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Abstract. Chernoff approximations are a flexible and powerful tool of functional analysis, which

can be used, in particular, to find numerically approximate solutions of some differential equations with

variable coefficients. For many classes of equations such approximations have already been constructed

since pioneering papers of Prof. O.G.Somlyanov in 2000, however, the speed of their convergence to the

exact solution has not been properly studied. We select the heat equation (because its exact solutions

are already known) as a simple yet informative model example for the study of the rate of convergence

of Chernoff approximations. Examples illustrating the rate of convergence of Chernoff approximations

to the solution of the Cauchy problem for the heat equation are constructed in the paper. Numerically

we show that for initial conditions that are smooth enough the order of approximation is equal to the

order of Chernoff tangency of the Chernoff function used. We also consider not smooth enough initial

conditions and show how Hölder class of initial condition is related to the rate of convergence. This

method of study in the future can be applied to general second order parabolic equation with variable

coefficients by a slight modification of our Python 3 code.

This arXiv version of the text is a supplementary material for our journal article. Here we include

all the written text from the article and additionally all illustrations (Appendix A) and full text of

the Python 3 code (Appendix B).
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1 Introduction

Chernoff approximations are a flexible and powerful tool of functional analysis [2, 4, 5], which

can be used, in particular, to find numerically approximate solutions of some differential equa-

tions with variable coefficients. See [1, 12] for an introduction to this topic, [14, 15] for exam-

ples, see also Preliminaries section of the paper, and one of the pioneering papers by Professor

O.G.Smolyanov [17]. For given linear evolution equation the method of Chernoff approximation

generates a sequence of functions un(t, x) that converge to the exact solution u(t, x) of the equa-

tion studied. For arbitrary fixed moment of time t functions x 7−→ u(t, x) and x 7−→ un(t, x) are

elements of some Banach space, and Chernoff’s theorem guarantees that ∥u(t, ·)−un(t, ·)∥ → 0

as n → ∞.

To our current knowledge all contributions to a very young “theory of rates of convergence

in Chernoff’s theorem” can be found in [8, 18, 19, 7, 6] and references therein. These papers

provide estimates for the rate of convergence under some conditions but if these conditions are

not satisfied then one can say nothing about the quality of Chernoff approximations. There

are also very few “practical” research papers [9, 16] that measure the speed of convergence in

particular cases obtained via numerical simulations. In our research we continue contributions

to this field of study.

We consider initial value problem for the heat equation{
u′
t(t, x) = u′′

xx(t, x) for t > 0, x ∈ R1

u(0, x) = u0(x) for x ∈ R1
(1)

which is a good model example because its bounded solution u(t, x) is already known and given

by the formula

u(t, x) =

∫
R
Φ(x− y, t)u0(y)dy, where Φ(x, t) = (2

√
πt)−1 exp

(
−x2

4t

)
.

Then we obtain Chernoff approximations un(t, x) to the exact solution u(t, x) for n =

1, 2, . . . , 11 and fixed time t = 1/2, and via numerical simulation and linear regression (ordinary

least squares method) discover that

sup
x∈R

|u(t, x)− un(t, x)| ≈
(
1

n

)β

· const

with a reasonable accuracy (R2 > 0.98). Coefficient β > 0 depends on the smoothness of initial

condition u0 and of the way of constructing the Chernoff approximations.

P.S.Prudnikov in 2020 studied [16] this question in a similar setting, but his approach does

not allow a direct generalization. Meanwhile the simulation method that we use allows to study

not only heat equation, but also equations with variable coefficients. Also we consider more

initial conditions than were studied in [16].
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Now let us provide necessary background on the topic to explain the notion of Chernoff

tangency and Chernoff operator-valued function that are important to understand how we

obtain Chernoff approximations un(t, x).

2 Preliminaries

Let F be a Banach space. Let L (F) be a set of all bounded linear operators in F . Suppose we

have a mapping V : [0,+∞) → L (F), i.e. V (t) is a bounded linear operator V (t):F → F for

each t ≥ 0. The mapping V is called [5] a C0-semigroup, or a strongly continuous one-parameter

semigroup of operators iff it satisfies the following conditions:

1) V (0) is the identity operator I, i.e. ∀φ ∈ F : V (0)φ = φ;

2) V maps the addition of numbers in [0,+∞) into the composition of operators in L (F),

i.e. ∀t ≥ 0,∀s ≥ 0 : V (t + s) = V (t) ◦ V (s), where for each φ ∈ F the notation (A ◦ B)(φ) =

A(B(φ)) = ABφ is used;

3) V is continuous with respect to the strong operator topology in L (F), i.e. ∀φ ∈ F
function t 7−→ V (t)φ is continuous as a mapping [0,+∞) → F .

The definition of a C0-group is obtained by the substitution of [0,+∞) by R in the paragraph

above.

It is known [5] that if (V (t))t≥0 is a C0-semigroup in Banach space F , then the set{
φ ∈ F : ∃ lim

t→+0

V (t)φ− φ

t

}
denote
= Dom(L)

is a dense linear subspace in F . The operator L defined on the domain Dom(L) by the equality

Lφ = lim
t→+0

V (t)φ− φ

t

is called an infinitesimal generator (or just generator to make it shorter) of the C0-semigroup

(V (t))t≥0, and notation V (t) = etL is widely used.

One of the reasons for the study of C0-semigroups is their connection with differential

equations. If Q is a set, then the function u: [0,+∞) × Q → R, u: (t, x) 7−→ u(t, x) of two

variables (t, x) can be considered as a function u: t 7−→ [x 7−→ u(t, x)] of one variable t with

values in the space of functions of the variable x. If u(t, ·) ∈ F then one can define Lu(t, x) =

(Lu(t, ·))(x). If there exists a C0-semigroup (etL)t≥0 then the Cauchy problem for a linear

evolution equation {
u′
t(t, x) = Lu(t, x) for t > 0, x ∈ Q

u(0, x) = u0(x) for x ∈ Q
(2)

has a unique (in sense of F , where u(t, ·) ∈ F for every t ≥ 0) solution

u(t, x) = (etLu0)(x)
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depending on u0 continuously. Compare also different meanings of the solution [5], including

mild solution which solves the corresponding integral equation. Note that if there exists a

strongly continuous group (etL)t∈R then in the Cauchy problem the equation u′
t(t, x) = Lu(t, x)

can be considered not only for t > 0, but for t ∈ R, and the solution is provided by the same

formula u(t, x) = (etLu0)(x).

Definition 1 (Introduced in [11]). Let us say that C is Chernoff-tangent to L iff the

following conditions of Chernoff tangency (CT) hold:

(CT0). Let F be a Banach space, and L (F) be a space of all linear bounded operators

in F . Suppose that we have an operator-valued function C: [0,+∞) → L (F), or, using other

words, we have a family (C(t))t≥0 of linear bounded operators in F . Closed linear operator

L:Dom(L) → F is defined on the linear subspace Dom(L) ⊂ F which is dense in F .

(CT1) Function t 7−→ C(t)f ∈ F is continuous for each f ∈ F .

(CT2) C(0) = I, i.e. C(0)f = f for each f ∈ F .

(CT3) There exists such a dense subspace D ⊂ F that for each f ∈ D there exists a limit

C ′(0)f = lim
t→0

C(t)f − f

t
.

(CT4) The closure of the operator (C ′(0),D) is equal to (L,Dom(L)).

Remark 1. Let us consider one-dimensional example F = L (F) = R. Then g: [0,+∞) →
R is Chernoff-tangent to l ∈ R iff g(t) = 1 + tl + o(t) as t → +0.

Theorem 1 (P.R. Chernoff (1968), see [5, 2]). Let F and L (F) be as above. Suppose

that the operator L:F ⊃ Dom(L) → F is linear and closed, and function C takes values in

L (F). Suppose that these assumptions are fulfilled:

(E) There exists a C0-semigroup (etL)t≥0 with the infenitesimal generator (L,Dom(L)).

(CT) C is Chernoff-tangent to (L,Dom(L)).

(N) There exists such a number ω ∈ R, that ∥C(t)∥ ≤ eωt for all t ≥ 0.

Then for each f ∈ F we have (C(t/n))nf → etLf as n → ∞ with respect to norm in F
uniformly with respect to t ∈ [0, T ] for each T > 0, i.e.

lim
n→∞

sup
t∈[0,T ]

∥∥etLf − (C(t/n))nf
∥∥ = 0.

Remark 2. In the one-dimensional example (F = L (F) = R) the Chernoff theorem says

that etl = limn→∞ g(t/n)n = limn→∞(1 + tl/n+ o(t/n))n, which is a simple fact of calculus.

Definition 2. Let F ,L (F), L be as above. If C is Chernoff-tangent to L and the equation

limn→∞ supt∈[0,T ]

∥∥etLf − (C(t/n))nf
∥∥ = 0 holds, then C is called a Chernoff function for the

operator L, and the (C(t/n))nf is called a Chernoff approximation expression to etLf .

Remark 3. If L is a linear bounded operator in F , then etL =
∑+∞

k=0(tL)
k/k! where the

series converges in the usual operator norm topology in L (F). When L is not bounded (such

as Laplacian and many other differential operators), expressing (etL)t≥0 in terms of L is not

an easy problem that is equivalent to the problem of finding (for each u0 ∈ F) the F -valued
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function U that solves the Cauchy problem U ′(t) = LU(t);U(0) = u0. If one finds this solution,

then etL is obtained for each u0 ∈ F and each t ≥ 0 in the form etLu0 = U(t).

Remark 4. In the definition of the Chernoff tangency the family (C(t))t≥0 usually does

not have a semigroup composition property, i.e. C(t1 + t2) ̸= C(t1)C(t2), while (etL)t≥0 has it:

et1Let2L = e(t1+t2)L. However, each C0-semigroup (etL)t≥0 is Chernoff-tangent to its generator

L and appears to be it’s Chernoff function. When coefficients of the operator L are variable,

usually there is no simple formula for etL due to the remark 3. On the other hand, even in this

case one can find rather simple formula to construct Chernoff function C for the operator L,

because there is no need to worry about the composition property, and then obtain etL in the

form etL = limn→∞ C(t/n)n via the Chernoff theorem.

3 Numerical simulation results

3.1 Problem setting

Definition 3. We say that operator-valued function C is Chernoff-tangent of order k to

operator L iff C is Chernoff-tangent to L in the sense of definition 1 and the following condition

(CT3-k) holds:

There exists such a dense subspace D ⊂ F that for each f ∈ D we have

C(t)f =

(
I + tL+

1

2
t2L2 + . . .+

1

k!
tkLk

)
f + o(tk) as t → 0. (CT3− k)

Remark 5. It is clear that for k = 1 condition (CT3-k) becomes just (CT3). For the semigroup

C(t) = etL condition (CT3-k) holds for all k = 1, 2, 3, . . . So one can expect that the bigger k

is the better rate of convergence C(t/n)nf → etLf as n → ∞ will be, if f belongs to the space

D. This idea was proposed in [10], where two conjectures about the convergence speed were

formulated explicitly, and one of them were recently proved in [7, 6]. For initial conditions that

are good enough and t fixed, Chernoff function with Chernoff tangency of order k by conjecture

should provide ∥u(t, ·) − un(t, ·)∥ = O(1/nk) as n → ∞. However, if f ̸∈ D then nothing is

known on the rate of convergence. In the present paper we are starting to fill this gap for

operator L given by (Lf)(x) = f ′′(x) for all x ∈ R and all bounded, infinitely smooth functions

f :R → R, and k = 1, 2.

Problem setting. In the initial value problem (2) consider Q = R, and Banach space

F = UCb(R) of all bounded, uniformly continuous functions f :R → R endowed with the

uniform norm ∥f∥ = supx∈R |f(x)|. Consider operator L given by (Lf)(x) = f ′′(x) for all

x ∈ R and all f ∈ D = C∞
b (R) of all infinitely smooth functions R → R that are bounded with

all the derivatives. Then (2) reads as (1). Cauchy problem (1) is a constant (one, zero, zero)

coefficients particular case of the Cauchy problem considered in [13], and the corresponding
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Chernoff function was found in [13]. The particular case of this Chernoff function reads as

(G(t)f)(x) =
1

2
f(x) +

1

4
f(x+ 2

√
t) +

1

4
f(x− 2

√
t)

where we write G(t) instead of C(t) in order to show that C(t) is a general abstract Chernoff

function for some operator L, meanwhile G(t) is this particular above-given Chernoff function

for operator d2/dx2. It was proved in [13] that G(t) is first order Chernoff-tangent to d2/dx2.

A.Vedenin (see [18]) proposed another Chernoff function for operator L considered in [13],

and the constant coefficient particular case of this operator is d2/dx2. The particular case of

the Chernoff function obtained by A.Vedenin reads as

(S(t)f)(x) =
2

3
f(x) +

1

6
f(x+

√
6t) +

1

6
f(x−

√
6t),

and it was proved by A.Vedenin that S(t) is second order Chernoff-tangent to d2/dx2.

In the paper we study how supx∈R |u(t, x) − un(t, x)| depends on n while t = 1/2 is fixed

and un(t, x) is given by

un(t, x) = (C(t/n)nu0)(x)

where C ∈ {G,S}, C(t/n) is obtained by substitution of t by t/n in the formula that defines

C(t), and C(t/n)n = C(t/n)C(t/n) . . . C(t/n) is a composition of n copies of linear bounded

operator C(t/n). We consider several initial conditions u0 that are all Hölder continuous (hence

all belong to the UCb(R) space) but have different Hölder exponents. Then we remark how the

rate of tending of supx∈R |u(t, x)− un(t, x)| to zero depends on these Hölder exponents and the

order of Chernoff tangency (which is 1 for G(t), and 2 for S(t)).

Comments on computational techniques. Calculations were performed in the Python

3 environment using a program we wrote and which is available in the Appendix. All measure-

ments, for the sake of reducing computational complexity, for each value of n (varying from 1 to

11) were carried out for 1000 points uniformly dividing the segment [a, b] = [−π, π] for trigono-

metric initial conditions and segment [a, b] = [−10, 10] for exponential initial condition. Initial

conditions of the form u0(x) = | sinx|α for various α ∈ {9/2, 7/2, 5/2, 3/2, 1, 3/4, 1/2, 1/4}, like
any of Chernoff approximations based on them, are periodic functions. So, the standard norm

in UCb(R), namely

∥un(t, ·)− u(t, ·)∥ = sup
x∈R

|un(t, x)− u(t, x)| = sup
x∈[a,b]

|un(t, x)− u(t, x)|,

where u is the exact solution of (1) and un is the Chernoff approximation, is reached at the

interval [a, b] corresponding to the period. So we have

d = max
k=1,...,1000

∣∣∣∣un

(
t, a+

k

1000
(b− a)

)
− u

(
t, a+

k

1000
(b− a)

)∣∣∣∣ ≈ sup
x∈[a,b]

|un(t, x)− u(t, x)|

and this value d is what we measure numerically. We use the value t = 1/2.
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The program code was written with the possibility to set any operator and any initial con-

dition, i.e. without simplifying Chernoff functions and using binomial coefficients, in contrast

to the work [16] published earlier. Moreover, the initial condition does not necessarily have

to be a smooth function. The number of iterations is not limited to 11, the value n can be

changed, both upward and downward. We have chosen the optimal value n since the program

is rather time consuming: via Jupyter Notebook 6.1.4 Anaconda 3 Python 3.8.3 set on personal

computer with Windows 10, CPU Intel Core i5-1035G1, 1.0-3.6 GHz, 8 Gb RAM it takes about

20 minutes to complete the program for all initial conditions with construction of graphs for

them. At the research stage of the new method (Chernoff approximations) this is acceptable,

but in the future, of course, the code will be optimized for a better speed, since this is important

in practice. After reasonable research in this direction in the future it will be possible to write

a library that allows to solve partial derivative equations in this way.

3.2 Approximations for initial condition u0(x) = sin(x)

Let us first analyze the approximations for the initial condition u0(x) = sinx.

fig. 1.1, n = 1, u0(x) = sin x, t = 1
2

Figure 1.1 shows the exact solution, which coincides with the graph of the function y =

e−1/2 sinx, and approximate solutions for the functions S(t) (left) and G(t) (right) at n = 1.

The initial condition u0 = sinx is very good, since its derivatives of any order exist, have

no discontinuities and are bounded. And already at n = 1 the function S(t) gives a good

approximation. For n = 2 quality of approximation is so good that visually it is impossible to

distinguish the approximation and exact solution, so we do not present a plot. However, anyway

it is possible to measure the distance between exact solution and approximation, because the

picture is just an illustration and is not used for measuring the quality of approximation.

Figure 1.2 below shows plots of the decreasing error of Chernoff approximations as a function

of n, where 1 ≤ n ≤ 11. On the left are plots of decreasing error for Chernoff functions S(t)

(in blue) and G(t) (in green) in regular scale, and on the right – the same plots in logarithmic
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scale. The graph in the logarithmic scale allows us to estimate how much the convergence rate

for the function G(t) is less than the convergence rate for the function S(t).

fig. 1.2, 1 ≤ n ≤ 11, u0(x) = sin x, t = 1
2

You can see that the points on the right graph lie on the straight lines with good accuracy.

Using the method of least squares (in Excel) we found the equations of these lines. Rounding

off the coefficients, we see that for the blue line the equation is as follows:

ln(d) = −2.092 ln(n)− 5.0671, i.e. d = n−2.092e−5.0671 = 0.0063
n2.092 .

Similarly, for the green line, the equation ln(d) = −1.0416 ln(n)− 3.5796, i.e.

d = n−1.0416e−3.5796 = 0.0279
n1.0416 .

Using the same approach, we study the behavior of the error for other initial conditions.

3.3 Approximations for initial condition u0(x) = | sin(x)|

. 2.1, n = 10, u0(x) = | sinx|, t = 1
2

Figure 2.1 shows two graphs of the approximate solution for the functions we study at n = 10

and the exact solution under the initial condition u0(x) = |sinx|.
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. 2.2, 1 ≤ n ≤ 11, u0(x) = | sinx|, t = 1
2

Rounding off the coefficients, we see that for the blue line (see Fig. 2.2) the equation looks

as follows: ln(d) = −1.0948 ln(n)− 1.355, i.e. d = n−1.0948e−1.355 = 0.2579
n1.0948 .

Similarly, for the green line (see Figure 2.2), the equation ln(d) = −1.0508 ln(n) − 2.1782,

i.e. d = n−1.0508e−2.1782 = 0.1132
n1.0508 .

3.4 Approximations for initial condition u0(x) =
√
| sinx|

. 3.1, n = 10, u0(x) =
√
| sinx|, t = 1

2

. 3.2, 1 ≤ n ≤ 11, u0(x) =
√

| sinx|, t = 1
2

For the blue line (see Fig. 3.2, right), the equation is as follows: ln(d) = −0.7723 ln(n)−0.9013,

i.e. d = n−0.7723e−0.9013 = 0.4060
n0.7723 .
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Similarly, for the green line (see Fig. 3.2, right), the equation ln(d) = −0.6905 ln(n)−1.4709,

i.e. d = n−0.6905e−1.4709 = 0.2297
n0.6905 .

3.5 Approximations for initial condition 4
√
| sinx|

Note that all special cases α
√

||sinx|, where α < 1, are similar to those already considered.

Consider α = 1/4.

. 4.1, n = 10, u0(x) =
4
√

| sinx|, t = 1
2

. 4.2, 1 ≤ n ≤ 11, u0(x) =
4
√

| sinx|, t = 1
2

Rounding off the coefficients, we see that for the blue line (see Figure 4.2, right) the equation

looks as follows: ln(d) = −0.6653 ln(n)− 0.8789, d = n−0.6653e−0.8789 = 0.4152
n0.6653 .

Similarly, for the green line (see Fig. 4.2, right), the equation ln(d) = −0.6138 ln(n)−1.3228,

i.e. d = n−0.6138e−1.3228 = 0.2664
n0.6138 .
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3.6 Approximations for initial condition u0(x) = | sin(x)|3/2

fig. 5.1, n = 4, u0(x) = | sin(x)|3/2, t = 1
2

fig. 5.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|3/2, t = 1
2

The line (green) corresponding to the decreasing error of the function G(t) in the logarithmic

scale was constructed without taking into account n = 1.

For the green line (see Fig. 5.2, right) the equation ln(d) = −0.9785 ln(n)− 2.8973, i.e.

d = n−0.9785e−2.8973 = 0.0552
n0.9785 .

Similarly, for the blue line (see Figure 5.2), the equation is as follows: ln(d) = −1.5109 ln(n)−
1.8234, i.e. d = n−1.5109e−1.8234 = 0.1615

n1.5109 .

As can be seen from Figure 5.2, the difference between the error decay rates using Chernoff

functions S(t) and G(t) for u0(x) = | sin(x)|3/2 is larger than for u0(x) = | sinx|. This is due to
the greater smoothness of u0(x) = | sin(x)|3/2.

3.7 Approximations for initial condition u0(x) = e−|x|

Let us consider a non-smooth and non-periodic function e−|x| as an initial condition.
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fig. 6.1, n = 4, u0(x) = e−|x|, t = 1
2

fig. 6.2, 1 ≤ n ≤ 11, u0(x) = e−|x|, t = 1
2

Figures 6.1 and 6.2 show plots of the exact solution, approximations to the solution, and

rates of convergence of the error to zero. As can be seen, the result is similar: the conver-

gence rate of the function S(t) is higher than that of G(t), but the order of convergence is

approximately the same, as can be seen from the fact that the lines are almost parallel.

For the green line (see Fig. 6.2, right), the equation is as follows: ln(d) = −0.9294 ln(n)−
2.3832, i.e. d = n−0.9294e−2.3832 = 0.0923

n0.9294 .

Similarly, for the blue line (see Figure 6.2) the equation is as follows: ln(d) = −1.056 ln(n)−
1.5543, i.e. d = n−1.056e−1.5543 = 0.2113

n−1.056 .
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3.8 Approximations for initial condition u0(x) = | sin(x)|5/2

fig. 7.1, n = 4, u0(x) = | sin(x)|5/2, t = 1
2

fig. 7.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|5/2, t = 1
2

The lines (green and blue) corresponding to the decreasing error of the functions G(t) and

S(t) in the logarithmic scale was constructed without taking into account n = 1 and n = 2.
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3.9 Approximations for initial condition u0(x) = | sin(x)|7/2

fig. 8.1, n = 4, u0(x) = | sin(x)|7/2, t = 1
2

fig. 8.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|7/2, t = 1
2

The line (green) corresponding to the decreasing error of the function G(t) in the logarithmic

scale was constructed without taking into account n = 1 and n = 2.
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3.10 Approximations for initial condition u0(x) = | sin(x)|9/2

fig. 9.1, n = 4, u0(x) = | sin(x)|9/2, t = 1
2

fig. 9.2, 1 ≤ n ≤ 11, u0(x) = | sin(x)|9/2, t = 1
2

The line (green) corresponding to the decreasing error of the function G(t) in the logarithmic

scale was constructed without taking into account n = 1 and n = 2.
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4 Discussion

The table below shows experimentally (using simulation in Python 3) the orders of decreas-

ing of error depending on the smoothness class of the initial condition and the Chernoff function.

The smoothness class of the initial

condition u0

Order of decreasing er-

ror on the Chernoff

function G(t), which

has the 1st order of

the Chernoff tangent

to the operator L = d2

dx2

Order of decreasing er-

ror on the Chernoff

function S(t), which

has the 2nd order of

tangency by Chernoff

to the operator L = d2

dx2

C∞, i.e. all derivatives exist and are

bounded, u0(x) = sin(x)
-1.0416 -2.092

C4 1
2 , the first, second, third, and fourth

derivatives exist and are bounded, and

the fourth is Hölder with a Hölder ex-

ponent 1/2, u0(x) = | sin(x)|9/2

-1.0212, the regression was

done without n = 1, n = 2

-3.1219, but the points do

not fit well on a straight

line, so the number is un-

informative

C3 1
2 , the first, second, and third deriva-

tives exist and are bounded, and the

third is Hölder with Hölder exponent

1/2, u0(x) = | sin(x)|7/2

-1.4013,regression was

done without considering

n = 1, n = 2, but the

points do not lie well on

the line, so the number is

uninformative

-2.5045, but the points do

not lie well on the line, so

the number is uninforma-

tive

C2 1
2 , the first and second derivative

exist and are bounded, while the sec-

ond derivative is Hölder continuous

with Hölder exponent 1/2, u0(x) =

| sin(x)|5/2

-1.1433, regression was

done without considering

n = 1, n = 2

-1.7923, regression was

done without considering

n = 1, n = 2

C1 1
2 , the first derivative: exists,

is bounded and Hölder continuous

with Hölder exponent 1/2, u0(x) =

| sin(x)|3/2

-0.9785, the regression was

done without considering

n = 1

-1.5109

H1, the Hölder with the Hölder expo-

nent 1, u0(x) = | sin(x)|
-1.0508 -1.0948

H1,the Hölder with the Hölder expo-

nent 1, u0(x) = e−|x| -0.9294 -1.056

H3/4, the Hölder with the Hölder expo-

nent 3/4, u0(x) = | sin(x)|3/4
-0.815 -0.9262

H1/2, the Hölder with the Hölder expo-

nent 1/2, u0(x) = | sin(x)|1/2
-0.6905 -0.7723

H1/4, the Hölder with the Hölder expo-

nent 1/4, u0(x) = | sin(x)|1/4
-0.6138 -0.6653

We see that on the initial condition with high smoothness (first line in the table), the first

order of Chernoff tangency corresponds to a decreasing error rate of about 1/n, and the second

order – a decreasing rate of about 1/n2. This is in accordance with the conjecture from [10]

and theorem from [6].
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As the smoothness is lost (second line in the table and below), theory from [6] stops working,

and the experimental evidence is the following: the convergence speed gradually decreases and

the advantages of the Chernoff function with the second order of Chernoff tangency gradually

vanish. Let us present the results from the table graphically:

fig. 10

We see that first several blue points visually lie on a straight line, so we used linear regression

(ordinary least square method) to find the equation of this line. The regression was carried out

without taking into account the point last point with coordinates (2.5; -1.7923). The equation

of the approximating line: y = −0.684x−0.4467. This may be interpreted as follows: when the

smoothness class α of the initial condition u0 is not greater than the order of Chernoff tangency

then

d = ∥un(t, ·)− u(t, ·)∥ = sup
x∈R

|un(t, x)− u(t, x)| ≈ const ·
(
1

n

)0.68α+0.45

.

Meanwhile when the smoothness class α of the initial condition u0 is greater than the order of

Chernoff tangency then there is no such easy-to-state dependence but still Chernoff function

S(t) with the second order Chernoff tangency provides better approximations than Chernoff

function G(t) with the first order Chernoff tangency.

Conclusion. The results of the numerical simulation confirm the conjecture form [10] and

are in agreement with the theory arising from it [6, 7, 18]. However, there are some of the

points that do not lie on straight lines in the logarithmic scale exactly. This deserve closer

attention: n = 11 for some initial conditions is not sufficient to derive conclusions about the

asymptotic behavior of the calculation error. There are no known theoretical bounds on the

rate of convergence for not smooth initial conditions; we studied this numerically, so the results

that we found are the only evidence known for the moment. In the future, of course, the most

interesting case of variable coefficients should be considered, understanding them as parameters

analogously with u0. So the research in this direction is far from ending.
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Appendix A: full list of pictures

A.1 u0(x) = sin(x)

n=1

n=2

n=3
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n=4

n=5

n=6

n=7
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n=8

n=9

n=10
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A.2 u0(x) = | sin(x)|

n=1

n=2

n=3
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n=4

n=5

n=6
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n=7

n=8

n=9
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n=10

A.3 u0(x) =
√

| sinx|

n=1

n=2
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n=3

n=4

n=5
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n=6

n=7

n=8

n=9
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n=10

A.4 u0(x) =
4
√
| sinx|

n=1
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n=2

n=3

n=4
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n=5

n=6

n=7
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n=8

n=9

n=10
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A.5 u0(x) = | sin(x)|3/2

n=1

n=2

n=3
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n=4

n=5

n=6
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n=7

n=8

n=9
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n=10

A.6 u0(x) = e−|x|

n=1

n=2
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n=3

n=4

n=5
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n=6

n=7

n=8
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n=9

n=10

A.7 u0(x) = | sin(x)|5/2

n=1
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n=2

n=3

n=4
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n=5

n=6

n=7
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n=8

n=9

n=10
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A.8 u0(x) = | sin(x)|7/2

n=1

n=2

n=3
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n=4

n=5

n=6
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n=7

n=8

n=9
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n=10

A.9 u0(x) = | sin(x)|9/2

n=1

n=2
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n=3

n=4

n=5
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n=6

n=7

n=8
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n=9

n=10

Appendix B: Python 3 code
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