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Summary of the talk. The method of Chernoff approximation [1] is an extremely effective
tool for expressing etL in terms of variable coefficients of operator L. The talk shows that this
method can be also be used for expressing (λI−L)−1 in terms of variable coefficients of operator
L, and for finding the solution of the corresponding differential equation λf − Lf = g. We
demonstrate this on the second order differential operator L. As a corollary, we obtain two new
representations of the solution of an inhomogeneous second order linear ordinary differential
equation in terms of functions that are the coefficients of this equation playing the role of
parameters for the problem. This reasoning also works in the multi-dimensional situation,
where we have an elliptic PDE instead of ODE. Full proofs are available in the preprint [2].

Let us recall the Chernoff theorem.
Chernoff theorem, one of the wordings. Suppose that the following three conditions are met:

1. C0-semigroup (etL)t≥0 with generator (L,D(L)) in Banach space F is given, such that for
some w ≥ 0 the inequality ∥etL∥ ≤ ewt holds for all t ≥ 0.

2. There exists a strongly continuous mapping S : [0,+∞) → L (F) such that S(0) = I
and the inequality ∥S(t)∥ ≤ ewt holds for all t ≥ 0.

3. There exists a dense linear subspace D ⊂ F such that for all f ∈ D there exists a limit
S ′(0)f := limt→+0(S(t)f − f)/t. Moreover, S ′(0) on D has a closure that coincides with the
generator (L,D(L)). Then the following statement holds:

(C) For every f ∈ F , as n → ∞ we have S(t/n)nf → etLf locally uniformly with respect
to t ≥ 0, i.e. for each T > 0 and each f ∈ F we have limn→∞ supt∈[0,T ] ∥S(t/n)nf − etLf∥ = 0.

Remark 1. Above S(t/n)n = S(t/n) ◦ · · · ◦ S(t/n)︸ ︷︷ ︸
n

is the composition of n copies of linear

bounded operator S(t/n) defined everywhere on F .
Definition 1. Let C0-semigroup (etL)t≥0 with generator L in Banach space F be given. The

mapping S : [0,+∞) → L (F) is called a Chernoff function for operator L iff it satisfies the
condition (C) of Chernoff theorem above. In this case expressions S(t/n)n are called Chernoff
approximations to the semigroup etL.

Main idea of the talk. Thanks to Chernoff theorem we have etLf = limn→∞ S(t/n)nf for
all vectors f and for properly selected operator-valued function S. Also, there is a standard fact
that for λ with Reλ large enough for the resolvent of L we have the followng representation:
(λI − L)−1f =

∫∞
0

e−λtetLfdt, so we can substitute etL by S(t/n)n and get approximations for
the resolvent:

(λI − L)−1f=

∫ ∞

0

e−λtetLfdt=

∫ ∞

0

e−λt lim
n→∞

S(t/n)nfdt= lim
n→∞

∫ ∞

0

e−λtS(t/n)nfdt.

Above the first (left) equality is a classical fact, the second inequality is due to Chernoff theorem,
and the last (the right) equality is the main idea of all results that follow below.

Theorem 1. Let F be real or complex Banach space, and let L (F) be the set of all linear
bounded operators in F . Suppose that linear operator L : F ⊃ D(L) → F generates C0-
semigroup (etL)t≥0 satisfying for some constants M ≥ 1 and ω ≥ 0 inequality ∥etL∥ ≤ Meωt for
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all t ≥ 0. Suppose that function S : [0,+∞) → L (F) is given and ∥S(t)k∥ ≤ Meωtk for all t ≥ 0
and all k = 1, 2, 3, . . . Let us denote the resolvent of (L,D(L)) by the symbol Rλ = (λI −L)−1

for all λ ∈ ρ(L). Suppose that the number λ ∈ C is given and Reλ > ω. Then λ ∈ ρ(L) and:
1. If for all T > 0 we have limn→∞ supt∈[0,T ]

∥∥etLf − (S(t/n))nf
∥∥ = 0 for all f ∈ F , then

for all f ∈ F we have

lim
n→∞

∥∥∥∥Rλf −
∫ ∞

0

e−λt(S(t/n))nfdt

∥∥∥∥ = 0.

2. If for all T > 0 we have limn→∞ supt∈[0,T ]

∥∥etL − (S(t/n))n
∥∥ = 0, then we have

lim
n→∞

∥∥∥∥Rλ −
∫ ∞

0

e−λt(S(t/n))ndt

∥∥∥∥ = 0.

Theorem 2. Consider second order ordinary differential equation for function f : R → R

a(x)f ′′(x) + b(x)f ′(x) + (c(x)− λ)f(x) = −g(x) for all x ∈ R, (1)

where functions a, b, c, g : R → R are known parameters and number λ ∈ C is also a known
parameter. Assume that there exists constant a0 > 0 such that a(x) > a0 for all x ∈ R. Assume
that there exists β ∈ (0, 1] such that function c is bounded and Hölder continuous with Hölder
exponent β, and functions a, x 7→ 1/a(x), b are bounded and Hölder continuous with Hölder
exponent β with derivatives of order one and two. Assume that function g is continuous and
vanishes at infinity. Assume that R ∋ λ > max(0, supx∈R c(x)).

Then for equation (1) there exists a unique continuous and vanishing at infinity solution f
given for all x0 ∈ R by the formula

f(x0) = lim
n→∞

∫ ∞

0

e−λt

[∫
R
· · ·
∫
R︸ ︷︷ ︸

n

exp

(
t

n

n∑
j=1

(
c(xj−1)−

b(xj−1)
2

2a(xj−1)

))
×

× exp

(
n∑

j=1

b(xj−1)(xj − xj−1)

a(xj−1)

)
× pa(t/n, x0, x1) . . . pa(t/n, xn−1, xn)g(xn)dx1 . . . dxn

]
dt,

where the limit lim
n→∞

exists uniformly in x0 ∈ R, and we denoted

pa(t, x, y) =
1√

2πta(x)
exp

(
−(x− y)2

2ta(x)

)
for all x, y ∈ R, t > 0.

Some notation. Let us use symbol UCb(R) to denote Banach space of all bounded and
uniformly continuous functions f : R → R with the uniform norm ∥f∥ = supx∈R |f(x)|. Let us
use symbol C∞

b (R) for the subspace of UCb(R) consisting of all infinitely differentible functions
that are bounded and have bounded derivatives of all orders.

Theorem 3. Suppose that functions a, b, c ∈ UCb(R) are bounded with their derivatives
up to order 3, and there exists such a constant a0 > 0 that estimate infx∈R a(x) ≥ a0 > 0 is
satisfied for all x ∈ R. For each function ϕ ∈ C∞

b (R) = D(A) define Aϕ = aϕ′′ + bϕ′ + cϕ. For
each t ≥ 0, each x ∈ R and each f ∈ UCb(R) define

(S(t)f)(x) =
1

4
f
(
x+ 2

√
a(x)t

)
+

1

4
f
(
x− 2

√
a(x)t

)
+

1

2
f
(
x+ 2b(x)t

)
+ tc(x)f(x). (2)

Assume also that R ∋ λ > supx∈R |c(x)| = ∥c∥. Then:
1. Closure A of operator A generates a C0-semigroup in UCb(R).
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2. For each g ∈ UCb(R) the solution f : R → R of the equation

a(x)f ′′(x) + b(x)f ′(x) + (c(x)− λ)f(x) = −g(x) for all x ∈ R,

exists, is unique in UCb(R) and is given for all x ∈ R by the formula

f(x) =

∫ ∞

0

e−λt
(
eAg
)
(x)dt = lim

n→∞

∫ ∞

0

e−λt ((S(t/n))ng) (x)dt, (3)

where S(t/n) is obtained by substitution of t with t/n in (2), and (S(t/n))n is the composition
of n copies of linear bounded operator S(t/n).

Suppose additionally that function g is bounded with derivatives up to order 5. Then:
3. There exist nonnegative constants C0, C1, . . . , C4 such that for all t > 0 and all n ∈ N

the following inequality holds:

∥S(t/n)ng − etAg∥ ≤ t2e∥c∥t

n

(
C0∥g∥+ C1∥g′∥+ C2∥g′′∥+ C3∥g′′′∥+ C4∥g(IV )∥

)
.

4. Error bound in (3) for all n ∈ N is given by inequality

sup
x∈R

∣∣∣∣f(x)− ∫ ∞

0

e−λt ((S(t/n))ng) (x)dt

∣∣∣∣ ≤ 2Cg

n · (λ− ∥c∥)3
,

where Cg = C0∥g∥+ C1∥g′∥+ C2∥g′′∥+ C3∥g′′′∥+ C4∥g(IV )∥.
5. Integral in item 2 can be calculated over [0, T ] instead of [0,∞) with controlled level of

error. This means that for each ε > 0 there exists T = max
(
0, 1

λ−∥c∥ ln
2

(λ−∥c∥)ε

)
such that for

all n ∈ N we have

sup
x∈R

∣∣∣∣f(x)− ∫ T

0

e−λt ((S(t/n))ng) (x)dt

∣∣∣∣ ≤ 2Cg

n · (λ− ∥c∥)3
+ ε.

Remark 2. Independently of Chernoff function used (is it based on integral operators as in
theorem 2 or on translation operators as in theorem 3), Chernoff approximations are allowing
to calculate value of the solution in only one point of the domain of solution (in one point x ∈ R
in our examples). Meanwhile methods based on a computational grid calculate values of the
solution in all points of the computational grid. Moreover, values of Chernoff approximations
at different points of the domain can be calculated in parallel, using multi-core processors and
GPU which is an advantage of this approach.
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