.2

Time dependences of statistical moments are investigated for many-soliton solutions. It
is shown that during the interaction of solitons of the same sign the wave field is effectively
smoothed out. When d is sufficiently close to 1, and N is large, the statistical moments remain
approximately constant within long time spans, when the solitons are located most densely.
This quasi-stationary state is characterized by greatly reduced statistical moments and by the
density of solitons close to some critical value. This state may be treated as the small-dispersion
limit, what makes it possible to analytically estimate all high-order statistical moments. While
the focus of the study is made on the Korteweg–de Vries equation and its modified version,
a much broader applicability of the results to equations that support soliton-type solutions is
discussed.
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Introduction. In the 1963, three papers [1]-[3], where a simple model of a metal was
proposed that has become a fundamental model in the theory of strongly correlated elec-
tron systems, appeared almost simultaneously and independently. In that model, a single
nondegenerate electron band with a local Coulomb interaction is considered. The model
Hamiltonian contains only two parameters: the parameter B of electron hopping from a lat-
tice site to a neighboring site and the parameter U of the on-site Coulomb repulsion of two
electrons. In the secondary quantization representation, the Hamiltonian can be written as
H = B

∑
m,γ a

+
m,γam,γ + U

∑
m a

+
m,↑am,↑a

+
m,↓am,↓, where a+m,γ and am,γ denote Fermi operators

of creation and annihilation of an electron with spin γ on a site m and the summation over τ
means summation over the nearest neighbors on the lattice. The model proposed in [1]-[3] was
called the Hubbard model after John Hubbard, who made a fundamental contribution to study-
ing the statistical mechanics of that system. The Hubbard model is currently one of the most
extensively studied multielectron models of metals [4]. The spectrum and wave functions of
the system of two electrons in a crystal described by the Hubbard Hamiltonian were studied in
[4]. The spectrum and wave functions of the system of three electrons in a crystal described by
the Hubbard Hamiltonian were studied in [5]. In the three-electron systems are exists quartet
state, and two type doublet states.

Hamiltonian of the system. We consider the energy operator of six-electron systems in
the Hubbard model and describe the structure of the essential spectra and discrete spectrum
of the system for third triplet state in the lattice. The Hamiltonian of the chosen model has
the form H = A

∑
m,γ a

+
m,γam,γ + B

∑
m,τ,γ a

+
m,γam+τ,γ + U

∑
m a

+
m,↑am,↑a

+
m,↓am,↓. Here A is the

electron energy at a lattice site, B is the transfer integral between neighboring sites (we assume
that B > 0 for convenience), τ = ±ej, j = 1, 2, ..., ν, where ej are unit mutually orthogonal
vectors, which means that summation is taken over the nearest neighbors, U is the parameter
of the on-site Coulomb interaction of two electrons, γ is the spin index, γ =↑ or γ =↓, ↑ and
↓ denote the spin values 1

2
and −1

2
, and a+m,γ and am,γ are the respective electron creation and

annihilation operators at a site m ∈ Zν .
In the six electron systems has a octet state, and quintet states, and triplet states, and singlet

states. The energy of the system depends on its total spin S. Hamiltonian H commutes with all
components of the total spin operator S = (S+, S−, Sz), and the structure of eigenfunctions and
eigenvalues of the system therefore depends on S. The Hamiltonian H acts in the antisymmetric
Fo’ck space Has.

Six-electron third triplet state in the Hubbard model.
Let φ0 be the vacuum vector in the space Has. The third triplet state corresponds to the

free motion of six electrons over the lattice and their interactions with the basic functions
3t1p,q,r,k,l,n∈Zν = a+p,↑a

+
q,↑a

+
r,↑a

+
k,↓a

+
l,↓a

+
n,↑φ0. The subspace 3H1

t , corresponding to the third triplet
state is the set of all vectors of the form 3ψ1

t =
∑

p,q,r,k,l,n∈Zν f(p, q, r, k, l, n)3t1p,q,r,k,l,n∈Zν , f ∈ las2 ,

where las2 is the subspace of antisymmetric functions in the space l2((Zν)6). We denote by 3H1
t

the restriction of operator H to the subspace 3H1
t .
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Theorem 1. (coordinate representation of the actions of operator 3H1
t ) The subspace 3H1

t

is invariant under the operator H, and the restriction 3H1
t of operator H to the subspace 3H1

t

is a bounded self-adjoint operator. It generates a bounded self-adjoint operator 3H t
1 acting in

the space las2 as

3H
1

t
3ψ1

t = 6Af(p, q, r, k, l, n)+B
∑
τ

[f(p+τ, q, r, k, l, n)+f(p, q+τ, r, k, l, n)+f(p, q, r+τ, k, l, n)+

+f(p, q, r, k+τ, l, n)+f(p, q, r, k, l+τ, n)+f(p, q, r, k, l, n+τ)]+U [δp,k+δq,k+δr,k+δk,n+δp,l+δq,l+

+δr,l + δl,n]f(p, q, r, k, l, n). The operator 3H1
t acts on a vector 3ψ1

t ∈3 H1
t as

3H1
t
3ψ1

t =
∑

p,q,r,k,l,n∈Zν

(3H
1

tf)(p, q, r, k, l, n)
3t1p,q,r,k,l,n∈Zν . (4)

Lemma 1.The spectra of operator’s 3H1
t and 3H

1

t coincide.
We call the operator 3H1

t the six-electron third triplet state operator in the Hubbard model.
Let F : l2((Z

ν)6) → L2((T
ν)6) ≡ 3H̃

1

t be the Fourier transform, where T ν is the ν−
dimensional torus endowed with the normalized Lebesgue measure dλ, i.e. λ(T ν) = 1.

We set 3H̃1
t = F 3H

1

tF−1. In the quasimomentum representation, the operator 3H
1

t acts in
the Hilbert space Las2 ((T ν)6), where Las2 is the subspace of antisymmetric functions in L2((T

ν)6).
Theorem 2. (quasimomentum representation of the actions of operator 3H1

t ) The Fourier
transform of operator 3H

1

t is an operator 3H̃1
t = F 3H

1

tF−1 acting in the space Las2 ((T ν)6) be
the formula

3H̃1
t
3ψ1

t = h(λ, µ, γ, θ, η, χ)f(λ, µ, γ, θ, η, χ) + U [

∫
T ν

f(s, µ, γ, λ+ θ − s, η, χ)ds+

+

∫
T ν

f(λ, s, γ, µ+θ−s, η, χ)ds+
∫
T ν

f(λ, µ, s, γ+θ−s, η, χ)ds+
∫
T ν

f(λ, µ, γ, s, η, θ+χ−s)ds+

+

∫
T ν

f(s, µ, γ, θ, λ+η−s, χ)ds+
∫
T ν

f(λ, s, γ, θ, µ+η−s, χ)ds+
∫
T ν

f(λ, µ, s, θ, γ+η−s, χ)ds+

+
∫
T ν f(λ, µ, γ, θ, s, η+χ−t)ds], where h(λ, µ, γ, θ, η, χ) = 6A+2B

∑ν
i=1[cosλi+cosµi+cosγi+

cosθi + cosηi + cosχi], and Las2 is the subspace of antisymmetric functions in L2((T
ν)6).

Structure of the essential spectrum and discrete spectrum of operator 3H̃1
t .

Using tensor products of Hilbert spaces and tensor products of operators in Hilbert spaces,
and taking into account that the function f(λ, µ, γ, θ, η, χ) is an antisymmetric function, we
can describe the structure of essential spectra and discrete spectrum the operator 3H1

t :
Theorem 3. Let ν = 1 and U < 0. Then the essential spectrum of the operator 3H1

t is consists
of the union of seven segments: σess(3H1

t ) = [a+c+e, b+d+f ]∪[a+c+z3, b+d+z3]∪[a+e+z̃2, b+
f+z̃2]∪[a+z̃2+z3, b+z̃2+z3]∪[c+e+z1, d+f+z1]∪[c+z1+z3, d+z1+z3]∪[e+z1+z̃2, d+z1+z̃2], and
discrete spectrum of the operator 3H1

t is consists of no more then one eigenvalue σdisc(3H1
t ) =

{z1 + z̃2 + z3}, or σdisc(3H1
t ) = ∅, here and hereafter a = 2A − 4B cos Λ1

2
, b = 2A + 4B cos Λ1

2
,

c = −2A − 4B cos Λ2

2
, d = −2A + 4B cos Λ2

2
, e = 2A − 4B cos Λ3

2
, f = 2A + 4B cos Λ3

2
, z1 =

2A − 2
√
U2 + 4B2cos2 Λ1

2
, z̃2 = −2A +

√
9U2 + 16B2cos2 Λ2

2
, z3 = 2A −

√
U2 + 16B2cos2 Λ3

2
,

and Λ1 = λ+ θ, Λ2 = µ+ γ, Λ3 = η + χ.

Theorem 4. Let ν = 1 and U > 0. Then the essential spectrum of the operator 3H1
t is

consists of the union of seven segments: σess(3H1
t ) = [a+ c+ e, b+ d+ f ] ∪ [a+ c+ z̃3, b+ d+

z̃3]∪ [a+e+z2, b+f+z2]∪ [a+z2+ z̃3, b+z2+ z̃3]∪ [c+e+ z̃1, d+f+ z̃1]∪ [c+ z̃1+ z̃3, d+ z̃1+ z̃3]∪
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[e+ z̃1+ z2, d+ z̃1+ z2], and discrete spectrum of the operator 3H1
t is consists of more then one

eigenvalue σdisc(3H1
t ) = {z̃1 + z2 + z̃3}, or σdisc(3H1

t ) = ∅, where z̃1 = 2A+2
√
U2 + 4B2cos2 Λ1

2
,

z2 = −2A−
√

9U2 + 16B2cos2 Λ2

2
, z̃3 = 2A+

√
U2 + 16B2cos2 Λ3

2
.

Theorem 5. Let ν = 3 and U > 0, and Λ1 = λ + θ, Λ2 = µ + γ, Λ3 = η + χ, and
Λ1 = (Λ0

1,Λ
0
1,Λ

0
1), Λ2 = (Λ0

2,Λ
0
2,Λ

0
2), and Λ3 = (Λ0

3,Λ
0
3,Λ

0
3).

a). If U >
12B cos

Λ0
3
2

W
, cos

Λ0
1

2
> 2

3
cos

Λ0
2

2
, and cos

Λ0
1

2
< 2 cos

Λ0
3

2
, or U >

12B cos
Λ0
3
2

W
, cos

Λ0
1

2
<

2
3
cos

Λ0
2

2
, and cos

Λ0
1

2
< 2 cos

Λ0
3

2
, or U >

6B cos
Λ0
1
2

W
, cos

Λ0
3

2
< 1

2
cos

Λ0
1

2
, and cos

Λ0
3

2
< 1

3
cos

Λ0
2

2
, or

cos
Λ0
3

2
> 1

3
cos

Λ0
2

2
, or U >

4B cos
Λ0
2
2

W
, cos

Λ0
3

2
< 1

3
cos

Λ0
2

2
, and cos

Λ0
3

2
> 1

2
cos

Λ0
1

2
, or cos Λ0

3

2
< 1

2
cos

Λ0
1

2
,

then the essential spectrum of the operator 3H1
t is consists of the union of seven segments:

σess(
3H1

t ) = [a+ c+ e, b+d+ f ]∪ [a+ c+ z̃3, b+d+ z̃3]∪ [a+ e+ z2, b+ f + z2]∪ [a+ z2+ z̃3, b+
z2 + z̃3]∪ [c+ e+ z̃1, d+ f + z̃1]∪ [c+ z̃1 + z̃3, d+ z̃1 + z̃3]∪ [e+ z̃1 + z2, d+ z̃1 + z2], and discrete
spectrum of the operator 3H1

t is consists of no more one eigenvalue σdisc(3H1
t ) = {z̃1 + z2 + z̃3},

or σdisc(3H1
t ) = ∅, where a = 2A − 12B cos

Λ0
1

2
, b = 2A + 12B cos

Λ0
1

2
, c = −2A − 12B cos

Λ0
2

2
,

d = −2A + 12B cos
Λ0
2

2
, e = 2A − 12B cos

Λ0
3

2
, f = 2A + 12B cos

Λ0
3

2
, z̃1, z2, z̃3 are the same

concrete numbers and W is the Watson integral.

b). If U > 0,
6B cos

Λ0
1
2

W
< U ≤ 12B cos

Λ0
3
2

W
, cos

Λ0
1

2
> 2

3
cos

Λ0
2

2
, and cos

Λ0
3

2
> 1

2
cos

Λ0
1

2
, or U > 0,

4B cos
Λ0
2
2

W
< U ≤ 12B cos

Λ0
3
2

W
, cos

Λ0
2

2
< cos

Λ0
1

2
, and cosΛ

0
1

2
< cos

Λ0
3

2
, or U > 0,

4B cos
Λ0
2
2

W
< U ≤ 6B cos

Λ0
1
2

W
,

cos
Λ0
3

2
< 1

3
cos

Λ0
2

2
, and cos

Λ0
1

2
> 2

3
cos

Λ0
2

2
, or U > 0,

12B cos
Λ0
3
2

W
< U ≤ 6B cos

Λ0
1
2

W
, cos

Λ0
3

2
> 1

3
cos

Λ0
2

2
,

and cosΛ
0
3

2
> 1

2
cos

Λ0
1

2
, or U > 0,

12B cos
Λ0
3
2

W
< U ≤ 4B cos

Λ0
2
2

W
, cos

Λ0
3

2
> 1

2
cos

Λ0
1

2
, and cosΛ

0
3

2
< 1

3
cos

Λ0
2

2
,

or U > 0,
6B cos

Λ0
1
2

W
< U ≤ 4B cos

Λ0
2
2

W
, cos

Λ0
3

2
< 1

2
cos

Λ0
1

2
, and cos

Λ0
1

2
< 2

3
cos

Λ0
2

2
, then the essential

spectrum of the operator 3H1
t is consists of the union of four segments: σess(3H1

t ) = [a + c +
e, b + d + f ] ∪ [a + e + z2, b + f + z2] ∪ [c + e + z̃1, d + f + z̃1] ∪ [e + z̃1 + z2, d + z̃1 + z2], or
σess(

3H1
t ) = [a+c+e, b+d+f ]∪[a+c+z̃3, b+d+z̃3]∪[c+e+z̃1, d+f+z̃1]∪[c+z̃1+z̃3, d+z̃1+z̃3], or

σess(
3H1

t ) = [a+c+e, b+d+f ]∪[a+c+z̃3, b+d+z̃3]∪[a+e+z2, b+f+z2]∪[a+z2+z̃3, b+z2+z̃3],
and discrete spectrum of the operator 3H1

t is empty set: σdisc(3H1
t ) = ∅.

There is also the case when the essential spectrum of the operator 3H1
t is consists of

the unions of two segments, and the discrete spectrum of the operator 3H1
t is empty set:

σdisc(
3H1

t ) = ∅ , and the case when the essential spectrum of the operator 3H1
t is consists of a

single segment, and the discrete spectrum of the operator 3H1
t is empty set: σdisc(3H1

t ) = ∅.
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Carleman’s famous tangent approximation theorem derived in 1927 states that for every
function f ∈ C(R) and every error function ε, i.e. any positive function ε ∈ C(R), there exists
an entire function g : C → C such that

|f(t)− g(t)| < ε(t)

for all t ∈ R (see, for example, [1], Chap. 4, Sect. 3). Carleman’s theorem has been further
developed and refined in many papers (see bibliography in [1] and [2]). Carleman himself had
already generalized his result by replacing R by more general curves and systems of curves
in the complex plane. Many authors have studied, in connection with Carleman’s theorem,
approximation in combination with interpolation, as well as tangent approximation of smooth
functions together with their derivatives. In addition, approximation with a certain rate of
decrease of the error function was considered. Questions related to tangent and uniform ap-
proximation under restrictions on the growth of the approximating function were also studied.
We also note the multidimensional analog of Carleman’s theorem obtained by S. Sheinberg (see
references in [1]). Carleman’s theorem and its generalizations play an important role in the
study of boundary properties of analytic functions and in the study of the distribution of their
values (see [1], Chap. 4, Sect. 5).

The class of entire functions g : C → C coincides with the set of solutions of the differential
equation (

∂

∂x1
+ i

∂

∂x2

)
g = 0, (x1, x2) ∈ R2.

In this regard, it is of interest to obtain analogues of Carleman’s theorem in which the approx-
imation is made by solutions of other linear partial differential equations in Rn, n ≥ 2, with
constant coefficients. For the solutions of most of these equations, many important and useful
properties of the class of entire functions are not fulfilled (for example, they as a rule do not
form an algebra), which prevents them from obtaining analogues of Carleman’s theorem by
known methods. The simplest example is the class of eigenfunctions of the Laplace operator in
R2, that is, the set of solutions of the equation(

∂2

∂x21
+

∂2

∂x22

)
g + λg = 0, (x1, x2) ∈ R2,

for λ ̸= 0.
Here we study the approximation of continuous functions on rays in Rn by solutions of a

multidimensional convolution equation of the form

g ∗ T = 0, (1)

where T is a given radial distribution with compact support in Rn, n ≥ 2. The theory of
equations (1) originates in the work of the famous Romanian mathematician D. Pompeiu who
considered the case when T is the indicator of a ball in Rn (see, e.g., [3], [4]). Equation (1)

74Donetsk National University, Department of Mathematical Analysis and Differential Equations, Russia,
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as well as its various analogues and generalizations have been intensively studied over the past
fifty years by F. John, J. Delsarte, J.D. Smith, L. Zalcman, C.A. Berenstein, and others (see
the overviews in [3], [4] and monographs [5]–[7] which provide extensive bibliographies). We
note that with an appropriate choice of T they characterize such important classes of functions
as functions with zero spherical (or ball) means, functions with the property of mean values
from the theory of harmonic functions, and also solutions of elliptic differential equations of
the form

p(∆)g = 0,

where ∆ is the Laplace operator in Rn, and p is an arbitrary algebraic polynomial other than
the identical constant.

Everywhere in what follows, Rn is a Euclidean space of dimension n ≥ 2. Denote by
D′(Rn) (respectively, E ′(Rn)) the space of distributions (respectively, distributions with compact
supports) in Rn, D(Rn) is the space of finite infinitely differentiable functions in Rn, E(Rn) =
C∞(Rn).

Let T ∈ E ′(Rn), T ̸= 0. For every f ∈ D′(Rn), the convolution f ∗ T is defined by the
equality

⟨f ∗ T, φ⟩ = ⟨fy, ⟨Tx, φ(x+ y)⟩⟩ , φ ∈ D(Rn),

as a distribution in D′(Rn) (the index at the bottom of the distributions f and T means the
action on the specified variable). A distribution of the class

D′
T (Rn) = {f ∈ D′(Rn) : f ∗ T = 0}

is called mean periodic with respect to T .
Let SO(n) be the rotation group of Rn. A distribution T ∈ E ′(Rn) is called radial if it is

invariant under the group SO(n), i.e.

⟨T, φ(τx)⟩ = ⟨T, φ(x)⟩ for all φ ∈ E(Rn), τ ∈ SO(n).

Denote by E ′
♮(Rn) the set of all radial distributions T ∈ E ′(Rn). The simplest example of

distribution in the class E ′
♮(Rn) is the Dirac delta function δ0 with support at zero, i.e.

⟨δ0, φ⟩ = φ(0), φ ∈ E(Rn).

Let Sn−1 = {x ∈ Rn : |x| = 1}, l ∈ Sn−1, and assume that a ∈ Rn. As usual, the ray in Rn

with vertex a in direction l is the set

La,l = {x = (x1, . . . , xn) ∈ Rn : xj = aj + tlj, t ≥ 0, j = 1, . . . , n}.

Theorem 1. Let T ∈ E ′
♮(Rn) and

T ̸= cδ0, c ∈ C\{0}. (2)

Suppose also that a ∈ Rn, l ∈ Sn−1, and g ∈ C(La,l). Then for every positive function
ε ∈ C(La,l) there exists a function f ∈ (E ∩ D′

T )(Rn) satisfying the conditions
(i) for every x ∈ La,l

|g(x)− f(x)| < ε(x); (3)

(ii) there exists a function w ∈ C∞(R2) such that

f(x) = w
(
(x, l),

√
|x|2 − (x, l)2

)
(4)

for all x ∈ Rn.
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By the arbitrariness of ε ∈ C(La,l), inequality (3) guarantees the tangent approximation of
g on La,l by smooth solutions to (1). Note that (4) means that the approximating function f
is radial in any hyperplane orthogonal to the ray La,l.

Observe that (2) is necessary in Theorem 1. Indeed, if T = cδ0 for some c ∈ C\{0} then
the zero function is the only solution to (1); therefore, the claim of Theorem 1 fails.
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