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Introduction

The method of Chernoff approximation was discovered by Paul Chernoff in 1968 and now
is a powerful and flexible tool of contemporary functional analysis. This method helps to
solve numerically the Cauchy problem for evolution equations. The rate of convergence
of Chenroff approximations were studied theoretically by O.E.Galkin and I.D.Remizov in
a general setting for arbitraryC0-semigroup.The present research is devoted to study of
convergence rates of four families of Chernoff functions to the solution of cauchy
problem with variable coefficient of thermal conductivity.
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Definition of a C0-semigroup

Let F be a Banach space, and L (F) be the space of all linear bounded operators
on F . Consider mapping V : [0; +∞) → L (F), which for every fixed t ≥ 0 is a
linear bounded operator V (t) : F → F .
The family (V (t))t≥0 ⊂ L (F) is called C0-semigroup iff the following holds:

1 V (0) = I , i.e. V (0)f = f for all f ∈ F ;
2 V (t + s) = V (t) ◦ V (s) for any t ≥ 0, s ≥ 0;
3 V is continuous in strong operator topology, i.e. for any f ∈ F a mapping

t 7−→ V (t)f is continuous.
For the C0-semigroup, there is an analogue of the derivative at zero. This object is
called its generator and is defined as follows.
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Definition of a C0-semigroup generator

By the generator of a C0-semigroup of linear bounded operators in F we mean a
linear operator L: Dom(L) → F given by the formula

Lf = lim
t→+0

V (t)f − f

t
,

defined on its domain Dom(L), that is a dense subspace of F such that there exist
a given limit where the limit is understood in the strong sense, i.e. it is defined in
terms of the norm in space F . The generator generates a C0-semigroup, and one
can use the notation V (t) = etL.
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C0-semigroup and linear evolution equations

let Q be some set. In the Cauchy problem for an evolution partial differential
equation {

u′t(t, x) = Lu(t, x) for t > 0, x ∈ Q,
u(0, x) = u0(x) for x ∈ Q.

we can assume U(t) = u(t, ·) = [x 7−→ u(t, x)] and get the Cauchy problem for
an ordinary differential equation:{

d
dtU(t) = LU(t) for t > 0,
U(0) = u0.

It is known that if u(t, ·) ∈ F and there exists a C0-semigroup with generator L,
that is, if there is an exponential form the operator tL, then both problems have a
solution

U(t) = etLu0, u(t, x) = U(t)(x) =
(
etLu0

)
(x).

Nasrin Nikbakht Numerical study of chernoff approximations for parabolic heat-type equation with variable coefficientsJun 2023 5 / 37



Chernoff tangency

Chernoff tangency conditions the following:
1 Let F be a Banach space, and let L (F) be the space of all bounded linear

operators on F . Suppose a map G : [0; +∞) → L (F) is given;
2 The family G is strongly continuous in strong operator topology of the space

L (F) , i.e., the map t 7−→ G (t)f ∈ F is continuous on [0; +∞) for each
f ∈ F ;

3 G (0) = I ;
4 There exists a linear subspace D ⊂ F dense in F such that for each f ∈ D

the limit

lim
t→+0

G (t)f − f

t

exists. We denote its value by G ′(0)f ;
5 The closure of the operator (G ′(0),D) exists and is equal to (L,Dom(L)).
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Chernoff theorem, summary

Chernoff’s theorem is a theorem on the «second remarkable limit» for
C0-semigroup:

Let F — be a Banach space and L — be a closed linear operator in F with a
dense domain. Let a family (G (t))t≥0 of linear bounded operators in F . Let the
conditions also be true::
(Е) C0-semigroup

(
etL

)
t≥0 exists

(N) There is such ω ∈ R that ∥G (t)∥ ≤ ewt for each t ≥ 0
(CT) idea of the condition briefly: G (t)f = f + tLf + o(t), t → 0
Then etLf = lim

n→∞
G (t/n)nf for each f ∈ F and for each t ≥ 0.

«second remarkable limit»

etL = lim
n→∞

G (t/n)n = lim
n→∞

(
I +

tL

n
+ o(t/n)

)n
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Model equation and problem statement

For the next Cauchy problem{
u’t(t, x) = a(x)u′′xx(t, x)

u(0,x)=u0(x)

We present the solution u(t, x) in the form of a limit of fast converging Chernoff
approximations under the conditions infx∈R a(x) > 0 and study the rate of
convergence of Chernoff approximations.
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Chernoff functions

We use the following Chernoff functions:

(G (t)f )(x) =
1
2
f (x) +

1
4
f
(
x + 2

√
a(x)t

)
+

1
4
f
(
x − 2

√
a(x)t

)
(S(t)f )(x) =

2
3
f (x) +

1
6
f
(
x +

√
6a(x)t

)
+

1
6
f
(
x −

√
6a(x)t

)
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Chernoff functions

(H(t)f )(x) =
2
3
f (x) +

1
6
f
(
x +

√
6a(x)t

)
+

1
6
f
(
x −

√
6a(x)t

)
+

+ a(x)a′(x)t
(
3f

(
x + 3

√
t
)
− 3f

(
x + 2 3

√
t
)
+ f

(
x + 3 3

√
t
))

+

+
1
2
a(x)a′′(x)t

(
f
(
x +

√
t
)
+ f

(
x −

√
t
))

−
(
a′(x) + a′′(x)

)
a(x)tf (x)

(Q(t)f )(x) =
2
3
f (x) +

1
6
f
(
x +

√
6a(x)t

)
+

1
6
f
(
x −

√
6a(x)t

)
−

− a(x)a′(x)t
(7

2
f
(
x + 3

√
t
)
+

1
4
f
(
x − 3

√
t
)
− 7

4
f
(
x + 2 3

√
t
)
+

+
1
4
f
(
x − 2 3

√
t
)
+

1
4
f
(
x + 3 3

√
t
))

+

+
1
2
a(x)a′′(x)t

(
f
(
x +

√
t
)
+ f

(
x −

√
t
))

+

+
(5

2
a′(x)− a′′(x)

)
a(x)tf (x)
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Definition of norm in UCb(R)

The standard norm in UCb(R) namely

∥un(t, ·)− u(t, ·)∥ = sup
x∈R

|un(t, x)− u(t, x)| = sup
x∈[a,b]

|un(t, x)− u(t, x)|,

where u is the solution of Cauchy problem and un is the Chernoff approximation,is
reached at the interval [a, b] corresponding to the period. So we have

d = max
k=1,...,100

∣∣∣∣un (t, a+ k

100
(b − a)

)
− u

(
t, a+

k

100
(b − a)

)∣∣∣∣
≈ supx∈[a,b] |un(t, x)− u(t, x)|
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Comments on computational techniques

1 Cauchy problem was solved with numerical technique MATLAB PDE Solver
pdepe method named MatlabPdepe

2 Calculations were performed in the Matlab environment.
3 Value of composition degree n varies from 1 to 4.
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Numerical results

Numerical experiments for smooth initial conditions and smooth coefficient
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u0(x) = cos(2x) a(x) = 1.1 + sin( x
9) n = 3

t=0.8

t=0.1
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Examination of error and convergence rates
u0(x) = cos(2x) a(x) = 1.1 + sin( x

9)

t=0.8

t=0.1
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Estimation of convergence rates at different times

u0 is the initial condition, t is time, we consider
t ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
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Numerical results

Numerical experiments for smooth initial conditions and non-smooth
coefficient

Nasrin Nikbakht Numerical study of chernoff approximations for parabolic heat-type equation with variable coefficientsJun 2023 17 / 37



u0(x) = exp(−x2) a(x) = 1.1 + |sin( x
2)|

7/2 n = 3

t=0.8

t=0.1
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Examination of error and convergence rates
u0(x) = exp(−x2) a(x) = 1.1 + |sin( x

2)|
7/2

t=0.8

t=0.1
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Estimation of convergence rates at different times
u0(x) = exp(−x2) a(x) = 1.1 + |sin( x

2)|
7/2

u0 is the initial condition, t is time, we consider
t ∈ {0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0}
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Numerical results

Numerical experiments for non-smooth initial conditions and smooth
coefficient
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Examination of error and convergence rates
u0(x) = exp(−|(x + 2)(x − 1)|1/4) a(x) = 1.1 + sin(x)
t = 0.1
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Examination of error and convergence rates
u0(x) = exp(−|(x + 2)(x − 1)|3/4) a(x) = 1.1 + sin(x)
t = 0.1
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Examination of error and convergence rates
u0(x) = exp(−|(x + 2)(x − 1)|5/2) a(x) = 1.1 + sin(x)
t = 0.1
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Examination of error and convergence rates
u0(x) = exp(−|(x + 2)(x − 1)|9/2) a(x) = 1.1 + sin(x)
t = 0.1
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Estimation of convergence rates at different
smoothness class of initial condition
u0(x) = exp(−|(x + 2)(x − 1)|q) a(x) = 1.1 + sin(x)
t = 0.1

u0 is the initial condition, q is the smoothness class of u0, we consider
q ∈ {1/4, 1/3, 1/2, 2/3, 3/4, 1, 3/2, 5/2, 7/2, 9/2, 11/2, 13/2}

Nasrin Nikbakht Numerical study of chernoff approximations for parabolic heat-type equation with variable coefficientsJun 2023 26 / 37



Numerical results

Numerical experiments for non-smooth initial conditions and non-smooth
coefficient
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Examination of error and convergence rates
u0(x) = |cos(x)|1/3 a(x) = 1.1 + |sin(x)|9/2 t = 0.1
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Examination of error and convergence rates
u0(x) = |cos(x)|3/4 a(x) = 1.1 + |sin(x)|9/2 t = 0.1
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Examination of error and convergence rates
u0(x) = |cos(x)|5/2 a(x) = 1.1 + |sin(x)|9/2 t = 0.1
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Examination of error and convergence rates
u0(x) = |cos(x)|9/2 a(x) = 1.1 + |sin(x)|9/2 t = 0.1
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Estimation of convergence rates at different
smoothness class of initial condition
u0(x) = |cos(x)|q a(x) = 1.1 + |sin(x)|9/2 t = 0.1

u0 is the initial condition, q is the smoothness class of u0, we consider
q ∈ {1/4, 1/3, 1/2, 2/3, 3/4, 1, 3/2, 5/2, 7/2, 9/2}
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Conclusion for smooth initial condition u0

Convergence rates
a(x) t ∈ {0.1, 0.2, 0.3, 0.4, 0.5} t ∈ {0.6, 0.7, 0.8, 0.9, 1.0}
Smooth As time increases, the

convergence rate of all
discussed functions rises.
And Chernoff functions Q(t)
has the highest convergence
rate compared to the H(t),
S(t) and G (t)

As time increases, the
convergence rate of all
discussed functions increases.
And Chernoff functions Q(t)
has the highest convergence
rate compared to the H(t),
S(t) and G (t)

Non-
smooth

As time increases,the
convergence rate of all
discussed functions riseS.
And Chernoff functions H(t)
has the highest convergence
rate compared to the Q(t),
S(t) and G (t)

Convergence rates of functions
S(t) and G (t) have upward
trend. In the case of functions
Q(t) and H(t) the rates of
convergence can increase or
decrease
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Conclusion for nonsmooth initial condition u0

Convergence rates
a(x) q ∈ {1/4, 1/3, 1/2, 2/3, 3/4, 1} q ∈ {5/2, 7/2, 9/2, 11/2, 13/2}
Smooth As the smoothness class q of

initial condition u0 increases
,the convergence rate of all
discussed functions rises. And
Chernoff functions H(t) has
the highest convergence rate
compared to the Q(t), S(t) and
G (t)

When u0(x) = exp(−|(x+2)(x−
1)|q) the rates of convergence
of all discussed functions have
downward trend. conversely,
convergence rates increase in the
case of u0(x) = | cos(x)|q

Non-
smooth

As the smoothness class q of
initial condition u0 increases
,the convergence rate of all
discussed functions rises

With the exception of Chernoff
function G (t), the rates of
convergence of other Chernoff
functions go up as q increases
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